首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In contrast to the adult mammalian central nervous system (CNS), the neurons in the peripheral nervous system (PNS) can regenerate their axons. However, the underlying mechanism dictating the regeneration program after PNS injuries remains poorly understood. Combining chemical inhibitor screening with gain- and loss-of-function analyses, we identified p90 ribosomal S6 kinase 1 (RSK1) as a crucial regulator of axon regeneration in dorsal root ganglion (DRG) neurons after sciatic nerve injury (SNI). Mechanistically, RSK1 was found to preferentially regulate the synthesis of regeneration-related proteins using ribosomal profiling. Interestingly, RSK1 expression was up-regulated in injured DRG neurons, but not retinal ganglion cells (RGCs). Additionally, RSK1 overexpression enhanced phosphatase and tensin homolog (PTEN) deletion-induced axon regeneration in RGCs in the adult CNS. Our findings reveal a critical mechanism in inducing protein synthesis that promotes axon regeneration and further suggest RSK1 as a possible therapeutic target for neuronal injury repair.

This study shows that p90 ribosomal S6 kinase 1 (RSK1) responds differentially to nerve injury in the peripheral and central nervous systems, and identifies it as a crucial regulator of axonal regeneration; mechanistically, RSK1 preferentially induces the synthesis of regeneration-related proteins via the RSK1-eEF2K-eEF2 axis.  相似文献   

2.
3.
Peripheral nerve injury (PNI) may lead to disability and neuropathic pain, which constitutes a substantial economic burden to patients and society. It was found that the peripheral nervous system (PNS) has the ability to regenerate after injury due to a permissive microenvironment mainly provided by Schwann cells (SCs) and the intrinsic growth capacity of neurons; however, the results of injury repair are not always satisfactory. Effective, long-distance axon regeneration after PNI is achieved by precise regulation of gene expression. Numerous studies have shown that in the process of peripheral nerve damage and repair, differential expression of non-coding RNAs (ncRNAs) significantly affects axon regeneration, especially expression of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). In the present article, we review the cellular and molecular mechanisms of axon regeneration after PNI, and analyze the roles of these ncRNAs in nerve repair. In addition, we discuss the characteristics and functions of these ncRNAs. Finally, we provide a thorough perspective on the functional mechanisms of ncRNAs in nervous injury repair, and explore the potential these ncRNAs offer as targets of nerve injury treatment.  相似文献   

4.
Failure of injured axons to regenerate in the central nervous system (CNS) is the main obstacle for repair of stroke and traumatic injuries to the spinal cord and sensory roots. This regeneration failure is high-lighted at the dorsal root transitional zone (DRTZ), the boundary between the peripheral (PNS) and central nervous system where sensory axons enter the spinal cord. Injured sensory axons regenerate in the PNS compartment of the dorsal root but are halted as soon as they reach the DRTZ. The failure of regenerating dorsal root axons to re-enter the mature spinal cord is a reflection of the generally nonpermissive nature of the CNS environment, in contrast to the regeneration supportive properties of the PNS. The dorsal root injury paradigm is therefore an attractive model for studying mechanisms underlying CNS regeneration failure in general and how to overcome the hostile CNS environment. Here we review the main lines that have been pursued to achieve growth of injured dorsal root axons into the spinal cord: (i) modifying the inhibitory nature of the DRTZ by breaking down or blocking the effect of growth repelling molecules, (ii) stimulate elongation of injured dorsal root axons by a prior conditioning lesion or administration of specific growth factors, (iii) implantation of olfactory ensheathing cells to provide a growth supportive cellular terrain at the DRTZ, and (iv) replacing the regeneration deficient adult dorsal root ganglion neurons with embryonic neurons or neural stem cells.  相似文献   

