首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3-Methylcrotonyl-coenzyme A (CoA) carboxylase was purified to homogeneity from pea (Pisum sativum L.) leaf and potato (Solanum tuberosum L.) tuber mitochondria. The native enzyme has an apparent molecular weight of 530,000 in pea leaf and 500,000 in potato tuber as measured by gel filtration. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate disclosed two nonidentical subunits. The larger subunit (B subunit) is biotinylated and has an apparent molecular weight of 76,000 in pea leaf and 74,000 in potato tuber. The smaller subunit (A subunit) is biotin free and has an apparent molecular weight of 54,000 in pea leaf and 53,000 in potato tuber. The biotin content of the enzyme is 1 mol/133,000 g of protein and 1 mol/128,000 g of protein in pea leaf and potato tuber, respectively. These values are consistent with an A4B4 tetrameric structure for the native enzyme. Maximal 3-methylcrotonyl-CoA carboxylase activity was found at pH 8 to 8.3 and at 35 to 38[deg]C in the presence of Mg2+. Kinetic constants (apparent Km values) for the enzyme substrates 3-methylcrotonyl-CoA, ATP, and HCO3- were: 0.1 mM, 0.1 mM, and 0.9 mM, respectively, for pea leaf 3-methylcrotonyl-CoA carboxylase and 0.1 mM, 0.07 mM, and 0.34 mM, respectively, for potato tuber 3-methylcrotonyl-CoA carboxylase. A steady-state kinetic analysis of the carboxylase-catalyzed carboxylation of 3-methylcrotonyl-CoA gave rise to parallel line patterns in double reciprocal plots of initial velocity with the substrate pairs 3-methylcrotonyl-CoA plus ATP and 3-methylcrotonyl-CoA plus HCO3- and an intersecting line pattern with the substrate pair HCO3- plus ATP. It was concluded that the kinetic mechanism involves a double displacement. Purified 3-methylcrotonyl-CoA carboxylase was inhibited by end products of the reaction catalyzed, namely ADP and orthophosphate, and by 3-hydroxy-3-methylglutaryl-CoA. Finally, as for the 3-methylcrotonyl-CoA carboxylases from mammalian and bacterial sources, plant 3-methylcrotonyl-CoA carboxylase was sensitive to sulfhydryl and arginyl reagents.  相似文献   

2.
The activities of four biotin enzymes, acetyl-coenzyme A (CoA) carboxylase, 3-methylcrotonyl-CoA carboxylase, pyruvate carboxylase, and propionyl-CoA carboxylase, and the accumulation of six biotin-containing polypeptides were determined during development of somatic embryos of carrot (Daucus carota). Acetyl-CoA carboxylase activity increased more than sevenfold, whereas the activities of 3-methylcrotonyl-CoA carboxylase, pyruvate carboxylase, and propionyl-CoA carboxylase were relatively unaltered. An increase also occurred in the accumulation of three of the biotin-containing polypeptides (molecular masses of 220, 62, and 34 kilodaltons). Of these, the most dramatic change was in the accumulation of the 62-kilodalton biotin-containing polypeptide, which increased by at least 50-fold as embryogenic cell clusters developed into torpedo embryos.  相似文献   

3.
The subcellular localization of hexose phosphorylating activity in extracts of pea stems has been studied by differential centrifugation and sucrose density gradient centrifugation. The hexokinase (EC 2.7.1.1) was associated with the mitochondria, whereas fructokinase (EC 2.7.1.4) was in the cytosolic fraction. Some properties of the mitochondrial hexokinase were studied. The enzyme had a high affinity for glucose (Km 76 micromolar) and mannose (Km 71 micromolar) and a relatively low affinity for fructose (Km 15.7 millimolar). The Km for MgATP was 180 micromolar. The addition of salts stimulated the activity of the hexokinase. Al3+ was a strong inhibitor at pH 7 but not at the optimum pH (8.2). The enzyme was not readily solubilized but, in experiments with intact mitochondria, was susceptible to proteolysis. A location on the outer mitochondrial membrane is suggested for the hexokinase of pea stems.  相似文献   

