首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have demonstrated that a comparative analysis of the physiological effects of exposure of laboratory mammals to radiofrequency electromagnetic radiation (RFR) may be useful in predicting exposure thresholds for humans if the effect is assumed to be due only to heating of tissue. The threshold specific absorption rate (SAR) necessary to affect a thermoregulatory parameter shows an inverse and linear relationship to body mass. The inverse relationship between threshold SAR and body mass is attributed to a surface area: body mass relationship. In comparison to small mammals, relatively large mammals have a reduced capacity to dissipate an internal heat load passively, and are therefore physiologically more sensitive to RFR exposure. The threshold for a thermoregulatory response depends on the type of response measured, species, ambient temperature, etc. By extrapolation, it can be shown that a SAR of only 0.2-0.4 W/kg is required to promote a thermoregulatory response in a mammal with a body mass of 70 kg (e.g. weight of adult human). The specific absorption rate bioeffects data collected from laboratory mammals can be related by means of a simple power formula: threshold SAR (W/kg) = aMb, where M is body mass in kg, a is a constant and b is equal to approximately -0.5. Through this equation we have illustrated that a threshold SAR measured in a species weighing 100 g would be 10 times greater than that of a species weighing 10 000 g. Accordingly, a relatively low SAR that is physiologically ineffective in small mammals may be stressful to larger species.  相似文献   

2.
In the present study, regression equations between body and head length measurements for the broad-snouted caiman (Caiman latirostris) are presented. Age and sex are discussed as sources of variation for allometric models. Four body-length, fourteen head-length, and ten ratio variables were taken from wild and captive animals. With the exception of body mass, log-transformation did not improve the regression equations. Besides helping to estimate body-size from head dimensions, the regression equations stressed skull shape changes during the ontogenetic process. All age-dependent variables are also size-dependent (and consequently dependent on growth rate), which is possibly related to the difficulty in predicting age of crocodilians based on single variable growth curves. Sexual dimorphism was detected in the allometric growth of cranium but not in the mandible, which may be evolutionarily related to the visual recognition of gender when individuals exhibit only the top of their heads above the surface of the water, a usual crocodilian behavior.  相似文献   

3.
The avian postnatal metabolic rate literature is reviewed using power equations, Y = aMb, to describe the relation between postnatal resting metabolic rate (RMR) and chick body mass (M) for 25 species. In altricial species, the relation between RMR and M from hatching to fledging can be described by a single power equation, whereas in most nonaltricial species two such equations are needed, one for chicks weighing less than about 25% of mature mass ( M a) and a second for larger chicks. For altricial chicks and larger nonaltricial chicks, the body-mass exponent, b, of 25 intraspecific power equations ranged from 0.25 to 1.67 and varied inversely with M a. The scaling of postnatal RMR is thus unlike that of either adult or hatchling metabolism in that it is size dependent. We examined the relationship between intraspecific b and M a using Felsenstein's independent contrasts method to control for statistical complications due to the hierarchical nature of phylogenetic relationships. This "phylogenetic regression" technique yielded the relation b = 1.6 M a-015, in which mature mass explained 38% of the variation in b. The mass exponent of this equation (-0.15) did not differ significantly from that determined by nonphylogenetic methods (-0.17).
In altricial chicks and larger nonaltricial chicks, the scaling coefficient, a, of the interspecific power equations varied with adult mass according to the phylogenetically determined relation a (kj/h) = 0.0052Ma0.65and was higher in fed than in fasted chicks. Equations derived in this analysis permit one to estimate the RMR of a growing chick from its mass and adult body mass and provide a basis for evolutionary and ecological comparisons.  相似文献   

