首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the variations in the number of insulin receptor and insulin receptor mRNA levels in (Hep G2) cells in response to growth and insulin treatment. The levels of insulin receptors are relatively low in growing cells. After approximately 5 days in culture, if cells are not refed they cease to divide and the number of receptors/cell increases, reaching 4 times the initial values by the 9th day. Refeeding the cells completely prevented both growth arrest and the increase in insulin receptor number. Insulin added daily to cells at 0.33 microM caused receptor down-regulation but did not prevent a 3-fold increase in binding with growth arrest. Pulse-chase studies of metabolically labeled ([35S]methionine) cells showed that the receptor degradation rate (apparent t 1/2, 18-20 h) was comparable in rapidly growing versus growth-arrested cells. The increased receptor level in non-refed cells is not due to generation of a soluble factor by confluent cells, nor is it caused by depletion of insulin, glucose, or insulin-like growth factor I from the culture medium. The levels of insulin receptor mRNA measured on Northern blots increased in growth-arrested cells in parallel to the increase in receptor number. The mRNA value begins to increase from the 3rd day in culture and by the 9th day reaches a level 6.0 times that on the 3rd day. Chronic insulin-induced receptor down-regulation did not alter insulin receptor mRNA levels at any time point studied. These data demonstrate that the increase in insulin receptor number/cell in growth-arrested cells is paralleled by an increase in insulin receptor mRNA content with no change in the receptor degradation rates. This suggests that the increase in the number of insulin receptors is due to enhanced receptor synthesis due to increased receptor mRNA content. Conversely, down-regulation of the insulin receptor does not affect the level of insulin receptor mRNA and thus must be due to increased receptor degradation.  相似文献   

2.
The expression of insulin receptor mRNA was studied in human and rodent tissues by Northern analysis. Human EBV-transformed lymphocytes contained four receptor mRNA species of sufficient length to encode the entire proreceptor: 9.5, 7.9, 7.1, and 5.7 kb. In human fibroblasts, the same four species were observed; however, the 7.9 and 5.7 kb mRNAs were markedly decreased. In mouse liver, rat hepatoma cells, and normal rat brain, kidney, liver, and muscle only two mRNA species (7.4 and 9.6 kb) were detected. Each of these human and rodent mRNAs hybridized equally well with cDNA sequences encoding the binding and kinase domains of the insulin receptor. Several smaller polyadenylated mRNAs (approximately 1.8 to 3.3 kb) were also identified in human cell lines that appeared to separately encode either alpha- or beta-subunit sequences of the receptor. In rats, liver had the highest content of insulin receptor mRNA, followed by kidney, brain, and muscle. The relative amount of the two mRNA species also varied among the rat tissues. The ratio of the 9.6-7.4 kb species was 2.7 in brain but only 1.0 to 1.6 in the other tissues (P less than 0.025). Dexamethasone treatment increased the content of the two insulin receptor mRNAs in rat liver by 2-fold. The half-life of both mRNA species was 70 min in rat hepatoma cells. These findings indicate that insulin receptor gene expression is complex and regulated with differential expression of insulin receptor mRNA and/or alterations in mRNA processing among various tissues.  相似文献   

3.
The effect of insulin, serum and dexamethasone on mRNA levels in the insulin receptor in the human lymphoblastoic cell line IM-9 was examined. To this end, mRNA levels were quantitated by Northern blot analysis using a labeled cDNA probe for the insulin receptor. The presence of 0.1 microM dexamethasone in the medium had a strong stimulatory effect on mRNA levels in insulin receptor, suggesting the presence of a glucocorticoid inducible enhancer element near the insulin receptor gene. Also, the nature of the serum had an effect on insulin receptor mRNA levels, as cells maintained in 10% fetal calf serum had insulin receptor mRNA levels that were 40-50% of those found in IM-9 cells maintained in 1% newborn serum. Variations in insulin receptor mRNA levels led in each situation to concordant variations in insulin binding. Insulin levels of up to 1 microM had no effect on hybridizable insulin receptor mRNA levels making an insulin-induced feed-back mechanism on gene expression or mRNA stability unlikely.  相似文献   