5.
6.
The central nervous system (CNS), unlike the peripheral nervous system (PNS), is an immune-privileged site in which local immune responses are restricted. Whereas immune privilege in the intact CNS has been studied intensively, little is known about its effects after trauma. In this study, we examined the influence of CNS immune privilege on T cell response to central nerve injury. Immunocytochemistry revealed a significantly greater accumulation of endogenous T cells in the injured rat sciatic nerve than in the injured rat optic nerve (representing PNS and CNS white matter trauma, respectively). Use of the in situ terminal deoxytransferase-catalyzed DNA nick end labeling (TUNEL) procedure revealed extensive death of accumulating T cells in injured CNS nerves as well as in CNS nerves of rats with acute experimental autoimmune encephalomyelitis, but not in injured PNS nerves. Although Fas ligand (FasL) protein was expressed in white matter tissue of both systems, it was more pronounced in the CNS. Expression of major histocompatibility complex (MHC) class II antigens was found to be constitutive in the PNS, but in the CNS was induced only after injury. Our findings suggest that the T cell response to central nerve injury is restricted by the reduced expression of MHC class II antigens, the pronounced FasL expression, and the elimination of infiltrating lymphocytes through cell death.  相似文献   

7.
Background: The induction of neural regeneration is vital to the repair of spinal cord injury (SCI). While compared with peripheral nervous system (PNS), the regenerative capacity of the central nervous system (CNS) is extremely limited. This indicates that modulating the molecular pathways underlying PNS repair may lead to the discovery of potential treatment for CNS injury.Methods: Based on the gene expression profiles of dorsal root ganglion (DRG) after a sciatic nerve injury, we utilized network guided forest (NGF) to rank genes in terms of their capacity of distinguishing injured DRG from sham-operated controls. Gene importance scores deriving from NGF were used as initial heat in a heat diffusion model (HotNet2) to infer the subnetworks underlying neural regeneration in the DRG. After potential regulators of the subnetworks were found through Connectivity Map (cMap), candidate compounds were experimentally evaluated for their capacity to regenerate the damaged neurons.Results: Gene ontology analysis of the subnetworks revealed ubiquinone biosynthetic process is crucial for neural regeneration. Moreover, almost half of the genes in these subnetworks are found to be related to neural regeneration via text mining. After screening compounds that are likely to modulate gene expressions of the subnetworks, three compounds were selected for the experiment. Of them, trichostatin A, a histone deacetylase inhibitor, was validated to enhance neurite outgrowth in vivo via an optic nerve crush mouse model.Conclusions: Our study identified subnetworks underlying neural regeneration, and validated a compound can promote neurite outgrowth by modulating these subnetworks. This work also suggests an alternative approach for drug repositioning that can be easily extended to other disease phenotypes.  相似文献   

8.

Background

Unlike mammals, zebrafish have the ability to regenerate damaged parts of their central nervous system (CNS) and regain functionality of the affected area. A better understanding of the molecular mechanisms involved in zebrafish regeneration may therefore provide insight into how CNS repair might be induced in mammals. Although many studies have described differences in gene expression in zebrafish during CNS regeneration, the regulatory mechanisms underpinning the differential expression of these genes have not been examined.

Results

We used microarrays to analyse and integrate the mRNA and microRNA (miRNA) expression profiles of zebrafish retina after optic nerve crush to identify potential regulatory mechanisms that underpin central nerve regeneration. Bioinformatic analysis identified 3 miRNAs and 657 mRNAs that were differentially expressed after injury. We then combined inverse correlations between our miRNA expression and mRNA expression, and integrated these findings with target predictions from TargetScan Fish to identify putative miRNA-gene target pairs. We focused on two over-expressed miRNAs (miR-29b and miR-223), and functionally validated seven of their predicted gene targets using RT-qPCR and luciferase assays to confirm miRNA-mRNA binding. Gene ontology analysis placed the miRNA-regulated genes (eva1a, layna, nefmb, ina, si:ch211-51a6.2, smoc1, sb:cb252) in key biological processes that included cell survival/apoptosis, ECM-cytoskeleton signaling, and heparan sulfate proteoglycan binding,