4.
The absolute and relative fecundity of freshwater, anadromous and marine fishes (102 species and subspecies from 33 families) and its dependence on body mass and growth rate were analyzed on the basis of published data. According to the spawning type all studied fishes were divided into species with short-term and single spawning and fishes with extended or long-term spawning. The equations of dependence of absolute fecundity (E) on body mass (W) were calculated: E = 1.033 W0.578 (the first group) and E = 0.792 W0.74 (the second group). If W < 177 g the equations don't differ significantly and one may use the equation E = 1.34(-0.742) for both groups. The body mass of females at age of maturity expressed as a portion of maximal definitive body mass equals 0.22 +/- 0.044 for many different species with 0.95 probability. The relative fecundity (a1) of some species negatively correlates with maximal body mass of adult individuals (Wmax). This dependence is expressed by equations: a1 = 3.033 Wmax-0.549 (for the first group) and a1 = 1.726 Wmax-0.351 (for the second group). Value of ratio Wov/W of different fish species changes irregularly from 0.054 to 0.32 and its average is 0.150 +/- 0.012 for the first group and 0.156 +/- 0.007 for the second one. In such a way, single reproduction effort of fishes is approximately 0.15. Comparison of data on Pisces, Crustacea, Amphibia, Reptilia, and Mammalia revealed that reproduction effort of different aquatic and terrestrial invertebrates and vertebrates varies within rather narrow limits (from 0.05 to 0.44). Average values of this index varies even less--from 0.097 to 0.238, on average 0.162, i.e. approximately 15-18% of animals' body mass falls on their reproduction constituent.  相似文献   

5.
Scaling relationships between population density (N) and body size (W), and of their underlying size distributions, can contribute to an understanding of how species use resources as a function of size. In an attempt to resolve the controversy over the form of scaling relationships, an extensive dataset, comprising 602 invertebrate species, was obtained from two geographically separate stream communities (Seebach in Austria and Mynach in Wales). We analysed the temporal consistency of the N-W relationship, which was subjected to ordinary least squares (OLS), bisector (OLS(BIS)) and quantile regressions, and species-size spectra with seasonally collated data. Slopes of seasonal OLS(BIS) regressions did not depart from -1 in either community, indicating a seasonally convergent scaling relationship, which is not energetically constrained. Species-size spectra may scale with habitat complexity, providing an alternative explanation for the observed body-size scaling. In contrast to the right-skewed species-size frequency distributions of single-species assemblages, the size spectra of these benthic communities exhibited 'central tendencies', reflecting their phyletic constitution. The shape of species body-mass spectra differed between the two communities, with a bimodal and seasonally convergent pattern in the Seebach community and a seasonally shifting unimodality in the Mynach community. The body-size spectra of large, mostly insect, species (greater than or equal to 1 mm) scaled to seasonal variations in habitat complexity (i.e. fractal D), suggesting that habitat structure constrains the community organization of stream benthos.  相似文献   

6.
Community structure is expected to be affected by spatial heterogeneity in a landscape. We examined the spatial-scale-dependent effects of windthrow caused by a large typhoon on a forest bird community. Typhoon events of this magnitude are rare in Hokkaido, Japan, occurring only once or twice a century. To assess the “functional spatial scale” at which bird groups (community, species, body-size class, and foraging guild) specifically responded to landscape heterogeneity, the canopy gap rate (CGR, gap percentage) was evaluated at different spatial scales by varying the radius of a circular landscape sector from 100 to 500 m stepwise by 10 m. We then analysed bird community responses, in terms of species richness and abundance, to CGR. Bird species richness did not significantly depend on CGR. In contrast, abundance was significantly dependent on CGR in many groups (species, body-size class, and foraging guild). The guild-level response was clearer than the species-level response, which suggests that the integration and filtration of species traits by guild can reveal a clear response of bird abundance to the extent of canopy gaps. For example, the scale dependence of responses to disturbance clearly varied among body-size classes, where larger birds had larger functional spatial scales. These results reveal that different groups of organisms have different functional spatial scales at which they respond to habitat heterogeneity. Our results also suggest that monitoring only a small number of species could be misleading for conserving biodiversity at the landscape level.  相似文献   

7.
In this review I show that the '3/4-power scaling law' of metabolic rate is not universal, either within or among animal species. Significant variation in the scaling of metabolic rate with body mass is described mainly for animals, but also for unicells and plants. Much of this variation, which can be related to taxonomic, physiological, and/or environmental differences, is not adequately explained by existing theoretical models, which are also reviewed. As a result, synthetic explanatory schemes based on multiple boundary constraints and on the scaling of multiple energy-using processes are advocated. It is also stressed that a complete understanding of metabolic scaling will require the identification of both proximate (functional) and ultimate (evolutionary) causes. Four major types of intraspecific metabolic scaling with body mass are recognized [based on the power function R=aMb, where R is respiration (metabolic) rate, a is a constant, M is body mass, and b is the scaling exponent]: Type I: linear, negatively allometric (b<1); Type II: linear, isometric (b=1); Type III: nonlinear, ontogenetic shift from isometric (b=1), or nearly isometric, to negatively allometric (b<1); and Type IV: nonlinear, ontogenetic shift from positively allometric (b>1) to one or two later phases of negative allometry (b<1). Ontogenetic changes in the metabolic intensity of four component processes (i.e. growth, reproduction, locomotion, and heat production) appear to be important in these different patterns of metabolic scaling. These changes may, in turn, be shaped by age (size)-specific patterns of mortality. In addition, major differences in interspecific metabolic scaling are described, especially with respect to mode of temperature regulation, body-size range, and activity level. A 'metabolic-level boundaries hypothesis' focusing on two major constraints (surface-area limits on resource/waste exchange processes and mass/volume limits on power production) can explain much, but not all of this variation. My analysis indicates that further empirical and theoretical work is needed to understand fully the physiological and ecological bases for the considerable variation in metabolic scaling that is observed both within and among species. Recommended approaches for doing this are discussed. I conclude that the scaling of metabolism is not the simple result of a physical law, but rather appears to be the more complex result of diverse adaptations evolved in the context of both physico-chemical and ecological constraints.  相似文献   