4.
3-Methylcrotonyl-CoA carboxylase (MCase), an enzyme of the leucine oxidation pathway, was highly purified from bovine kidney. The native enzyme has an approximate molecular weight of 835,000 as measured from exclusion limits by polyacrylamide gel electrophoresis at pH 7.3. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate demonstrated two subunits, identified as a biotin-free subunit (A subunit; Mr = 61,000) and a biotin-containing subunit (B subunit; Mr = 73,500). The biotin content of the enzyme was 1 mol/ 157,000 g protein, consistent with an AB protomeric structure for the enzyme. The isoelectric point of the enzyme was found to be 5.4. Maximal MCase activity was found at pH 8 and 38 °C in the presence of Mg2+ and an activating monovalent cation such as K+. Kinetic constants (Km values) for the enzyme substrates were: 3-methylcrotonyl-CoA, 75 μm; ATP, 82 μm; HCO3?, 1.8 mm. Certain acyl-CoA derivatives, including crotonyl-CoA, (2Z)-3-ethylcrotonyl-CoA, and acetoacetyl-CoA, were also substrates for the enzyme. Some data on inhibition of the enzyme by acyl-CoA derivatives, and sulfhydryl- and arginyl-reagents, are presented.  相似文献   

5.
Submitochondrial particles freshly prepared by sonication from pea cotyledon mitochondria showed low ATPase activity. Activity increased 20-fold on exposure to trypsin. The pea cotyledon submitochondrial particle ATPase was also activated by “aging” in vitro. At pH 7.0 addition of 1 millimolar ATP prevented the activation. ATPase of freshly prepared pea cotyledon submitochondrial particles had a substrate specificity similar to that of the soluble ATPase from pea cotyledon mitochondria, with GTPase > ATPase. “Aged” or trypsin-treated particles showed equal activity with the two substrates. NaCl and NaHCO3, which stimulate the ATPase but not the GTPase activity of the soluble pea enzyme, were stimulatory to both the ATPase and GTPase activities of freshly prepared submitochondrial particles. However, they were stimulatory only to the ATPase activity of trypsin-treated or “aged” submitochondrial particles. In contrast, the ATPase activity of rat liver submitochondrial particles was stimulated by HCO3, but inhibited by Cl, indicating that Cl stimulation is a distinguishing property of the pea mitochondrial ATPase complex.  相似文献   

6.
It was shown by gel electrophoresis in sodium dodecylsulphate solution that 3-methylcrotonyl-CoA carboxylase from Achromobacter IVS is composed of two different subunits with molecular weights of about 78000 and 96000, respectively. The biotin is bound to the heavier subunit. It was previously found that 3-methylcrotonyl-CoA carboxylase contains four biotin molecules per complex. A complex composed of four of each subunit would thus have a molecular weight of about 700000. This is compatible with the molecular weight of 760000 determined earlier by analytical ultracentrifugation. Both subunits were isolated preparatively. As the subunits, unlike the complex, are very sensitive to oxygen, special precautions had to be taken during isolation. The biotin-containing subunit was isolated by chromatography on DEAE-cellulose in 5 M urea. It no longer catalyzed the overall reaction, yet could still carboxylate free biotin. The biotin-free subunit was separated after dissociation of the enzyme by three-days' dialysis at pH 9.8 under nitrogen. On chromatography over a Sepharose-bound avidin column, the biotin-subunit was fixed and the biotin-free subunit was eluted unretarded. The latter subunit showed no enzymic activity. After the addition of the biotin-containing subunit, overall activity was regenerated. The speed of reassociation is very much enhanced by 3-methylcrotonyl-CoA. It was shown by reassociation experiments under different conditions that probably an initial complex, AxBy is formed, possessing a binding site for 3-methylcrotonyl-CoA. Upon the binding of this substrate the conformation may be changed to a form favourable for reconstitution. Finally, the structures of biotin enzymes from different sources are compared. In the course of evolution there is a tendency toward integration of the different constituent proteins into only one polypeptide chain.  相似文献   