Conclusion

Our results suggest a key role for miR-29b and miR-223 in zebrafish regeneration. The identification of miRNA regulation in a zebrafish injury model provides a framework for future studies in which to investigate not only the cellular processes required for CNS regeneration, but also how these mechanisms might be regulated to promote successful repair and return of function in the injured mammalian brain.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1772-1) contains supplementary material, which is available to authorized users.  相似文献   

9.
The response of the peripheral nervous system (PNS) to injury may go together with alterations in epigenetics, a conjecture that has not been subjected to a comprehensive, genome-wide test. Using reduced representation bisulfite sequencing, we report widespread remodeling of DNA methylation in the rat dorsal root ganglion (DRG) occurring within 24 h of peripheral nerve ligation, a neuropathy model of allodynia. Significant (P < 10−4) cytosine hyper- and hypo-methylation was found at thousands of CpG sites. Remodeling occurred outside of CpG islands. Changes affected genes with known roles in the PNS, yet methylome remodeling also involved genes that were not linked to neuroplasticity by prior evidence. Consistent with emerging models relying on genome-wide methylation and RNA-seq analysis of promoter regions and gene bodies, variation of methylation was not tightly linked with variation of gene expression. Furthermore, approximately 44% of the dynamically changed CpGs were located outside of genes. We compared their positions with the intergenic, tissue-specific differentially methylated CpGs (tDMCs) of an independent experimental set consisting of liver, spleen, L4 control DRG, and muscle. Dynamic changes affected those intergenic CpGs that were different between tissues (P < 10−15) and almost never the invariant portion of the methylome (those CpGs that were identical across all tissues). Our findings—obtained in mixed tissue—show that peripheral nerve injury leads to methylome remodeling in the DRG. Future studies may address which of the cell types found in the DRG, such as specific groups of neurons or non-neuronal cells are affected by which aspect of the observed methylome remodeling.  相似文献   

10.
The planarian central nervous system (CNS) can be used as a model for studying neural regeneration in higher organisms. Despite its simple structure, recent studies have shown that the planarian CNS can be divided into several molecular and functional domains defined by the expression of different neural genes. Remarkably, a whole animal, including the molecularly complex CNS, can regenerate from a small piece of the planarian body. In this study, a collection of neural markers has been used to characterize at the molecular level how the planarian CNS is rebuilt. Planarian CNS is composed of an anterior brain and a pair of ventral nerve cords that are distinct and overlapping structures in the head region. During regeneration, 12 neural markers have been classified as early, mid-regeneration and late expression genes depending on when they are upregulated in the regenerative blastema. Interestingly, the results from this study show that the comparison of the expression patterns of different neural genes supports the view that at day one of regeneration, the new brain appears within the blastema, whereas the pre-existing ventral nerve cords remain in the old tissues. Three stages in planarian CNS regeneration are suggested.  相似文献   