8.
1. The lungs of four species of bats, Phyllostomus hastatus (PH, mean body mass, 98 g), Pteropus lylei (PL, 456 g), Pteropus alecto (PA, 667 g), and Pteropus poliocephalus (PP, 928 g) were analysed by morphometric methods. These data increase fivefold the range of body masses for which bat lung data are available, and allow more representative allometric equations to be formulated for bats. 2. Lung volume ranged from 4.9 cm3 for PH to 39 cm3 for PP. The volume density of the lung parenchyma (i.e. the volume proportion of the parenchyma in the lung) ranged from 94% in PP to 89% in PH. Of the components of the parenchyma, the alveoli composed 89% and the blood capillaries about 5%. 3. The surface area of the alveoli exceeded that of the blood-gas (tissue) barrier and that of the capillary endothelium whereas the surface area of the red blood cells as well as that of the capillary endothelium was greater than that of the tissue barrier. PH had the thinnest tissue barrier (0.1204 microns) and PP had the thickest (0.3033 microns). 4. The body mass specific volume of the lung, that of the volume of pulmonary capillary blood, the surface area of the blood-gas (tissue) barrier, the diffusing capacity of the tissue barrier, and the total morphometric pulmonary diffusing capacity in PH all substantially exceeded the corresponding values of the pteropid species (i.e. PL, PA and PP). This conforms with the smaller body mass and hence higher unit mass oxygen consumption of PH, a feature reflected in the functionally superior gas exchange performance of its lungs. 5. Morphometrically, the lungs of different species of bats exhibit remarkable differences which cannot always be correlated with body mass, mode of flight and phylogeny. Conclusive explanations of these pulmonary structural disparities in different species of bats must await additional physiological and flight biomechanical studies. 6. While the slope, the scaling factor (b), of the allometric equation fitted to bat lung volume data (b = 0.82) exceeds the value for flight VO2max (b = 0.70), those for the surface area of the blood-gas (tissue) barrier (b = 0.74), the pulmonary capillary blood volume (b = 0.74), and the total morphometric lung diffusing capacity for oxygen (b = 0.69) all correspond closely to the VO2max value. 7. Allometric comparisons of the morphometric pulmonary parameters of bats, birds and non-flying mammals reveal that superiority of the bat lung over that of the non-flying mammal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Aim  In light of the current biodiversity crisis, there is a need to identify and protect species at greatest risk of extinction. Ecological theory and global-scale analyses of bird and mammal faunas suggest that small-bodied species are less vulnerable to extinction, yet this hypothesis remains untested for the largest group of vertebrates, fish. Here, we compare body-size distributions of freshwater and marine fishes under different levels of global extinction risk (i.e. listed as vulnerable, endangered or critically endangered according to the IUCN Red List of Threatened Species ) from different major sources of threat (habitat loss/degradation, human harvesting, invasive species and pollution).
Location  Global, freshwater and marine.
Methods  We collated maximum body length data for 22,800 freshwater and marine fishes and compared body-size frequency distributions after controlling for phylogeny.
Results  We found that large-bodied marine fishes are under greater threat of global extinction, whereas both small- and large-bodied freshwater species are more likely to be at risk. Our results support the notion that commercial fishing activities disproportionately threaten large-bodied marine and freshwater species, whereas habitat degradation and loss threaten smaller-bodied marine fishes.
Main conclusions  Our study provides compelling evidence that global fish extinction risk does not universally scale with body size. Given the central role of body size for trophic position and the functioning of food webs, human activities may have strikingly different effects on community organization and food web structure in freshwater and marine systems.  相似文献   

