首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A genetic linkage map of 27 markers on human chromosome 21.   总被引:21,自引:0,他引:21  
We have constructed a genetic linkage map of the long arm of human chromosome 21 comprising 27 DNA markers. This map is an updated version of that reported earlier by group (1989, Genomics 4: 579-591), which contained 17 DNA markers. The current markers consist of 10 genes and 17 anonymous sequences. Traditional methods (restriction fragment length polymorphisms) were used to map 25 of these markers, whereas 2 markers were studied by polymerase chain reaction amplification of (GT)n dinucleotide repeats. Linkage analysis was performed on 40 CEPH families using the computer program packages LINKAGE, CRI-MAP, and MAPMAKER. Recombination rates were significantly different between the sexes, with the male map being 132 cM and the female map being 161 cM, assuming Kosambi interference and a variable ratio of sex difference in recombination. Approximately one-half of the crossovers in either sex occur distally, in terminal band 21q22.3, which also contains 16 of the markers studied. The average distance between adjacent markers was 6 cM.  相似文献   

2.
A genetic linkage map of 17 markers on human chromosome 21   总被引:17,自引:0,他引:17  
We have constructed a genetic linkage map of 17 markers on the long arm of human chromosome 21, including six genes and two anonymous loci with a variable number of tandem repeats. The estimated length of the map is 103 cM in males and 140 cM in females, assuming Kosambi interference. Recombination in females was approximately twice that in males between proximal markers. However, over half of the recombination events in either sex occur distally, in 21q22.3, although this region accounts for only about 15% of the physical length of chromosome 21.  相似文献   

3.
A genetic linkage map of human chromosome 9q.   总被引:5,自引:0,他引:5  
A genetic linkage map of human chromosome 9q, spanning a sex-equal distance of 125 cM, has been developed by genotyping 26 loci in the Venezuelan Reference Pedigree. The loci include 12 anonymous microsatellite markers reported by Kwiatkowski et al. (1992), several classical systems previously assigned to chromosome 9q, and polymorphisms for the genes tenacin (HXB), gelsolin (GSN), adenylate kinase 1 (AK1), arginosuccinate synthetase (ASS), ABL oncogene (ABL1), ABO blood group (ABO), and dopamine beta-hydroxylase (DBH). Only a marginally significant sex difference is found along the entire length of the map and results from one interval, between D9S58 and D9S59, that displays an excess of female recombination. A comparison of the genetic map to the existing physical data suggests that there is increased recombination in the 9q34 region with a recombination event occurring every 125-400 kb. This map should be useful in further characterizing the relationship between physical distance and genetic distance, as well as for genetic linkage studies of diseases that map to chromosome 9q, including multiple self-healing squamous epithelioma (MSSE), Gorlin syndrome (NBCCS), xeroderma pigmentosum (XPA), nail-patella syndrome (NPS1), torsion dystonia (DYT1), and tuberous sclerosis (TSC1).  相似文献   

4.
Genetic linkage map of human chromosome 21   总被引:19,自引:0,他引:19  
Two of the most common disorders affecting the human nervous system, Down syndrome and Alzheimer's disease, involve genes residing on human chromosome 21. A genetic linkage map of human chromosome 21 has been constructed using 13 anonymous DNA markers and cDNAs encoding the genes for superoxide dismutase 1 (SOD1) and the precursor of Alzheimer's amyloid beta peptide (APP). Segregation of restriction fragment length polymorphisms (RFLPs) for these genes and DNA markers was traced in a large Venezuelan kindred established as a "reference" pedigree for human linkage analysis. The 15 loci form a single linkage group spanning 81 cM on the long arm of chromosome 21, with a markedly increased frequency of recombination occurring toward the telomere. Consequently, 40% of the genetic length of the long arm corresponds to less than 10% of its cytogenetic length, represented by the terminal half of 21q22.3. Females displayed greater recombination than males throughout the linkage group, with the difference being most striking for markers just below the centromere. Definition of the linkage relationships for these chromosome 21 markers will help refine the map position of the familial Alzheimer's disease gene and facilitate investigation of the role of recombination in nondisjunction associated with Down syndrome.  相似文献   