11.
12.
Myelinogenesis is a complex process that involves substantial and dynamic changes in plasma membrane architecture and myelin interaction with axons. Highly ramified processes of oligodendrocytes in the central nervous system (CNS) make axonal contact and then extrapolate to wrap around axons and form multilayer compact myelin sheathes. Currently, the mechanisms governing myelin sheath assembly and axon selection by myelinating cells are not fully understood. Here, we generated a transgenic mouse line expressing the membrane‐anchored green fluorescent protein (mEGFP) in myelinating cells, which allow live imaging of details of myelinogenesis and cellular behaviors in the nervous systems. mEGFP expression is driven by the promoter of 2'‐3'‐cyclic nucleotide 3'‐phosphodiesterase (CNP) that is expressed in the myelinating cell lineage. Robust mEGFP signals appear in the membrane processes of oligodendrocytes in the CNS and Schwann cells in the peripheral nervous system (PNS), wherein mEGFP expression defines the inner layers of myelin sheaths and Schmidt‐Lanterman incisures in adult sciatic nerves. In addition, mEGFP expression can be used to track the extent of remyelination after demyelinating injury in a toxin‐induced demyelination animal model. Taken together, the membrane‐anchored mEGFP expression in the new transgenic line would facilitate direct visualization of dynamic myelin membrane formation and assembly during development and process remodeling during remyelination after various demyelinating injuries. genesis 52:341–349, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
Trauma to the spinal cord and brain can result in irreparable loss of function. This failure of recovery is in part due to inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans (CSPGs). Peripheral nervous system (PNS) neurons exhibit increased regenerative ability compared to central nervous system neurons, even in the presence of inhibitory environments. Previously, we identified over a thousand genes differentially expressed in PNS neurons relative to CNS neurons. These genes represent intrinsic differences that may account for the PNS's enhanced regenerative ability. Cerebellar neurons were transfected with cDNAs for each of these PNS genes to assess their ability to enhance neurite growth on inhibitory (CSPG) or permissive (laminin) substrates. Using high content analysis, we evaluated the phenotypic profile of each neuron to extract meaningful data for over 1100 genes. Several known growth associated proteins potentiated neurite growth on laminin. Most interestingly, novel genes were identified that promoted neurite growth on CSPGs (GPX3, EIF2B5, RBMX). Bioinformatic approaches also uncovered a number of novel gene families that altered neurite growth of CNS neurons.  相似文献   

14.
Aquaporin-4 (AQP4) is a water channel protein that is predominantly expressed in astrocytes in the CNS. The rapid water flux through AQP4 may contribute to electrolyte/water homeostasis and may support neuronal activities in the CNS. On the other hand, little is known about the expression of AQP4 in the peripheral nervous system (PNS). Using AQP4−/− mice as a negative control, we demonstrated that AQP4 is also expressed in sensory ganglia, such as trigeminal ganglia and dorsal root ganglia in the PNS. Immunohistochemistry revealed that AQP4 is exclusively localized to satellite glial cells (SGCs) surrounding the cell bodies of the primary afferent sensory neurons in the sensory ganglia. Biochemical analyses revealed that the expression levels of AQP4 in sensory ganglia were considerably lower than those in astrocytes in the CNS. Consistently, behavioral analyses did not show any significant difference in terms of mechanical and cold sensitivity between wild type and AQP4−/− mice. Overall, although the pathophysiological relevance of AQP4 in somatosensory perception remains unclear, our findings provide new insight into the involvement of water homeostasis in the peripheral sensory system.  相似文献   

15.
The central and peripheral nervous systems (CNS and PNS) of the ascidian tadpole larva are comparatively simple, consisting of only about 350 cells. However, studies of the expression of neural patterning genes have demonstrated overall similarity between the ascidian CNS and the vertebrate CNS, suggesting that the ascidian CNS is sufficiently complex to be relevant to those of vertebrates. Recent progress in the Ciona intestinalis genome project and cDNA project together with considerable EST information has made Ciona an ideal model for investigating molecular mechanisms underlying the formation and function of the chordate nervous system. Here, we characterized 56 genes specific to the nervous system by determining their full-length cDNA sequences and confirming their spatial expression patterns. These genes included those that function in the nervous systems of other animals, especially those involved in photoreceptor-mediated signaling and neurotransmitter release. Thus, the nervous system-specific genes in Ciona larvae will provide not only probes for determining their function but also clues for exploring the complex network of nervous system-specific genes.  相似文献   

