首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
The vertebrates share the ability to produce a skeleton made of mineralized extracellular matrix. However, our understanding of the molecular changes that accompanied their emergence remains scarce. Here, we describe the evolutionary history of the SPARC (secreted protein acidic and rich in cysteine) family, because its vertebrate orthologues are expressed in cartilage, bones and teeth where they have been proposed to bind calcium and act as extracellular collagen chaperones, and because further duplications of specific SPARC members produced the small calcium-binding phosphoproteins (SCPP) family that is crucial for skeletal mineralization to occur. Both phylogeny and synteny conservation analyses reveal that, in the eumetazoan ancestor, a unique ancestral gene duplicated to give rise to SPARC and SPARCB described here for the first time. Independent losses have eliminated one of the two paralogues in cnidarians, protostomes and tetrapods. Hence, only non-tetrapod deuterostomes have conserved both genes. Remarkably, SPARC and SPARCB paralogues are still linked in the amphioxus genome. To shed light on the evolution of the SPARC family members in chordates, we performed a comprehensive analysis of their embryonic expression patterns in amphioxus, tunicates, teleosts, amphibians and mammals. Our results show that in the chordate lineage SPARC and SPARCB family members were recurrently recruited in a variety of unrelated tissues expressing collagen genes. We propose that one of the earliest steps of skeletal evolution involved the co-expression of SPARC paralogues with collagenous proteins.  相似文献   

2.
3.
The structure of pea light-harvesting complex LHCII determined to 3.4 Å resolution by electron crystallography (Kühlbrandt, Wang and Fujiyoshi (1994) Nature 367: 614–621) was examined to determine the relationship between structural elements and sequence motifs conserved in the extended family of light-harvesting antennas (Chl a/b, fucoxanthin Chl a/c proteins) and membrane-intrinsic stress-induced proteins (ELIPs) to which LHCII belongs. It is predicted that the eukaryotic ELIPs can bind at least four molecules of Chl. The one-helix prokaryotic ELIP of Synechococcus was modelled as a homodimer based on the high degree of conservation of residues involved in the interactions of the first (B) and third (A) helices of LHCII.Abbreviations CAB Chl a/b-binding - ELIP early light-inducible protein - FCP fucoxanthin-Chl a/c protein - Lut1, Lut2 lutein molecules 1 and 2  相似文献   

4.
5.
Chromosomal microarray analysis is now commonly used in clinical practice to identify copy number variants (CNVs) in the human genome. We report our experience with the use of the 105 K and 180 K oligonucleotide microarrays in 215 consecutive patients referred with either autism or autism spectrum disorders (ASD) or developmental delay/learning disability for genetic services at the University of Kansas Medical Center during the past 4 years (2009–2012). Of the 215 patients [140 males and 75 females (male/female ratio = 1.87); 65 with ASD and 150 with learning disability], abnormal microarray results were seen in 45 individuals (21%) with a total of 49 CNVs. Of these findings, 32 represented a known diagnostic CNV contributing to the clinical presentation and 17 represented non-diagnostic CNVs (variants of unknown significance). Thirteen patients with ASD had a total of 14 CNVs, 6 CNVs recognized as diagnostic and 8 as non-diagnostic. The most common chromosome involved in the ASD group was chromosome 15. For those with a learning disability, 32 patients had a total of 35 CNVs. Twenty-six of the 35 CNVs were classified as a known diagnostic CNV, usually a deletion (n = 20). Nine CNVs were classified as an unknown non-diagnostic CNV, usually a duplication (n = 8). For the learning disability subgroup, chromosomes 2 and 22 were most involved. Thirteen out of 65 patients (20%) with ASD had a CNV compared with 32 out of 150 patients (21%) with a learning disability. The frequency of chromosomal microarray abnormalities compared by subject group or gender was not statistically different. A higher percentage of individuals with a learning disability had clinical findings of seizures, dysmorphic features and microcephaly, but not statistically significant. While both groups contained more males than females, a significantly higher percentage of males were present in the ASD group.  相似文献   

6.
We reported previously that the expression of Wnt-related genes is lower in osteoporotic hip fractures than in osteoarthritis. We aimed to confirm those results by analyzing β-catenin levels and explored potential genetic and epigenetic mechanisms involved.  相似文献   

7.
Disrupted-in-schizophrenia 1 (DISC1) is a multifunctional scaffold protein which plays an important role in neurogenesis and neural development in the adult brain, especially in the dentate gyrus (DG) of the hippocampus. Accumulated research has unveiled the role of DISC1 in several aspects of neural development and neurogenesis, such as neuronal maturation, proliferation, migration, positioning, differentiation, dendritic growth, axonal outgrowth, and synaptic plasticity. Studies on the function of this protein have explored multiple facets, including variants and missense mutants in genetics, proteins interactivity and signaling pathways in molecular biology, and pathogenesis and treatment targets of major mental illness, and more. In this review, we present several signaling pathways discussed in recent research, such as the AKT signaling pathway, GABA signaling pathway, GSK3β signaling pathway, Wnt signaling pathway, and NMDA-R signaling pathway. DISC1 interacts, directly or indirectly, with these signaling pathways and they co-regulate the process of adult neurogenesis in the hippocampus.  相似文献   