5.
A primary genetic linkage map for human chromosome 12   总被引:20,自引:0,他引:20  
A primary genetic map for human chromosome 12 has been constructed from data on 23 restriction fragment length polymorphic systems collected in 38 normal families with large sibships. Linkage analysis of the genotypic data has ordered 16 loci into a continuous genetic map of 111 cM in males and 258 cM in females. Although most of the genetic map reflects a higher rate of recombination in females relative to males, significantly more frequent recombination was observed in males than in females in intervals between loci on the distal portion of the short arm of the chromosome. The mapping data shown here will serve as a first step toward a high-resolution genetic map for human chromosome 12.  相似文献   

6.
A genetic linkage map of markers for human chromosome 20   总被引:3,自引:0,他引:3  
A continuous genetic linkage map with five polymorphic DNA markers, including one that defines a locus containing a variable number of tandem repeats (VNTR), has been constructed from genotypic analysis of 59 large reference families. The map spans a genetic distance of 105 cM in males and 115 cM in females and provides initial anchor points for a high-resolution map of human chromosome 20.  相似文献   

7.
A genetic linkage map of chromosome 17   总被引:6,自引:0,他引:6  
We have developed a genetic linkage map of 19 markers (including nine genes) on human chromosome 17, providing 13 reference points along virtually the entire length of this chromosome. The map covers an estimated 149 cM in length (sex-averaged), with a total length of 214 cM in females and 95 cM in males. This sex difference appears to be significant along virtually the entire length of the map. This map will be useful both for providing reference points for fine structure genetic and physical mapping and for genetic linkage studies of diseases, including von Recklinghausen neurofibromatosis and Charcot-Marie-Tooth disease.  相似文献   

8.
A genetic linkage map of 32 loci on human chromosome 10   总被引:8,自引:0,他引:8  
We have constructed a genetic linkage map of human chromosome 10 based on DNA probes that detect 47 restriction fragment length polymorphisms (RFLPs) at 32 different loci. Segregation data were collected on a set of multigenerational families provided by the Centre d'Etude du Polymorphisme Humain and maps were constructed using recently developed multipoint analysis techniques. The length of the sex-averaged map is 178 cM and the sex-specific map lengths are 131 cM in males and 255 cM in females. Recombination is significantly higher in female meioses. The mean distance between loci is 5.6 cM for the sex-averaged map. The genetic map spans the length of the chromosome as judged by physical localization of probes by in situ hybridization techniques and mapping of the probes on human-hamster hybrid cell lines containing all or part of chromosome 10. The informativeness of two loci near the locus responsible for multiple endocrine neoplasia type 2A (MEN-2A) has been increased by isolation of cosmids that reveal additional RFLPs at these loci.  相似文献   

9.
A genetic linkage map of human chromosome 5 with 60 RFLP loci.   总被引:6,自引:0,他引:6  
A genetic map of human chromosome 5 that contains 60 restriction fragment length polymorphism (RFLP) loci in one linkage group has been constructed. Segregation data using these markers and 40 large multigenerational families supplied by the Centre d'Etude du Polymorphisme Humain have been collected. Linkage analyses were performed with the program package CRI-MAP; using odds greater than 1000:1, 30 RFLP loci could be placed on the map. This genetic map spans 289 cM sex-equal, 353 cM in females, and 244 cM in males. While the relative rate of recombination for female meioses is nearly twice that of males over much of the chromosome, several instances of statistically significant excess male recombination were observed. The order of probes on the genetic map has been confirmed by their physical order as determined by somatic cell hybrid lines containing deletions of normal chromosome 5. There is concordance between the physical positions of markers and their genetic positions. Our most distal probes on the genetic map are cytologically localized to the most distal portions of the chromosome. This suggests that our genetic map spans most of chromosome 5.  相似文献   