10.
The correlation between body mass and both skeletal and dental measures in living mammals has enabled paleontologists to obtain reliable estimates of body size for extinct species, usually using log-transformed bivariate least-squares regression equations. Multiple regression, however, has rarely been used for estimating the mass of extinct species, although this technique can clearly improve the predictive equations compared with those adjusted by simple regression. However, the use of multiple regression is problematical, because even those functions explaining a high percentage of the variance of the dependent variable (i.e. body mass) can show a rather limited predictive power. After analyzing which factors determine the predictive ability of multiple regression equations, we propose a new set of algorithms that allow the estimation of the body mass of extinct ungulates. These algorithms are finally applied to three Miocene ungulate species, Dinohippus leidyanus , Stenomylus hitchcocki and Aletomeryx scotti .  相似文献   

11.
Periodicity in population dynamics is one of the fundamental issues in ecology. In addition to species-specific analyses, allometric studies facilitate understanding of limit cycles amongst different species. So far, body-size regressions have been derived for the oscillation period of warm-blooded species, in particular herbivores. Here, oscillations expected from a one-species (delayed logistic) and a two-species (Rosenzweig–MacArthur) model were compared to cycles observed in laboratory experiments and field surveys for a wide range of invertebrates and vertebrates. Supplemented by historical original studies, 759 oscillation periods were derived from the ‘Global Population Dynamics Database’ (GPDD) to cover a broad range of species and environmental conditions. The parameters in the equations were linked to body mass, using a consistent set of allometric relationships that was calibrated on 230 log–log linear regressions. Oscillation period and amplitude predicted by the models were validated with available data. The one-species model produced cycle times that increase with species’ body mass to the power 1/4 if the delay was set equal to the size-dependent age at maturity. If the delay was set on 1 year, the delayed logistic model yielded oscillations with a size-independent period of 4.7 years. Cycle times calculated by the two-species model scaled less than expected to the 1/4 power of mass m. The intercepts expected from the two-species were generally higher than those for the one-species model and increased with decreasing consumer-resource mass mi/mi−1 ratios. Amplitudes turned out to be size-independent according to both models. With exception of aquatic herbi-detritivores, intercepts were observed at the level calculated by the two-species model. Remarkably, oscillation periods were size-independent for predatory metazoans. Average cycles were of 4–5 years, similar to those predicted by the one-species model with a size-independent delay of one year. The consistent difference between lower trophic levels (i.e. herbivores) and higher trophic levels (i.e. carnivores) could be explained by the models from the small parameter space for consumer-resource cycles in generalist predators. Amplitudes recorded in the field did not scale to size and observed oscillation periods were about a factor of 2. This demonstrates that one allometric setting for age and density applicable to a wide range of species at lower trophic levels allows a reasonable estimate of independently measured cycles.  相似文献   

12.
Resting or basal metabolic rates, compared across a wide range of organisms, scale with respect to body mass as approximately the 0.75 power. This relationship has recently been linked to the fractal geometry of the appropriate transport system or, in the case of birds and mammals, the blood vascular system. However, the structural features of the blood vascular system should more closely reflect maximal aerobic metabolic rates rather than submaximal function. Thus, the maximal aerobic metabolic rates of birds and mammals should also scale as approximately the 0.75 power. A review of the literature on maximal oxygen consumption and factorial aerobic scope (maximum oxygen consumption divided by basal metabolic rate) suggests that body mass influences the capacity of the cardiovascular system to raise metabolic rates above those at rest. The results show that the maximum sustainable metabolic rates of both birds and mammals are similar and scale as approximately the 0.88 +/- 0.02 power of body mass (and aerobic scope as approximately the 0.15 +/- 0.05 power), when the measurements are standardized with respect to the differences in relative heart mass and haemoglobin concentration between species. The maximum heart beat frequency of birds and mammals is predicted to scale as the -0.12 +/- 0.02 power of body mass, while that at rest should scale as -0.27 +/- 0.04.  相似文献   