16.
Reactive gliosis is an invariant feature of the pathology of central nervous system (CNS) injury and a major determinant of neuronal survival and regeneration. To begin to understand the alterations in astrocyte protein expression that drive glial changes that occur following injury, we used an established model system (endothelin-1 stimulation of hypertrophy) and proteomic analysis to define a discrete set of differentially expressed proteins and post-translational modifications that occur as the astrocytes change from a quiescent to a reactive state. This orchestrated set of changes included proteins involved in cytoskeletal reorganization (caldesmon, calponin, alpha B-crystallin, stathmin, collapsing response mediator protein-2), cell adhesion (vinculin, galectin-1), signal transduction (RACK-1) and astrocyte differentiation (glutamine synthetase). Using proteomic analysis to understand what drives astrocyte expression of these functionally divergent molecules may offer insight into the mechanisms by which astrocytes can exhibit both pro-regenerative and anti-regenerative activities following CNS injury.  相似文献   

17.
Unlike mammals, fish have the capacity for functional adult CNS regeneration, which is due, in part, to their ability to express axon growth-related genes in response to nerve injury. One such axon growth-associated gene is gap43, which is expressed during periods of developmental and regenerative axon growth, but is not expressed in CNS neurons that do not regenerate in adult mammals. We previously demonstrated that cis-regulatory elements of gap43 that are sufficient for developmental expression are not sufficient for regenerative expression in the zebrafish. Here we have identified a 3.6kb genomic sequence from Fugu rubripes that can promote reporter gene expression in the nervous system during both development and regeneration in zebrafish. This compact sequence is advantageous for functional dissection of regions important for axon growth-associated gene expression during development and/or regeneration. In addition, this sequence will also be useful for targeting gene expression to neurons during periods of growth and plasticity.  相似文献   

18.
19.
应用cDNA微阵列技术筛选大鼠脊髓损伤修复相关基因   总被引:2,自引:0,他引:2  
Xiao L  Ma ZL  Li X  Lin QX  Que HP  Liu SJ 《生理学报》2005,57(6):705-713
脊髓损伤是一类常见的、高致残率的中枢神经系统疾病,由于多种复杂因素影响其损伤后的修复过程,损伤脊髓的再生能力非常有限。本研究采用cDNA微阵列技术筛选大鼠脊髓损伤后出现的差异表达基因。实验组动物在T8-T9进行脊髓全横断手术,对照组动物只打开椎板;4.5d后取脊髓进行RNA提取并在反转录过程中进行Cy3/Cy5标记,然后与预制的、带有4041条特异性探针的芯片进行杂交。Cy5/Cy3信号比值≥2.0视为脊髓损伤后出现差异表达的基因。通过筛选,我们得到了65个上调表达基因(21个已知基因,30个已知EST和14个未知基因)和79个下调基因(20个已知基因,42个已知EST和17个未知基因)。进一步通过半定量RT-PCR对其中的5个上调已知基因(Timpl,Tagln,Vim,Fc gamma receptor,Ctss)和三个下调已知基因(stearyl-CoA desaturase,F2,Ensa)的表达情况进行了验证,结果显示与芯片结果一致。这些基因可能在脊髓损伤后的修复过程中起一定的作用,对其深入研究将有助于揭示脊髓损伤修复的分子机制。  相似文献   

20.
The ability of injured peripheral nerves to regenerate and reinnervate their original targets is a characteristic feature of the peripheral nervous system (PNS). On the other hand, neurons of the central nervous system (CNS), including retinal ganglion cell (RGC) axons, are incapable of spontaneous regeneration. In the adult PNS, axonal regeneration after injury depends on well-orchestrated cellular and molecular processes that comprise a highly reproducible series of degenerative reactions distal to the site of injury. During this fine-tuned process, named Wallerian degeneration, a remodeling of the distal nerve fragment prepares a permissive microenvironment that permits successful axonal regrowth originating from the proximal nerve fragment. Therefore, a multitude of adjusted intrinsic and extrinsic factors are important for surviving neurons, Schwann cells, macrophages and fibroblasts as well as endothelial cells in order to achieve successful regeneration. The aim of this review is to summarize relevant extrinsic cellular and molecular determinants of successful axonal regeneration in rodents that contribute to the regenerative microenvironment of the PNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号