10.
Twenty-six (CA)n polymorphic microsatellites were isolated from a flow-sorted chromosome 20 library. To reduce the number of sequencing gels, these microsatellites were genotyped on 15 CEPH families using a procedure derived from the multiplex sequencing technique of G. M. Church and S. Kieffer-Higgins (1988, Science 240:185-188). A primary map with a strongly supported order was constructed with 15 (CA)n markers. Regional localizations for the 11 other microsatellites were obtained with regard to the primary map. The 26 loci span approximately 160 cM. Regional localizations for a set of index markers (D20S4, D20S6, D20S16, and D20S19) and for other markers from the CEPH Public Database (D20S5, D20S15, D20S17, and D20S18) have also been determined. The total map spans a genetic distance of approximately 195 cM extending from the (CA)n marker IP20M7 on 20p to D20S19 on 20q. The density of microsatellite markers is markedly higher in the pericentromeric region, with an average distance of 3 to 4 cM between adjacent markers over a distance of 43 cM. Two-thirds of these randomly isolated microsatellites are clustered in that region between D20S5 and D20S16 representing approximately one-fourth of the linkage map. This might suggest a nonrandom distribution of (CA)n simple sequence repeats on this chromosome.  相似文献   

11.
A genetic linkage map of the long arm of human chromosome 22   总被引:17,自引:0,他引:17  
We have used a recombinant phage library enriched for chromosome 22 sequences to isolate and characterize eight anonymous DNA probes detecting restriction fragment length polymorphisms on this autosome. These were used in conjunction with eight previously reported loci, including the genes BCR, IGLV, and PDGFB, four anonymous DNA markers, and the P1 blood group antigen, to construct a linkage map for chromosome 22. The linkage group is surprisingly large, spanning 97 cM on the long arm of the chromosome. There are no large gaps in the map; the largest intermarker interval is 14 cM. Unlike several other chromosomes, little overall difference was observed for sex-specific recombination rates on chromosome 22. The availability of a genetic map will facilitate investigation of chromosome 22 rearrangements in such disorders as cat eye syndrome and DiGeorge syndrome, deletions in acoustic neuroma and meningioma, and translocations in Ewing sarcoma. This defined set of linked markers will also permit testing chromosome 22 for the presence of particular disease genes by family studies and should immediately support more precise mapping and identification of flanking markers for NF2, the defective gene causing bilateral acoustic neurofibromatosis.  相似文献   

12.
A compositional map of human chromosome 21.   总被引:9,自引:0,他引:9       下载免费PDF全文
K Gardiner  B Aissani    G Bernardi 《The EMBO journal》1990,9(6):1853-1858
GC-poor and GC-rich isochores, the long (greater than 300 kb) compositionally homogeneous DNA segments that form the genome of warm-blooded vertebrates, are located in G- and R-bands respectively of metaphase chromosomes. The precise correspondence between GC-rich isochores and R-band structure is still, however, an open problem, because GC-rich isochores are compositionally heterogeneous and only represent one-third of the genome, with the GC-richest family (which is by far the highest in gene concentration) corresponding to less than 5% of the genome. In order to clarify this issue and, more generally, to correlate DNA composition and chromosomal structure in an unequivocal way, we have developed a new approach, compositional mapping. This consists of assessing the base composition over 0.2-0.3 Mb (megabase) regions surrounding landmarks that were previously localized on the physical map. Compositional mapping was applied here to the long arm of human chromosome 21, using 53 probes that had already been used in physical mapping. The results obtained provide a direct demonstration that the DNA stretches of G-bands essentially correspond to GC-poor isochores, and that R-band DNA is characterized by a compositional heterogeneity that is much more striking than expected, in that it comprises isochores covering the full spectrum of GC levels. GC-poor isochores of R-bands may, however, correspond to 'thin' G-bands, as visualized at high resolution, leaving GC-rich and very GC-rich isochores as the real components of (high-resolution) R-band DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A molecular genetic linkage map of mouse chromosome 2   总被引:7,自引:0,他引:7  
Interspecific backcross mice were used to create a molecular genetic linkage map of chromosome 2. Genomic DNAs from N2 progeny were subjected to Southern blot analysis using molecular probes that identified the Abl, Acra, Ass, C5, Cas-1, Fshb, Gcg, Hox-5.1, Jgf-1, Kras-3, Ltk, Pax-1, Prn-p, and Spna-2 loci; these loci were added to the 11 loci previously mapped to the distal region of chromosome 2 in the same interspecific backcross to generate a composite multilocus linkage map. Several loci mapped near, and may be the same as, known mutations. Comparisons between the mouse and the human genomes indicate that mouse chromosome 2 contains regions homologous to at least six human chromosomes. Mouse models for human diseases are discussed.  相似文献   