7.
3-Methylcrotonyl-coenzyme A carboxylase (MCCase) is a mitochondrial biotin-containing enzyme whose metabolic function is not well understood in plants. In soybean (Glycine max) seedlings the organ-specific and developmentally induced changes in MCCase expression are regulated by mechanisms that control the accumulation of MCCase mRNA and the activity of the enzyme. During soybean cotyledon development, when seed-storage proteins are degraded, leucine (Leu) accumulation peaks transiently at 8 d after planting. The coincidence between peak MCCase expression and the decline in Leu content provides correlative evidence that MCCase is involved in the mitochondrial catabolism of Leu. Direct evidence for this conclusion was obtained from radiotracer metabolic studies using extracts from isolated mitochondria. These experiments traced the metabolic fate of [U-14C]Leu and NaH14CO3, the latter of which was incorporated into methylglutaconyl-coenzyme A (CoA) via MCCase. These studies directly demonstrate that plant mitochondria can catabolize Leu via the following scheme: Leu → α-ketoisocaproate → isovaleryl-CoA → 3-methylcrotonyl-CoA → 3-methylglutaconyl-CoA → 3-hydroxy-3-methylglutaryl-CoA → acetoacetate + acetyl-CoA. These findings demonstrate for the first time, to our knowledge, that the enzymes responsible for Leu catabolism are present in plant mitochondria. We conclude that a primary metabolic role of MCCase in plants is the catabolism of Leu.  相似文献   

8.
Photosynthetic CO2-fixation in isolated pea (Pisum sativum L., cv Little Marvel) chloroplasts during induction is markedly inhibited by 0.4 millimolar sulfite. Sulfate at the same concentration has almost no effect. The 14CO2-fixation pattern indicates that the primary effect of sulfite is inhibition of the reaction catalyzed by ribulose bisphosphate carboxylase and a stimulation of export of intermediates out of the chloroplasts. Inhibition of light modulation of stromal enzyme activity does not appear to account for the toxicity of SO2 in this Pisum variety. Arsenite at 0.2 millimolar concentrations inhibits light activation and inhibits photosynthetic CO2 fixation. The 14CO2-fixation pattern indicates that the primary effect of arsenite is inhibition of light activation of reductive pentose phosphate pathway enzyme activity.  相似文献   

9.
The isotherm for isocitrate oxidation by potato (Solanum tuberosum L. var. Russet Burbank) mitochondria in the presence of exogenous NAD is characterized by a hyperbolic phase at isocitrate concentrations below 3 millimolar, and a sigmoid, or positively cooperative phase from approximately 3 to 30 millimolar. The two forms of isocitrate dehydrogenase were separated and characterized following the sonication of mitochondria in 15% glycerol in the absence of buffer, followed by fractionation in a density step gradient to yield inner membrane and matrix components. The membrane-associated isocitrate dehydrogenase was found to have a Hill, or cooperativity, number of 1, while the Hill number of the matrix enzyme was 2.5. Upon digitonin extraction the cooperativity number of the membrane enzyme rose to 3.5. The isocitrate Km for the membrane enzyme was calculated to be approximately 5.9 × 10−4 molar, while the S0.5 for the matrix was 6.9 × 10−4 molar. The NAD Km for both enzymes was 150 micromolar. Whereas the membrane enzyme proved indifferent to adenine nucleotides, the matrix enzyme was arguably inhibited by AMP and ADP, and inhibited some 25% by 5 millimolar ATP. Both enzymes were negatively responsive to the mole fraction of NADH, the membrane enzyme being 50% inhibited at a mole fraction of 0.26, and the matrix enzyme by a mole fraction of 0.32. The suggestion is offered that the enzymes in question constitute two forms of a single enzyme, one peripherally associated with the inner membrane, and one soluble in the matrix. It is proposed that a degree of regulation may be achieved by the apportionment of the enzyme between the bound and free forms.  相似文献   