4.
5.
6.
M A Leal  C Caba?as  C Rius  P Aller  C Calle 《Biochimie》1992,74(6):545-549
Treatment with 5 x 10(-6) M dexamethasone stimulated insulin binding in human promonocytic U-937 cells. When curvilinear Scatchard plots were examined according to the one-site model, only changes in affinity, but not in receptor numbers, were observed. However, when the two-site model was applied, an increase in both the affinity and the number of the high affinity-low capacity sites was observed, with maximum values at 15 h. By contrast, the low affinity-high capacity sites did not undergo significant alterations. Northern blot assays revealed two insulin receptor-related mRNAs of approximately 11 and 7 kb in size. Dexamethasone increased the levels of these RNAs, following similar kinetics to those of high affinity receptor expression. This suggests that the 11 and 7 kb species carry information for high affinity insulin receptors, and that in U-937 cells the expression of this receptor subclass is primarily regulated at the mRNA level.  相似文献   

7.
Gene 33 (g33) is a non-tissue-specific gene regulated in rat liver and hepatoma cells by insulin and other agents. It is thought to participate in the transition from quiescence to proliferation in mitogen-treated cells. The mechanism(s) by which insulin exerts its action on g33 are not totally understood; it is unclear whether a functional insulin receptor is required for this action. In this study, we evaluate the mechanism for insulin induction of g33 mRNA in Chinese hamster ovary (CHO) cells transfected with the neomycin-resistant plasmid (CHONeoB), human insulin receptor (CHONewIRa), and a kinase-defective insulin receptor mutated at the ATP-binding site (CHOK1018A). Transfected cells had higher levels of insulin binding than that of CHONeoB cells; insulin-induced phosphorylation of the insulin receptor and its intracellular substrates were impaired in CHOK1018A cells. Maximal insulin induction of mRNA(g33) occurred 3 h after hormonal exposure in all cell lines. The degree of insulin stimulation of g33 mRNA levels was four- to sixfold higher in CHONewIRa than in CHONeoB or CHOK1018A cells, which had minimal levels of insulin-stimulated g33 mRNA levels. Half-maximal stimulation of g33 mRNA levels was observed at 0.06 +/- 0.01 nM in CHONewIRa cells, consistent with insulin interaction with its own receptor. Wortmannin, an inhibitor of phosphatidyl inositol 3-kinase (PI3K), had some effects on insulin stimulation of g33 mRNA in CHO NewIRa cells. PD98059, an inhibitor of mitogen-activated kinase kinase (MAPKK), and rapamycin, a p70 S6 kinase inhibitor, had minimal effect on insulin stimulation of g33 mRNA in all cells tested. By contrast, hydroxy-2-naphthalenylmethyl)phosphonic acid triacetoxymethyl ester (HNMPA(AM)(3), a selective inhibitor of the insulin receptor tyrosine kinase, caused complete inhibition of insulin stimulation of g33 mRNA levels. These data indicate that the insulin receptor with intact kinase activity is required for insulin stimulation of g33 mRNA levels. They also suggest that AKT, a PI 3-kinase downstream effector molecule, could mediate insulin stimulation of g33 mRNA. The mechanism(s) of insulin regulation of g33 expression downstream of receptor do not seem to rely entirely on the classic insulin receptor transduction pathway, as a minor effect was observed upon inhibition of MAPKK, suggesting that multiple pathways may be involved.  相似文献   

