首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Receiver operating characteristic (ROC) analysis is a useful evaluative method of diagnostic accuracy. A Bayesian hierarchical nonlinear regression model for ROC analysis was developed. A validation analysis of diagnostic accuracy was conducted using prospective multi-center clinical trial prostate cancer biopsy data collected from three participating centers. The gold standard was based on radical prostatectomy to determine local and advanced disease. To evaluate the diagnostic performance of PSA level at fixed levels of Gleason score, a normality transformation was applied to the outcome data. A hierarchical regression analysis incorporating the effects of cluster (clinical center) and cancer risk (low, intermediate, and high) was performed, and the area under the ROC curve (AUC) was estimated.  相似文献   

2.
Zhou C  Wakefield J 《Biometrics》2006,62(2):515-525
In recent years there has been great interest in making inference for gene expression data collected over time. In this article, we describe a Bayesian hierarchical mixture model for partitioning such data. While conventional approaches cluster the observed data, we assume a nonparametric, random walk model, and partition on the basis of the parameters of this model. The model is flexible and can be tuned to the specific context, respects the order of observations within each curve, acknowledges measurement error, and allows prior knowledge on parameters to be incorporated. The number of partitions may also be treated as unknown, and inferred from the data, in which case computation is carried out via a birth-death Markov chain Monte Carlo algorithm. We first examine the behavior of the model on simulated data, along with a comparison with more conventional approaches, and then analyze meiotic expression data collected over time on fission yeast genes.  相似文献   

3.
The study of evolutionary quantitative genetics has been advanced by the use of methods developed in animal and plant breeding. These methods have proved to be very useful, but they have some shortcomings when used in the study of wild populations and evolutionary questions. Problems arise from the small size of data sets typical of evolutionary studies, and the additional complexity of the questions asked by evolutionary biologists. Here, we advocate the use of Bayesian methods to overcome these and related problems. Bayesian methods naturally allow errors in parameter estimates to propagate through a model and can also be written as a graphical model, giving them an inherent flexibility. As packages for fitting Bayesian animal models are developed, we expect the application of Bayesian methods to evolutionary quantitative genetics to grow, particularly as genomic information becomes more and more associated with environmental data.  相似文献   

4.
A Bayesian survival analysis is presented to examine the effect of fluoride-intake on the time to caries development of the permanent first molars in children between 7 and 12 years of age using a longitudinal study conducted in Flanders. Three problems needed to be addressed. Firstly, since the emergence time of a tooth and the time it experiences caries were recorded yearly, the time to caries is doubly interval censored. Secondly, due to the setup of the study, many emergence times were left-censored. Thirdly, events on teeth of the same child are dependent. Our Bayesian analysis is a modified version of the intensity model of Harkanen et al. (2000, Scandinavian Journal of Statistics 27, 577-588). To tackle the problem of the large number of left-censored observations a similar Finnish data set was introduced. Our analysis shows no convincing effect of fluoride-intake on caries development.  相似文献   

5.
Bayesian object identification   总被引:2,自引:0,他引:2  
Rue  H; Hurn  MA 《Biometrika》1999,86(3):649-660
  相似文献   

6.
Xing Qin  Shuangge Ma  Mengyun Wu 《Biometrics》2023,79(3):1761-1774
Genetic interactions play an important role in the progression of complex diseases, providing explanation of variations in disease phenotype missed by main genetic effects. Comparatively, there are fewer studies on survival time, given its challenging characteristics such as censoring. In recent biomedical research, two-level analysis of both genes and their involved pathways has received much attention and been demonstrated as more effective than single-level analysis. However, such analysis is usually limited to main effects. Pathways are not isolated, and their interactions have also been suggested to have important contributions to the prognosis of complex diseases. In this paper, we develop a novel two-level Bayesian interaction analysis approach for survival data. This approach is the first to conduct the analysis of lower-level gene–gene interactions and higher-level pathway–pathway interactions simultaneously. Significantly advancing from the existing Bayesian studies based on the Markov Chain Monte Carlo (MCMC) technique, we propose a variational inference framework based on the accelerated failure time model with effective priors to accommodate two-level selection as well as censoring. Its computational efficiency is much desirable for high-dimensional interaction analysis. We examine performance of the proposed approach using extensive simulation. The application to TCGA melanoma and lung adenocarcinoma data leads to biologically sensible findings with satisfactory prediction accuracy and selection stability.  相似文献   