8.
Coenzyme Q biosynthesis in yeast requires a multi-subunit Coq polypeptide complex. Deletion of any one of the COQ genes leads to respiratory deficiency and decreased levels of the Coq4, Coq6, Coq7, and Coq9 polypeptides, suggesting that their association in a high molecular mass complex is required for stability. Over-expression of the putative Coq8 kinase in certain coq null mutants restores steady-state levels of the sensitive Coq polypeptides and promotes the synthesis of late-stage Q-intermediates. Here we show that over-expression of Coq8 in yeast coq null mutants profoundly affects the association of several of the Coq polypeptides in high molecular mass complexes, as assayed by separation of digitonin extracts of mitochondria by two-dimensional blue-native/SDS PAGE. The Coq4 polypeptide persists at high molecular mass with over-expression of Coq8 in coq3, coq5, coq6, coq7, coq9, and coq10 mutants, indicating that Coq4 is a central organizer of the Coq complex. Supplementation with exogenous Q6 increased the steady-state levels of Coq4, Coq7, and Coq9, and several other mitochondrial polypeptides in select coq null mutants, and also promoted the formation of late-stage Q-intermediates. Q supplementation may stabilize this complex by interacting with one or more of the Coq polypeptides. The stabilizing effects of exogenously added Q6 or over-expression of Coq8 depend on Coq1 and Coq2 production of a polyisoprenyl intermediate. Based on the observed interdependence of the Coq polypeptides, the effect of exogenous Q6, and the requirement for an endogenously produced polyisoprenyl intermediate, we propose a new model for the Q-biosynthetic complex, termed the CoQ-synthome.  相似文献   

9.
For reliable results from quantitative RT-PCR, the starting quantity of total RNA and other parameters need to be controlled. Most studies do this by normalising their results to a single reference gene. This study quantified the mRNA expression of three putative reference genes (ubiquitin C, cyclophilin E, and porphobilinogen deaminase) and the target gene hepatocyte growth factor receptor (HGFR) in matched colorectal tumour and normal mucosa samples. Each of the putative reference genes was found to be significantly over-expressed in the tumour samples compared to the normal samples. When HGFR expression was normalised to each of these reference genes using the 2 (-DeltaDeltaC(T)) method of relative quantification, the number of tumour samples in which HGFR was found to be over-expressed varied from 30% to 63% depending on the reference gene chosen for normalisation. This shows that normalising to a single reference gene without prior validation is inappropriate.  相似文献   

10.
11.
Ten evolutionary conservative sequences with high identity level to homological sequences in other mammal species were revealed in 5'-flanking region of casein's genes cluster. Five novel SNPs located inside of the evolutionary conservative regions were identified. The binding sites were revealed to be present in one allelic variant of four detected SNPs. So these SNPs were considered as rSNPs. Significant differences of allelic frequencies were revealed between beef cow's group and dairy cow's group in two rSNPs (NCE4, NCE7, p<0.001). Different alleles of those two rSNPs were shown to be associated with some milk performance traits in Black-and-White Holstein dairy cows. Significant difference of protein percentage has been found between cows with G/G and A/A genotypes (P<0.05) and A/G and A/A genotypes (P<0.05) for NCE4 polymorphism. The groups of animals with genotypes G/G and A/G for NCE7 polymorphism were significantly different in milk yield at the first lactation (kg) (P<0.01), milk fat yield (kg) (P<0.05) and milk protein yield (kg) (P<0.01). For the last trait the difference was significant also between cows with genotypes G/G and A/A for rSNP NCE7 (P<0.05).  相似文献   

12.
Analyzing the dynamics of membrane proteins in the context of cellular signaling represents a challenging problem in contemporary cell biology. Lateral diffusion of lipids and proteins in the cell membrane is known to be influenced by the cytoskeleton. In this work, we explored the role of the actin cytoskeleton on the mobility of the serotonin1A (5-HT1A) receptor, stably expressed in CHO cells, and its implications in signaling. FRAP analysis of 5-HT1AR-EYFP shows that destabilization of the actin cytoskeleton induced by either CD or elevation of cAMP levels mediated by forskolin results in an increase in the mobile fraction of the receptor. The increase in the mobile fraction is accompanied by a corresponding increase in the signaling efficiency of the receptor. Interestingly, with increasing concentrations of CD used, the increase in the mobile fraction exhibited a correlation of ∼0.95 with the efficiency in ligand-mediated signaling of the receptor. Radioligand binding and G-protein coupling of the receptor were found to be unaffected upon treatment with CD. Our results suggest that signaling by the serotonin1A receptor is correlated with receptor mobility, implying thereby that the actin cytoskeleton could play a regulatory role in receptor signaling. These results may have potential significance in the context of signaling by GPCRs in general and in the understanding of GPCR-cytoskeleton interactions with respect to receptor signaling in particular.  相似文献   