8.
Two previously reported insulin receptor cDNA sequences differ by 36 base pairs (bp) in the distal alpha-subunit, suggesting that alternative mRNA splicing within the coding region may occur (two insulin receptor isoforms). We developed a quantitative modification of the polymerase chain reaction technique in order to detect and characterize differential mRNA splicing at this site within the distal alpha-subunit. Using RNA derived from a variety of human cell types, we detected two polymerase chain reaction-amplified cDNA species reflecting the presence or absence of the above 36 nucleotides. Identity of the two cDNA species was confirmed by Southern blots, the use of a BANI restriction site present only in the 36 base pair segment and dideoxy sequencing. The relative expression of the two mRNA forms varied markedly in a tissue-specific manner. Buffy coat leukocytes and Epstein-Barr virus-transformed lymphocytes express only the shorter mRNA. Placenta expresses both species equally; muscle, isolated adipocytes and cultured fibroblasts express somewhat more of the longer mRNA (relative ratios of mRNA abundance of 1.51, 3.18, and 2.77, respectively); liver expresses mostly the longer mRNA (relative ratio of 9.8). In RNA derived from cultured and fresh cells from patients with several states of insulin resistance, the relative expression of the two mRNA species was similar to results obtained with comparable normal tissues. Although the functional significance of alternative splicing of the insulin receptor mRNA is unknown, differential expression of these two receptor mRNAs may provide a structural basis for previously observed tissue-specific differences in insulin binding and action.  相似文献   

9.
10.
In the present study, we investigated the ability of a monoclonal antibody to the insulin receptor to regulate the expression of the insulin receptor of IM-9 lymphocytes. Previously, this antibody was shown to be a competitive antagonist of insulin action on severe metabolic functions. In the present study, we report that preincubation of IM-9 cells with the monoclonal antibody caused a dose- and time-dependent decrease in the subsequent ability of these cells to bind 125I-insulin, a phenomenon termed down regulation. The antibody was approximately 100 times more potent than insulin at down regulating the receptor. In contrast, the antibody was 5 times less potent than insulin in competing for binding to insulin receptors and dissociated 4 times more rapidly than insulin from IM-9 cells. Three lines of evidence suggested that the mechanism of down regulation by the antibody was the same as the one used by insulin. First, both agents caused a rapid initial decrease in insulin binding to cells followed by a slower, gradual decrease in binding. Second, the down regulation caused by both was reversible, and this reversibility required new protein synthesis. Third, the antibody, like insulin, accelerated receptor degradation. Since the antibody does not mimic the other effects of insulin on metabolic processes, these results suggest that the mechanism of insulin receptor down regulation is different from the mechanism of insulin action on other cellular functions.  相似文献   

11.
Insulin binding and insulin receptor gene expression have been assessed in cultured fetal (WI38) and SV40 transformed fetal (WI38/VA13) human fibroblasts to determine whether transformation influences the expression of insulin receptors. The transformed cell line had virtually no insulin binding and extremely low levels of insulin receptor mRNA. No apparent gene deletion or rearrangement was detected and therefore the marked decrease in insulin receptor gene expression seen in WI38/VA13 cells is an important example of negative regulation of insulin receptor gene expression. This cell line could serve as a model for studies of the mechanism for negative regulation of insulin receptor gene expression. Overexpression of the insulin receptor gene in these cells may reveal insights into the role of the insulin receptor in tumor biology.  相似文献   