13.
We questioned whether the amplitudes of the circadian pattern of body temperature (T(b)), oxygen consumption (V (O(2))) and heart rate (HR) changed systematically among species of different body weight (W). Because bodies of large mass have a greater heat capacitance than those of smaller mass, if the relative amplitude (i.e., amplitude/mean value) of metabolic rate was constant, one would expect the T(b) oscillation to decrease with the increase in the species W. We compiled data of T(b), V (O(2)) and HR from a literature survey of over 200 studies that investigated the circadian pattern of these parameters. Monotremata, Marsupials and Chiroptera, were excluded because of their characteristically low metabolic rate and T(b). The peak-trough ratios of V (O(2)) (42 species) and HR (35 species) averaged, respectively, 1.57+/-0.08, and 1.35+/-0.07, and were independent of W. The daily high values of T(b) did not change, while the daily low T(b) values slightly increased, with the species W; hence, the high-low T(b) difference (57 species) decreased with W (3.3 degrees C.W(-0.13)). However, the decrease in T(b) amplitude with W was much less than expected from physical principles, and the high-low T(b) ratio remained significantly above unity even in the largest mammals. Thus, it appears that in mammals, despite the huge differences in physical characteristics, the amplitude of the circadian pattern is a fixed (for V (O(2)) and HR), or almost fixed (for T(b)), fraction of the 24-h mean value. Presumably, the amplitudes of the oscillations are controlled parameters of physiological significance.  相似文献   

14.
Metabolism constitutes a fundamental property of all organisms. Metabolic rate is commonly described to scale as a power function of body size and exponentially with temperature, thereby treating the effects of body size and temperature independently. Mounting evidence shows that the scaling of metabolic rate with body mass itself depends on temperature. Across‐species analyses in fishes suggest that the mass‐scaling exponent decreases with increasing temperature. However, whether this relationship holds at the within‐species level has rarely been tested. Here, we re‐analyse data on the metabolic rates of four freshwater fish species, two coregonids and two cyprinids, that cover wide ranges of body masses and their naturally experienced temperatures. We show that the standard metabolic rate of the coregonids is best fit when accounting for a linear temperature dependence of the scaling of metabolic rate with body mass, whereas a constant mass‐scaling exponent is supported in case of the cyprinids. Our study shows that phenotypic responses to temperature can result in temperature‐dependent scaling relationships at the species level and that these responses differ between taxa. Together with previous findings, these results indicate that evolutionarily adaptive and phenotypically plastic responses to temperature affect the scaling of metabolic rate with body mass in fishes.  相似文献   

15.
Reptiles are ectothermic, but regulate body temperatures (T(b)) by behavioural and physiological means. Body temperature has profound effects on virtually all physiological functions. It is well known that heating occurs faster than cooling, which seems to correlate with changes in cutaneous perfusion. Increased cutaneous perfusion, and hence elevated cardiac output, during heating is reflected in an increased heart rate (f(H)), and f(H), at a given T(b), is normally higher during heating compared to cooling ('hysteresis of heart rate'). Digestion is associated with an increased metabolic rate. This is associated with an elevated f(H) and many species of reptiles also exhibited a behavioural selection of higher T(b) during digestion. Here, we examine whether digestion affects the rate of heating and cooling as well as the hysteresis of heart rate in savannah monitor lizards (Varanus exanthematicus). Fasting lizards were studied after 5 days of food deprivation while digesting lizards were studied approximately 24 h after ingesting dead mice that equalled 10% of their body mass. Heart rate was measured while T(b) increased from 28 to 38 degrees C under a heat lamp and while T(b) decreased during a subsequent cooling phase. The lizards exhibited hysteresis of heart rate, and heating occurred faster than cooling. Feeding led to an increased f(H) (approximately 20 min(-1) irrespective of T(b)), but did not affect the rate of temperature change during heating or cooling. Therefore, it is likely that the increased blood flows during digestion are distributed exclusively to visceral organs and that the thermal conductance remains unaffected by the elevated metabolic rate during digestion.  相似文献   

16.
Understanding the role of competition in explaining phenotypic diversity is a challenging problem, given that the most divergent species may no longer compete today. However, convergent evolution of extreme body sizes across communities may offer evidence of past competition. For example, many treefrog assemblages around the world have convergently evolved species with very large and small body sizes. To better understand this global pattern, we studied body-size diversification within the small, endemic radiation of Caribbean treefrogs ( Osteopilus ). We introduce a suite of analyses designed to help reveal the signature of past competition. Diet analyses show that Osteopilus are generalist predators and that prey size is strongly associated with body size, suggesting that body-size divergence facilitates resource partitioning. Community assembly models indicate that treefrog body-size distributions in Jamaica and Hispaniola are consistent with expectations from competition. Phylogenetic analyses show that similar body-size extremes in Jamaica and Hispaniola have originated through parallel evolution on each island, and the rate of body-size evolution in Osteopilus is accelerated relative to mainland treefrogs. Together, these results suggest that competition may have driven the rapid diversification of body sizes in Caribbean treefrogs to the extremes seen in treefrog communities around the world.  相似文献   