10.
Hexokinase II of Pea Seeds   总被引:4,自引:4,他引:0       下载免费PDF全文
A second hexokinase (EC 2.7.1.1) was obtained from pea seed (Pisum sativum L. var. Progress No. 9) extracts. The enzyme, termed hexokinase II, had a high affinity (Km, 48 micromolar) for glucose and a relatively low affinity (Km, 10 millimolar) for fructose. The Km for MgATP was 86 micromolar. Mg2+ was required for activity, but excess Mg2+ was inhibitory. MgADP inhibited hexokinase II. The addition of salts of monovalent cations increased hexokinase II activity. Al3+ was a strong inhibitor of the enzyme at pH 6.6 but not at the optimum pH (8.2). Citrate and 3-phosphoglycerate activated pea seed hexokinase II at pH 6.6, probably by coordinating with aluminum present as a contaminant in commercial ATP. The properties of hexokinase II are compared with those of the other three hexose kinases obtained from pea seed extracts. The possible role of these enzymes in plant carbohydrate metabolism is discussed.  相似文献   

11.
Glycine decarboxylase has been successfully solubilized from pea (Pisum sativum) leaf mitochondria as an acetone powder. The enzyme was dependent on added dithiothreitol and pyridoxal phosphate for maximal activity. The enzyme preparation could catalyze the exchange of CO2 into the carboxyl carbon of glycine, the reverse of the glycine decarboxylase reaction by converting serine, NH4+, and CO2 into glycine, and 14CO2 release from [1-14C]glycine. The half-maximal concentrations for the glycine-bicarbonate exchange reaction were 1.7 millimolar glycine, 16 millimolar NaH14CO2, and 0.006 millimolar pyridoxal phosphate. The enzyme (glycine-bicarbonate exchange reaction) was active in the assay conditions for 1 hour and could be stored for over 1 month. The enzymic mechanism appeared similar to that reported for the enzyme from animals and bacteria but some quantitative differences were noted. These included the tenacity of binding to the mitochondrial membrane, the concentration of pyridoxal phosphate needed for maximum activity, the requirement for dithiothreitol for maximum activity, and the total amount of activity present. Now that this enzyme has been solubilized, a more detailed understanding of this important step in photorespiration should be possible.  相似文献   

12.
Acetyl-CoA carboxylase is the sole biotin enzyme previously reported in plants. Western analysis with 125I-streptavidin of proteins extracted from carrot somatic embryos visualized six biotin-containing polypeptides, the relative molecular masses of which are 210,000, 140,000, 73,000, 50,000, 39,000, and 34,000. This multiplicity of the biotin-containing polypeptides can be partly explained by the discovery of 3-methylcrotonyl-CoA carboxylase, propionyl-CoA carboxylase, and pyruvate carboxylase in extracts of somatic carrot embryos, biotin enzymes previously unknown in the plant kingdom. These biotin enzymes seem to be widely distributed in the plant kingdom.  相似文献   

13.
A preliminary analysis of Fatty Acid synthesis in pea roots   总被引:3,自引:3,他引:0       下载免费PDF全文
Subcellular fractions from pea (Pisum sativum L.) roots have been prepared by differential centrifugation techniques. Greater than 50% of the recovered plastids can be isolated by centrifugation at 500g for 5 minutes. Plastids of this fraction are largely free from mitochondrial and microsomal contamination as judged by marker enzyme analysis. De novo fatty acid biosynthesis in pea roots occurs in the plastids. Isolated pea root plastids are capable of fatty acid synthesis from acetate at rates up to 4.3 nanomoles per hour per milligram protein. ATP, bicarbonate, and either Mg2+ or Mn2+ are all absolutely required for activity. Coenzyme A at 0.5 millimolar improved activity by 60%. Reduced nucleotides were not essential but activity was greatest in the presence of 0.5 millimolar of both NADH and NADPH. The addition of 0.5 millimolar glycerol-3-phosphate increased activity by 25%. The in vitro and in vivo products of fatty acid synthesis from acetate were primarily palmitate, stearate, and oleate, the proportions of which were dependent on experimental treatments. Fatty acids synthesized by pea root plastids were recovered in primarily phosphatidic acid and diacylglycerol or as water soluble derivatives and the free acids. Lesser amounts were found in phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, and monogalactosyldiacylglycerol.  相似文献   