14.
We have mapped 13 loci on mouse Chromosome 18 by Southern blot analysis of restriction fragment length polymorphisms among progeny from an interspecific backcross: (C57BL/6J X Mus spretus) X M. spretus. Complete haplotype analysis of 136 of these progeny was used to establish gene order and estimate genetic distances between loci. The gene order (from centromere to telomere) and recombination distances (in centimorgans) were as follows: PGK-1rs5-4.3-Tpi-10-11.8-(Egr-1, Hmg17-rs9)-2.1-Fgfa-2.2-Grl-1-10.1-(Cdx-1, Csfmr, Pdgfrb, Pdea, Rps14)-2.1-Adrb-2-22.9-Mbp. Pgk-1rs5, Tpi-10, Hmg17-rs9, and Rps14 had not been previously mapped in the mouse; Egr-1 had only been syntenically assigned to mouse Chr 18. Nine of the loci, spanning 18 cM, have homologs on the distal long arm of human Chr5--a region rich in genes encoding growth factors and receptors. An additional previously unmapped gene, Drd-1, predicted to be on mouse Chr 18 based on its human chromosomal location, was mapped to the middle region of mouse Chr 13.  相似文献   

15.
A molecular genetic linkage map of mouse chromosome 7   总被引:6,自引:0,他引:6  
A M Saunders  M F Seldin 《Genomics》1990,8(3):525-535
The homology between mouse chromosome 7 and human chromosomes 11, 15, and 19 was examined using interspecific backcross animals derived from mating C3H/HeJ-gld/gld and Mus spretus mice. In an earlier study, we reported on the linkage relationships of 16 loci on mouse chromosome 7 and the homologous relationship between this chromosome and the myotonic dystrophy gene region on human chromosome 19. Segregation analyses were used to extend the gene linkage relationships on mouse chromosome 7 by an additional 21 loci. Seven of these genes (Cyp2a, D19F11S1h, Myod-1, Otf-2, Rnu1p70, Rnu2pa, and Xrcc-1) were previously unmapped in the mouse. Several potential mouse chromosome 7 genes (Mel, Hkr-1, Icam-1, Pvs) did not segregate with chromosome 7 markers, and provisional chromosomal assignments were made. This study establishes a detailed molecular genetic linkage map of mouse chromosome 7 that will be useful as a framework for determining linkage relationships of additional molecular markers and for identifying homologous disease genes in mice and humans.  相似文献   

16.
By in situ hybridization of probes for three cloned genes and eight genetically-linked polymorphic DNA markers, we have prepared a physical map of the distal long arm of chromosome 5. These results, together with the localizations of 11 genes and the genetic linkage map reported previously by us and by other investigators, represent a map that spans 55 cM.  相似文献   

17.
An extended genetic linkage map of markers for human chromosome 10   总被引:15,自引:0,他引:15  
We have extended, in both directions, our recently published genetic map of markers for human chromosome 10 by the addition of 10 newly defined arbitrary loci. The map now covers 230 cM in males and 329 cM in females. In addition, three new markers, one of them a new RFLP at the IRBP gene locus, have been mapped in the vicinity of the locus responsible for multiple endocrine neoplasia type 2A (MEN2A). A significantly higher frequency of recombination in males than in females was observed near both ends of the new map.  相似文献   