13.
The Klebsiella pneumoniae genome contains genes for two putative flavin transferase enzymes (ApbE1 and ApbE2) that add FMN to protein Thr residues. ApbE1, but not ApbE2, has a periplasm-addressing signal sequence. The genome also contains genes for three target proteins with the Dxx(s/t)gAT flavinylation motif: two subunits of Na+-translocating NADH:quinone oxidoreductase (Na+-NQR), and a 99.5 kDa protein, KPK_2907, with a previously unknown function. We show here that KPK_2907 is an active cytoplasmically-localized fumarate reductase. K. pneumoniae cells with an inactivated kpk_2907 gene lack cytoplasmic fumarate reductase activity, while retaining this activity in the membrane fraction. Complementation of the mutant strain with a kpk_2907-containing plasmid resulted in a complete recovery of cytoplasmic fumarate reductase activity. KPK_2907 produced in Escherichia coli cells contains 1 mol/mol each of covalently bound FMN, noncovalently bound FMN and noncovalently bound FAD. Lesion in the ApbE1 gene in K. pneumoniae resulted in inactive Na+-NQR, but cytoplasmic fumarate reductase activity remained unchanged. On the contrary, lesion in the ApbE2 gene abolished the fumarate reductase but not the Na+-NQR activity. Both activities could be restored by transformation of the ApbE1- or ApbE2-deficient K. pneumoniae strains with plasmids containing the Vibrio cholerae apbE gene with or without the periplasm-directing signal sequence, respectively. Our data thus indicate that ApbE1 and ApbE2 bind FMN to Na+-NQR and fumarate reductase, respectively, and that, contrary to the presently accepted view, the FMN residues are on the periplasmic side of Na+-NQR. A new, “electron loop” mechanism is proposed for Na+-NQR, involving an electroneutral Na+/electron symport. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

14.
15.
16.
The D1 protein of Photosystem II (PSII) is recognized as the main target of photoinhibitory damage and exhibits a high turnover rate due to its degradation and replacement during the PSII repair cycle. Damaged D1 is replaced by newly synthesized D1 and, although reasonable, there is no direct evidence for selective replacement of damaged D1. Instead, it remains possible that increased turnover of D1 subunits occurs in a non-selective manner due for example, to a general up-regulation of proteolytic activity triggered during damaging environmental conditions, such as high light. To determine if D1 degradation is targeted to damaged D1 or generalized to all D1, we developed a genetic system involving simultaneous dual expression of wild type and mutant versions of D1 protein. Dual D1 strains (nS345P:eWT and nD170A:eWT) expressed a wild type (WT) D1 from ectopic and a damage prone mutant (D1-S345P, D1-D170A) from native locus on the chromosome. Characterization of strains showed that all dual D1 strains restore WT like phenotype with high PSII activity. Higher PSII activity indicates increased population of PSII reaction centers with WT D1. Analysis of steady state levels of D1 in nS345P:eWT by immunoblot showed an accumulation of WT D1 only. But, in vivo pulse labeling confirmed the synthesis of both S345P (exists as iD1) and WT D1 in the dual strain. Expression of nS345P:eWT in FtsH2 knockout background showed accumulation of both iD1 and D1 proteins. This demonstrates that dual D1 strains express both forms of D1, yet only damage prone PSII complexes are selected for repair providing evidence that the D1 degradation process is targeted towards damaged PSII complexes. Since the N-terminus has been previously shown to be important for the degradation of damaged D1, the possibility that the highly conserved cysteine 18 residue situated in the N-terminal domain of D1 is involved in the targeted repair process was tested by examining site directed mutants of this and the other cysteines of the D1 protein. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

17.
18.
Increasing pressures on aquatic ecosystems because of pollutants, nutrient enrichment, and global warming have severely depleted oxygen concentrations. This sudden and significant lack of oxygen has resulted in persistent increases in fish mortality rates. Revealing the molecular mechanism of fish hypoxia adaptation will help researchers to find markers for hypoxia induced by environmental stress. Here, we used a multiomics approach to identify several hypoxia-associated miRNAs, mRNAs, proteins, and metabolites involved in diverse biological pathways in the muscles of Pelteobagrus vachelli. Our findings revealed significant hypoxia-associated changes in muscles over 4 h of hypoxia exposure and discrete tissue-specific patterns. We have previously reported that P. vachelli livers exhibit increased anaerobic glycolysis, heme synthesis, erythropoiesis, and inhibit apoptosis when exposed to hypoxia for 4 h. However, the opposite was observed in muscles. According to our comprehensive analysis, fishes show an acute response to hypoxia, including activation of catabolic pathways to generate more energy, reduction of biosynthesis to decrease energy consumption, and shifting from aerobic to anaerobic metabolic contributions. Also, we found that hypoxia induced muscle dysfunction by impairing mitochondrial function, activating inflammasomes, and apoptosis. The hypoxia-induced mitochondrial dysfunction enhanced oxidative stress, apoptosis, and further triggered interleukin-1β production via inflammasome activation. In turn, interleukin-1β further impaired mitochondrial function or apoptosis by suppressing downstream mitochondrial biosynthesis–related proteins, thus resulting in a vicious cycle of inflammasome activation and mitochondrial dysfunction. Our findings contribute meaningful insights into the molecular mechanisms of hypoxia, and the methods and study design can be utilized across different fish species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号