7.
8.
Daniel R. Kowal 《Biometrics》2023,79(3):1853-1867
Linear mixed models (LMMs) are instrumental for regression analysis with structured dependence, such as grouped, clustered, or multilevel data. However, selection among the covariates—while accounting for this structured dependence—remains a challenge. We introduce a Bayesian decision analysis for subset selection with LMMs. Using a Mahalanobis loss function that incorporates the structured dependence, we derive optimal linear coefficients for (i) any given subset of variables and (ii) all subsets of variables that satisfy a cardinality constraint. Crucially, these estimates inherit shrinkage or regularization and uncertainty quantification from the underlying Bayesian model, and apply for any well-specified Bayesian LMM. More broadly, our decision analysis strategy deemphasizes the role of a single “best” subset, which is often unstable and limited in its information content, and instead favors a collection of near-optimal subsets. This collection is summarized by key member subsets and variable-specific importance metrics. Customized subset search and out-of-sample approximation algorithms are provided for more scalable computing. These tools are applied to simulated data and a longitudinal physical activity dataset, and demonstrate excellent prediction, estimation, and selection ability.  相似文献   

9.
Green PE  Park T 《Biometrics》2003,59(4):886-896
Log-linear models have been shown to be useful for smoothing contingency tables when categorical outcomes are subject to nonignorable nonresponse. A log-linear model can be fit to an augmented data table that includes an indicator variable designating whether subjects are respondents or nonrespondents. Maximum likelihood estimates calculated from the augmented data table are known to suffer from instability due to boundary solutions. Park and Brown (1994, Journal of the American Statistical Association 89, 44-52) and Park (1998, Biometrics 54, 1579-1590) developed empirical Bayes models that tend to smooth estimates away from the boundary. In those approaches, estimates for nonrespondents were calculated using an EM algorithm by maximizing a posterior distribution. As an extension of their earlier work, we develop a Bayesian hierarchical model that incorporates a log-linear model in the prior specification. In addition, due to uncertainty in the variable selection process associated with just one log-linear model, we simultaneously consider a finite number of models using a stochastic search variable selection (SSVS) procedure due to George and McCulloch (1997, Statistica Sinica 7, 339-373). The integration of the SSVS procedure into a Markov chain Monte Carlo (MCMC) sampler is straightforward, and leads to estimates of cell frequencies for the nonrespondents that are averages resulting from several log-linear models. The methods are demonstrated with a data example involving serum creatinine levels of patients who survived renal transplants. A simulation study is conducted to investigate properties of the model.  相似文献   

10.
We propose methods to integrate data across several genomic platforms using a hierarchical Bayesian analysis framework that incorporates the biological relationships among the platforms to identify genes whose expression is related to clinical outcomes in cancer. This integrated approach combines information across all platforms, leading to increased statistical power in finding these predictive genes, and further provides mechanistic information about the manner in which the gene affects the outcome. We demonstrate the advantages of the shrinkage estimation used by this approach through a simulation, and finally, we apply our method to a Glioblastoma Multiforme dataset and identify several genes potentially associated with the patients’ survival. We find 12 positive prognostic markers associated with nine genes and 13 negative prognostic markers associated with nine genes.  相似文献   