14.
The effects of adenine nucleotides on phosphoenolypyruvate carboxylase were investigated using purified enzyme from the CAM plant, Crassula argentea. At 1 millimolar total concentration and with limiting phosphoenolpyruvate, AMP had a stimulatory effect, lowering the Km for phosphoenolpyruvate, ADP caused less stimulation, and ATP decreased the activity by increasing the Km for phosphoenolpyruvate. Activation by AMP was not additive to the stimulation by glucose 6-phosphate. Furthermore, AMP increased the Ka for glucose 6-phosphate. Inhibition by ATP was competitive with phosphoenolpyruvate. In support of the kinetic data, fluorescence binding studies indicated that ATP had a stronger effect than AMP on phosphoenolpyruvate binding, while AMP was more efficient in reducing glucose 6-phosphate binding. As free Mg2+ was held constant and saturating, these effects cannot be ascribed to Mg2+ chelation. Accordingly, the enzyme response to the adenylate energy charge was basically of the “R” type (involving enzymes of ATP regenerating sequences) according to D. E. Atkinson's (1968 Biochemistry 7: 4030-4034) concept of energy charge regulation. The effect of energy charge was abolished by 1 millimolar glucose 6-phosphate. Levels of glucose 6-phosphate and of other putative regulatory compounds of phosphoenolpyruvate carboxylase were determined in total leaf extracts during a day-night cycle. The level of glucose 6-phosphate rose at night and dropped sharply during the day. Such a decrease in glucose 6-phosphate concentration could permit an increased control of phosphoenolpyruvate carboxylase by energy charge during the day.  相似文献   

15.
Acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) is a regulatory enzyme of fatty acid synthesis, and in some higher-plant plastids is a multi-subunit complex consisting of biotin carboxylase (BC), biotin-carboxyl carrier protein (BCCP), and carboxyl transferase (CT). We recently described a Nicotiana tabacum L. (tobacco) cDNA with a deduced amino acid sequence similar to that of prokaryotic BC. We here provide further biochemical and immunological evidence that this higher-plant polypeptide is an authentic BC component of ACCase. The BC protein co-purified with ACCase activity and with BCCP during gel permeation chromatography of Pisum sativum L. (pea) chloroplast proteins. Antibodies to the Ricinus communis L. (castor) BC co-precipitated ACCase activity and BCCP. During castor seed development, ACCase activity and the levels of BC and BCCP increased and subsequently decreased in parallel, indicating their coordinate regulation. The BC protein comprised about 0.8% of the soluble protein in developing castor seed, and less than 0.05% of the protein in young leaf or root. Polypeptides cross-reacting with antibodies to castor BC were detected in several dicotyledons and in the monocotyledons Hemerocallis fulva L. (day lily), Iris L., and Allium cepa L. (onion), but not in the Gramineae species Hordeum vulgare L. (barley) and Panicum virgatum L. (switchgrass). The castor endosperm and pea chloroplast ACCases were not significantly inhibited by long-chain acyl-acyl carrier protein, free fatty acids or acyl carrier protein. The BC polypeptide was detected throughout Brassica napus L. (rapeseed) embryo development, in contrast to the multi-functional ACCase isoenzyme which was only detected early in development. These results firmly establish the identity of the BC polypeptide in plants and provide insight into the structure, regulation and roles of higherplant ACCases.Abbreviations ACCase acetyl-CoA carboxylase - ACP acyl carrier protein - BC biotin carboxylase - BCCP biotin carboxyl carrier protein - CT carboxyl transferase - MF multi-functional - MS multi-subunit We thank our colleagues Nicki Engeseth and Vicki Eccleston for advice on fatty acid analysis and Sarah Hunter for providing the developing Iris seed. This work was supported in part by grant MCB 9406466 from NSF. Acknowledgement is also made to the Michigan Agriculture Experiment Station for its support of this research.  相似文献   