12.
We examined the effect of insulin treatment on HTC cells transfected with large numbers of either normal insulin receptors (HTC-IR) or insulin receptors defective in tyrosine kinase (HTC-IR/M-1030). In both HTC-IR and HTC-IR/M-1030 cells, 20 h of insulin treatment (1 microM) at 37 degrees C resulted in a 65% decrease in the number of binding sites with a reciprocal 6-fold increase in affinity. In contrast, treatment with 10 nM insulin (20 h, 37 degrees C) also increased receptor affinity but had a smaller effect on the number of binding sites. 125I-Insulin binding to soluble receptors from HTC-IR and HTC-IR/M-1030 cells pretreated with insulin showed results similar to those obtained in intact cells. In both HTC-IR and HTC-IR/M-1030 cells, insulin enhanced insulin receptor degradation. In HTC-IR/M-1030 cells a 1-h incubation with insulin did not change receptor number and had only a small effect on receptor affinity; also there was no effect of insulin after a 20-h incubation at 15 degrees C. Inhibiting protein synthesis by pretreatment with cycloheximide (100 microM) did not block either the decrease in receptor number or the increase in receptor affinity. Both HTC-IR and HTC-IR/M-1030 cells exhibited a very slow rate of insulin and insulin receptor internalization and no differences were seen in this parameter when HTC-IR cells were compared to HTC-IR/M-1030 cells. These studies indicate, therefore, that in cells expressing kinase-defective insulin receptors, insulin down-regulates insulin receptor number via enhanced receptor degradation, and up-regulates receptor affinity. These effects were time- and temperature-dependent, but not dependent on new protein synthesis, and suggest that activation of tyrosine kinase may not be a prerequisite for certain mechanisms whereby insulin regulates its receptor.  相似文献   

13.
14.
We have studied insulin receptor-mediated signaling in Chinese hamster ovary (CHO) cell transfectants that expressed either of two naturally occurring mutant human insulin receptors: Trp1200----Ser1200 and Ala1134----Thr1134. Compared with overexpressed normal human insulin receptors, both mutant receptors displayed normal processing and normal binding affinity; however, neither was capable of detectable insulin-stimulated autophosphorylation or tyrosine kinase activity toward endogenous (pp185) or exogenous substrates. Several biologic actions of insulin were evaluated in transfected cells. Compared with neomycin-only transfected CHO cells (CHO-NEO), cells expressing normal receptors demonstrated increased insulin sensitivity for 2-deoxyglucose uptake, [14C]glucose incorporation into glycogen, [3H]thymidine incorporation into DNA, and specific gene expression (accumulation of glucose transporter GLUT-1 mRNA). Cells expressing either Ser1200 or Thr1134 receptors showed no increase in insulin-stimulated thymidine incorporation or GLUT-1 mRNA accumulation compared with CHO-NEO. Surprisingly, cells expressing Ser1200 receptors showed increased insulin stimulation of 2-deoxyglucose uptake and glucose incorporation into glycogen compared with CHO-NEO, whereas Thr1134 receptors failed to signal these metabolic responses. We conclude that 1) transfected kinase-deficient insulin receptor mutants derived from insulin-resistant patients have distinct defects in the ability to mediate insulin action in vitro; 2) divergence of insulin signaling pathways may occur at the level of the receptor; and 3) normal activation of the receptor tyrosine kinase by insulin is not necessarily required for signaling of certain important biologic actions.  相似文献   

15.
To study thrombin's receptor-mediated effects on vascular cells, we cloned and characterized a cDNA encoding a rat smooth muscle cell thrombin receptor. A rat aortic smooth muscle (RASM) cell cDNA library was screened with a 500-base pair (bp) sequence from the human thrombin receptor, obtained by polymerase chain reaction (PCR) amplification of cDNA synthesized from human erythropoietic leukemia (HEL) cell mRNA with PCR primers based on the published human thrombin receptor sequence. Clone pRTHR17 contains a 3418-bp insert that includes 50 bp of the 5'-untranslated region and the entire coding and 3'-untranslated regions of the RASM cell thrombin receptor. The sequence of pRTHR17 is 85% similar, at the nucleotide level, and 78% similar, at the deduced amino acid level, to the human thrombin receptor. Although the putative thrombin cleavage and binding sites are present, there are significant differences between the rat and human receptors in their amino-terminal sequences. Detectable signals (consisting of a single band of 3.45 kb) are present by Northern analysis of mRNA from RASM cells, and rat lung, kidney, and testes, but not in aorta or other tissues probed. The results of Southern analysis of rat genomic DNA are consistent with the existence of a single copy of the gene encoding this receptor. The steady state thrombin receptor mRNA level is low in cultured growth-arrested RASM cells and not detectable in rat aorta. To determine whether regulation of the RASM cell thrombin receptor occurs under growth-stimulating conditions, growth-arrested RASM cells were treated with basic fibroblast growth factor (bFGF, recently proposed to be a major mitogen controlling vascular smooth muscle cell growth following injury (Lindner, V., and Reidy, M. A. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 3739-3743)). There was a significant increase in thrombin receptor mRNA following the addition of bFGF. These data demonstrate that: 1) mRNA for a thrombin receptor similar to that reported from human megakaryocyte and hamster fibroblast cell lines is present in proliferating primary culture rat smooth muscle cells, 2) the most significant sequence differences are present in the amino-terminal tail of the thrombin receptor, and 3) the mRNA level for this receptor is regulated under growth-stimulating conditions in vitro.  相似文献   