11.
Moran EV  Clark JS 《Molecular ecology》2011,20(6):1248-1262
The scale of seed and pollen movement in plants has a critical influence on population dynamics and interspecific interactions, as well as on their capacity to respond to environmental change through migration or local adaptation. However, dispersal can be challenging to quantify. Here, we present a Bayesian model that integrates genetic and ecological data to simultaneously estimate effective seed and pollen dispersal parameters and the parentage of sampled seedlings. This model is the first developed for monoecious plants that accounts for genotyping error and treats dispersal from within and beyond a plot in a fully consistent manner. The flexible Bayesian framework allows the incorporation of a variety of ecological variables, including individual variation in seed production, as well as multiple sources of uncertainty. We illustrate the method using data from a mixed population of red oak (Quercus rubra, Q. velutina, Q. falcata) in the NC piedmont. For simulated test data sets, the model successfully recovered the simulated dispersal parameters and pedigrees. Pollen dispersal in the example population was extensive, with an average father-mother distance of 178 m. Estimated seed dispersal distances at the piedmont site were substantially longer than previous estimates based on seed-trap data (average 128 m vs. 9.3 m), suggesting that, under some circumstances, oaks may be less dispersal-limited than is commonly thought, with a greater potential for range shifts in response to climate change.  相似文献   

12.
This paper presents a novel semiparametric joint model for multivariate longitudinal and survival data (SJMLS) by relaxing the normality assumption of the longitudinal outcomes, leaving the baseline hazard functions unspecified and allowing the history of the longitudinal response having an effect on the risk of dropout. Using Bayesian penalized splines to approximate the unspecified baseline hazard function and combining the Gibbs sampler and the Metropolis–Hastings algorithm, we propose a Bayesian Lasso (BLasso) method to simultaneously estimate unknown parameters and select important covariates in SJMLS. Simulation studies are conducted to investigate the finite sample performance of the proposed techniques. An example from the International Breast Cancer Study Group (IBCSG) is used to illustrate the proposed methodologies.  相似文献   

13.
The earliest record of plant visiting in bats dates to the Middle Miocene of La Venta, the world''s most diverse tropical palaeocommunity. Palynephyllum antimaster is known from molars that indicate nectarivory. Skull length, an important indicator of key traits such as body size, bite force and trophic specialization, remains unknown. We developed Bayesian models to infer skull length based on dental measurements. These models account for variation within and between species, variation between clades, and phylogenetic error structure. Models relating skull length to trophic level for nectarivorous bats were then used to infer the diet of the fossil. The skull length estimate for Palynephyllum places it among the larger lonchophylline bats. The inferred diet suggests Palynephyllum fed on nectar and insects, similar to its living relatives. Omnivory has persisted since the mid-Miocene. This is the first study to corroborate with fossil data that highly specialized nectarivory in bats requires an omnivorous transition.  相似文献   

14.
The distribution of genetic variation within and among populations is commonly used to infer their demographic and evolutionary histories. This endeavour has the potential to benefit substantially from high‐throughput next‐generation sequencing technologies through a rapid increase in the amount of data available and a corresponding increase in the precision of parameter estimation. Here we report the results of a phylogeographic study of the North American butterfly genus Lycaeides using 454 sequence data. This study serves the dual purpose of demonstrating novel molecular and analytical methods for population genetic analyses with 454 sequence data and expanding our knowledge of the phylogeographic history of Lycaeides. We obtained 341 045 sequence reads from 12 populations that we were able to assemble into 15 262 contigs (most of which were variable), representing one of the largest population genetic data sets for a non‐model organism to date. We examined patterns of genetic variation using a hierarchical Bayesian analysis of molecular variance model, which provides precise estimates of genome‐level φST while appropriately modelling uncertainty in locus‐specific φST. We found that approximately 36% of sequence variation was partitioned among populations, suggesting historical or current isolation among the sampled populations. Estimates of pairwise genome‐level φST were largely consistent with a previous phylogeographic model for Lycaeides, suggesting fragmentation into two to three refugia during Pleistocene glacial cycles followed by post‐Pleistocene range expansion and secondary contact leading to introgressive hybridization. This study demonstrates the potential of using genome‐level data to better understand the phylogeographic history of populations.  相似文献   