18.
Chorea-acanthocytosis: genetic linkage to chromosome 9q21.   总被引:2,自引:0,他引:2  
Chorea-acanthocytosis (CHAC) is a rare autosomal recessive disorder characterized by progressive neurodegeneration and unusual red-cell morphology (acanthocytosis), with onset in the third to fifth decade of life. Neurological impairment with acanthocytosis (neuroacanthocytosis) also is seen in abetalipoproteinemia and X-linked McLeod syndrome. Whereas the molecular etiology of McLeod syndrome has been defined (Ho et al. 1994), that of CHAC is still unknown. In the absence of cytogenetic rearrangements, we initiated a genomewide scan for linkage in 11 families, segregating for CHAC, who are of diverse geographical origin. We report here that the disease is linked, in all families, to a 6-cM region of chromosome 9q21 that is flanked by the recombinant markers GATA89a11 and D9S1843. A maximum two-point LOD score of 7.1 (theta = .00) for D9S1867 was achieved, and the linked region has been confirmed by homozygosity-by-descent, in offspring from inbred families. These findings provide strong evidence for the involvement of a single locus for CHAC and are the first step in positional cloning of the disease gene.  相似文献   

19.
A 2-cM genetic linkage map of human chromosome 7p that includes 47 loci.   总被引:5,自引:0,他引:5  
A new high-resolution genetic linkage map for human chromosome 7p has been constructed. The map is composed of 47 loci (54 polymorphic systems), 19 of which are uniquely placed with odds of at least 1000:1. Four genes are represented, including glucokinase (GCK, ATP:D-hexose-6-phosphotransferase, EC 2.7.1.2) which was mapped via a (CA)n dinucleotide repeat polymorphism. The sex-average map measures 94.4 cM and the male and female maps measure 73.2 and 116.1 cM, respectively. We believe that the genetic map extends nearly the full length of the short arm of chromosome 7 since a centromere marker has been incorporated, and the most distal marker, D7S21, has been cytogenetically localized by in situ hybridization to 7p22-pter. The average marker spacing is 2 cM, and the largest interval between uniquely placed markers is 13 cM (sex-average map). Overall, female recombination was observed to be about 1.5 times that of males, and a statistically significant sex-specific recombination frequency was found for a single interval. The map is based on genotypic data gathered from 40 CEPH reference pedigrees and was constructed using the CRI-MAP program package. The map presented here represents a combined and substantially expanded dataset compared to previously published chromosome 7 maps, and it will serve as a "baseline" genetic map that should prove useful for future efforts to develop a 1-cM map and for construction of a contiguous clone-based physical map for this chromosome.  相似文献   

20.
A genetic linkage map of 96 loci on the short arm of human chromosome 3.   总被引:1,自引:0,他引:1  
We constructed a genetic map of 96 loci on the short arm of human chromosome 3 (3p) in 59 families provided by the Centre d'Etude du Polymorphisme Humaine (CEPH). Twenty-nine continuously linked loci were placed on the map with likelihood support of at least 1000:1; one locus, D3S213, was placed on the map with likelihood support of 871:1; D3Z1, an alpha satellite centromeric repeat probe, was placed on the map with likelihood support of 159:1; 65 loci were assigned regional locations. The average heterozygosity of the uniquely ordered markers was 49%. The map extends from 3p26, the terminal band of 3p, to the centromere (from D3S211 to D3Z1). Multipoint linkage analysis indicated that the male, female, and sex-averaged maps extend for 102, 147, and 116 cM, respectively. The mean genetic distance between uniquely ordered loci on the sex-averaged map was 4.0 cM. Probe density was greatest for the region of 3p between D3F15S2e and the telomere. The sex-averaged map contained two intervals greater than 10 cM. Seventeen probes were localized by fluorescence in situ hybridization. The loci described in this report will be useful in building an integrated genetic and physical map of this chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号