16.
The components of the renin-angiotensin system have been colocalized in many tissues suggesting that local generation of angiotensin II can regulate blood flow in specific organs or tissues. This in combination with the fact that proliferating tissues require angiogenesis and increased blood flow to develop have led us to study the relationship of angiotensinogen mRNA production to cell cycle regulation. Reuber H35 (H4IIE) cells were growth-arrested by serum deprivation. Cells were then treated with 10% fetal calf serum, depleted serum, or insulin. Insulin and serum were equally potent at increasing beta-actin mRNA levels, depressing angiotensinogen mRNA levels, and in increasing [3H]methyl thymidine incorporation. The half-maximal insulin effect occurred at 5 x 10(-9) M. Insulin-like growth factor I and II had no effect on any of the parameters measured. 12-O-tetradecanoyl phorbol 13-acetate (TPA) also induced beta-actin mRNA, decreased angiotensinogen mRNA, and caused an increase in [3H]methyl thymidine incorporation. The TPA effects were of shorter duration and of lower magnitude than those caused by insulin or serum. Inactivation of protein kinase C by preincubation with TPA did not block the insulin response. TPA has been shown to induce angiogenesis in vitro. Thus, these studies suggest that inhibition of angiotensinogen gene activity may be part of the proliferative or angiogenic process. Our experimental data may provide a model for further experimental dissection of the biochemical steps involved in angiogenesis.  相似文献   

17.
18.
Baculovirus p35 increases pancreatic beta-cell resistance to apoptosis   总被引:4,自引:0,他引:4  
beta-cells die by apoptosis in type 1 diabetes as a result of autoimmune attack mediated by cytokines, and in type 2 diabetes by various perpetrators including human islet amyloid polypeptide (hIAPP). The cascade of apoptotic events induced by cytokines and hIAPP is mediated through caspases and reactive oxygen species. The baculovirus p35 protein is a potent anti-apoptotic agent shown to be effective in a variety of species and able to inhibit a number of apoptotic pathways. Here, we aimed at determining the protective potential of p35 in beta-cells exposed to cytokines and hIAPP, as well as the effects of p35 on beta-cell function. The p35 gene was introduced into betaTC-tet cells, a differentiated murine beta-cell line capable of undergoing inducible growth-arrest. Both proliferating and growth-arrested cells expressing p35 manifested increased resistance to cytokines and hIAPP, compared with control cells, as judged by cell viability, DNA fragmentation, and caspase-3 activity assays. p35 was significantly more protective in growth-arrested, compared with proliferating, cells. No significant differences were observed in proliferation and insulin content between cells expressing p35 and control cells. In contrast, p35 manifested a perturbing effect on glucose-induced insulin secretion. These findings suggest that p35 could be incorporated as part of a multi-pronged approach of immunoprotective strategies to provide protection from recurring autoimmunity for transplanted beta-cells, as well as in preventive gene therapy in type 1 diabetes. p35 may also be protective from beta-cell damage caused by hIAPP in type 2 diabetes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号