15.
Summary .   In this article, we apply the recently developed Bayesian wavelet-based functional mixed model methodology to analyze MALDI-TOF mass spectrometry proteomic data. By modeling mass spectra as functions, this approach avoids reliance on peak detection methods. The flexibility of this framework in modeling nonparametric fixed and random effect functions enables it to model the effects of multiple factors simultaneously, allowing one to perform inference on multiple factors of interest using the same model fit, while adjusting for clinical or experimental covariates that may affect both the intensities and locations of peaks in the spectra. For example, this provides a straightforward way to account for systematic block and batch effects that characterize these data. From the model output, we identify spectral regions that are differentially expressed across experimental conditions, in a way that takes both statistical and clinical significance into account and controls the Bayesian false discovery rate to a prespecified level. We apply this method to two cancer studies.  相似文献   

16.
Chen  Jiahua; Chen  Zehua 《Biometrika》2008,95(3):759-771
The ordinary Bayesian information criterion is too liberal formodel selection when the model space is large. In this paper,we re-examine the Bayesian paradigm for model selection andpropose an extended family of Bayesian information criteria,which take into account both the number of unknown parametersand the complexity of the model space. Their consistency isestablished, in particular allowing the number of covariatesto increase to infinity with the sample size. Their performancein various situations is evaluated by simulation studies. Itis demonstrated that the extended Bayesian information criteriaincur a small loss in the positive selection rate but tightlycontrol the false discovery rate, a desirable property in manyapplications. The extended Bayesian information criteria areextremely useful for variable selection in problems with a moderatesample size but with a huge number of covariates, especiallyin genome-wide association studies, which are now an activearea in genetics research.  相似文献   

17.
Johnson DS  Hoeting JA 《Biometrics》2003,59(2):341-350
In this article, we incorporate an autoregressive time-series framework into models for animal survival using capture-recapture data. Researchers modeling animal survival probabilities as the realization of a random process have typically considered survival to be independent from one time period to the next. This may not be realistic for some populations. Using a Gibbs sampling approach, we can estimate covariate coefficients and autoregressive parameters for survival models. The procedure is illustrated with a waterfowl band recovery dataset for northern pintails (Anas acuta). The analysis shows that the second lag autoregressive coefficient is significantly less than 0, suggesting that there is a triennial relationship between survival probabilities and emphasizing that modeling survival rates as independent random variables may be unrealistic in some cases. Software to implement the methodology is available at no charge on the Internet.  相似文献   

18.
19.
A Bayesian model for sparse functional data   总被引:1,自引:0,他引:1  
Thompson WK  Rosen O 《Biometrics》2008,64(1):54-63
Summary.   We propose a method for analyzing data which consist of curves on multiple individuals, i.e., longitudinal or functional data. We use a Bayesian model where curves are expressed as linear combinations of B-splines with random coefficients. The curves are estimated as posterior means obtained via Markov chain Monte Carlo (MCMC) methods, which automatically select the local level of smoothing. The method is applicable to situations where curves are sampled sparsely and/or at irregular time points. We construct posterior credible intervals for the mean curve and for the individual curves. This methodology provides unified, efficient, and flexible means for smoothing functional data.  相似文献   

20.
The effect of missing data on phylogenetic methods is a potentially important issue in our attempts to reconstruct the Tree of Life. If missing data are truly problematic, then it may be unwise to include species in an analysis that lack data for some characters (incomplete taxa) or to include characters that lack data for some species. Given the difficulty of obtaining data from all characters for all taxa (e.g., fossils), missing data might seriously impede efforts to reconstruct a comprehensive phylogeny that includes all species. Fortunately, recent simulations and empirical analyses suggest that missing data cells are not themselves problematic, and that incomplete taxa can be accurately placed as long as the overall number of characters in the analysis is large. However, these studies have so far only been conducted on parsimony, likelihood, and neighbor-joining methods. Although Bayesian phylogenetic methods have become widely used in recent years, the effects of missing data on Bayesian analysis have not been adequately studied. Here, we conduct simulations to test whether Bayesian analyses can accurately place incomplete taxa despite extensive missing data. In agreement with previous studies of other methods, we find that Bayesian analyses can accurately reconstruct the position of highly incomplete taxa (i.e., 95% missing data), as long as the overall number of characters in the analysis is large. These results suggest that highly incomplete taxa can be safely included in many Bayesian phylogenetic analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号