17.
The body-size hypothesis predicts that nest attendance is positively related to body size among waterfowl and that recess duration is inversely related to body size. Several physiological and behavioral characteristics of Ross’s geese (Chen rossii) suggest that females of this species should maintain high nest attendance despite their relatively small body size. Accordingly, we used 8-mm films to compare the incubation behavior of Ross’s geese to that of the larger, closely-related lesser snow geese (C. caerulescens caerulescens; hereafter, snow geese) nesting sympatrically at Karrak lake, Nunavut, Canada in 1993. We found that nest attendance averaged 99% for both species. Our results offer no support for the body-size hypothesis. We suggest that temperature requirements of embryos in relation to short incubation duration and a low foraging efficiency of females select for high nest attendance in both snow geese and Ross’s geese.  相似文献   

18.
Climatic influences on animal populations, mediated by changes in condition‐dependent survival or reproduction, have long intrigued ecologists. We analyzed links between winter North Atlantic Oscillations (NAO), a large scale climatic phenomenon affecting weather conditions over the North Atlantic and the Arctic, and average pre‐laying body mass in common eiders. Body mass is a good proxy for condition‐dependent reproductive output in this species. Time series links were assessed for two eider populations breeding at high latitudes, over a 10‐ and a 21‐year time series. Winter NAO affected body mass in both populations and these effects were easier to detect when changes in the series rhythm were assessed using a novel method based on data discretization and information theory, rather than detection based on changes in amplitude, assessed using traditional linear models. Winter conditions affected body condition of eiders in both populations. Different mechanisms, however, are likely to be involved in the two populations, one being presumably affected by direct effects of climate and the other by effects through the food chain. Therefore, the same species can respond along different pathways to the same large scale climatic pattern, an important consideration when seeking to understand or manage the response of species to present and future climate change.  相似文献   

19.
A comparative analysis using both independent contrasts (CAIC) and a species level analysis was used to investigate the allometric scaling of avian wing-bone lengths. Total arm ( ta =humerus+ulna+manus) scaled with positive allometry as body mass ( M )0.37–0.39. Similarly, and in accordance with previous studies, wing-span ( b ) was positively allometric, but CAIC suggested a lower allometric exponent ( M 0.35) than found using species as independent data points ( M 0.39). Contrary to previous studies, individual wing-bones appear to scale with similar exponents against M and scale isometrically with ta . In addition to a general trend for larger birds to have longer wings, wing-bones and ta , their ta was a larger proportion of their b . A detailed study of primary feather length and elbow joint angle across a wide range of bird species and bird size, however, is required before a conclusive explanation for this increase in ta relative to b in larger birds can be established. Scaling equations are presented that can be used to predict M , ta and b from individual wing-bone lengths, which may be of use to palaeontologists wishing to reconstruct whole animals from single bones.  相似文献   

20.
Accurate information on animal body mass is often an essential component of wildlife research and management. However, for many large-bodied species, obtaining direct scale weights from individuals may be difficult. In these cases, morphometric equations (e.g., based on girth or length) may provide accurate and precise estimates of body mass. We developed predictive equations to estimate the body mass of free-ranging polar bears (Ursus maritimus) in western Hudson Bay, Canada. Using multiple linear and non-linear regression, we identified a strong relationship between polar bear body weight and linear measures of straight line length and axillary girth. The mass–morphometry relationship appeared to change over time and we developed separate equations for polar bears measured during 2 time periods, 1980–1996 and 2007–2009. Non-linear models were more accurate and provided body mass estimates within 5.8% (R2 = 0.98) and 6.1% (R2 = 0.98) of scale weight in the earlier and later time periods, respectively. Earlier equations developed for polar bears in this subpopulation performed poorly when applied to recently sampled individuals. In contrast, some contemporary equations from other regions performed reasonably well, suggesting that temporal changes within a subpopulation may be more pronounced than regional differences and can render earlier predictive equations obsolete. Our results have important implications for current and future studies of polar bear body condition and the effects of ongoing climate warming. © 2011 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号