16.
Sicher RC 《Plant physiology》1982,70(2):366-369
The enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase displayed near-maximal activity in isolated, intact barley (Hordeum vulgare L. cv. Pennrad) mesophyll protoplasts. The carboxylase deactivated 40 to 50% in situ when protoplasts were dark-incubated 20 minutes in air-equilibrated solutions. Enzyme activity was fully restored after 1 to 2 minutes of light. Addition of 5 millimolar NaHCO3 to the incubation medium prevented dark-inactivation of the carboxylase. There was no permanent CO2-dependent activation of the protoplast carboxylase either in light or dark. Activation of the carboxylase from ruptured protoplasts was not increased significantly by in vitro preincubation with CO2 and Mg2+. In contrast to the enzyme in protoplasts, the carboxylase in intact barley chloroplasts was not fully reactivated by light at atmospheric CO2 levels. The lag phase in carbon assimilation was not lengthened by dark-adapting protoplasts to low CO2 demonstrating that light-activation of the carboxylase was not involved in photosynthetic induction. Irradiance response curves for reactivation of the the carboxylase and for CO2 fixation by isolated barley protoplasts were similar. The above results show that there was a fully reversible light-activation of the carboxylase in isolated barley protoplasts at physiologically significant CO2 levels.  相似文献   

17.
Protein kinase activity was detected in osmotically lysed mitochondria isolated from etiolated seedlings of corn, pea, soybean, and wheat, as well as from potato tubers. Ther kinase(s) phosphorylated both endogenous polypeptides and exogenous, nonmitochondrial proteins when supplied with ATP and Mg2+. Eight to fifteen endogenous mitochondrial polypeptides were phosphorylated. The major mitochondrial polypeptide labeled in all species migrated during denaturing electrophoresis with an apparent monomeric molecular weight of 47,000. Incorporation of phosphate into endogenous proteins appeared to be biphasic, being most rapid during the first 1 to 2 minutes but slower thereafter. The kinase activity was greatest at neutral and alkaline pH values and utilized ATP with a Km of approximately 200 micromolar. The kinase was markedly inhibited by CaCl2 but was essentially unaffected by NaF, calmodulin, oligomycin, or cAMP. These data suggest that plant mitochondrial protein phosphorylation may be similar to protein phosphorylation in animal mitochondria.  相似文献   

18.
The amination of α-ketoglutarate (α-KG) by NADH-glutamate dehydrogenase (GDH) obtained from Sephadex G-75 treated crude extracts from shoots of 5-day-old seedlings was stimulated by the addition of Ca2+. The NADH-GDH purified 161-fold with ammonium sulfate, DEAE-Toyopearl, and Sephadex G-200 was also activated by Ca2+ in the presence of 160 micromolar NADH. However, with 10 micromolar NADH, Ca2+ had no effect on the NADH-GDH activity. The deamination reaction (NAD-GDH) was not influenced by the addition of Ca2+.

About 25% of the NADH-GDH activity was solubilized from purified mitochondria after a simple osmotic shock treatment, whereas the remaining 75% of the activity was associated with the mitochondrial membrane fraction. When the lysed mitochondria, mitochondrial matrix, or mitochondrial membrane fraction was used as the source of NADH-GDH, Ca2+ had little effect on its activity. The mitochondrial fraction contained about 155 nanomoles Ca per milligram of mitochondrial protein, suggesting that the NADH-GDH in the mitochondria is already in an activated form with regard Ca2+. In a simulated in vitro system using concentrations of 6.4 millimolar NAD, 0.21 millimolar NADH, 5 millimolar α-KG, and 5 millimolar glutamate thought to occur in the mitochondria, together with 1 millimolar Ca2+, 10 and 50 millimolar NH4+, and purified enzyme, the equilibrium of GDH was in the direction of glutamate formation.

  相似文献   

19.
Mitochondria from Pisum sativum seedlings purified free of peroxisomal and chlorophyll contamination were examined for acetyl-coenzyme A (CoA) hydrolase activity. Acetyl-CoA hydrolase activity was latent when assayed in isotonic media. The majority of the enzyme activity was found in the soluble matrix of the mitochondria. The products, acetate and CoA, were quantified by two independent methods and verified that the observed activity was an acetyl-CoA hydrolase. The pea mitochondrial acetyl-CoA hydrolase showed a Km for acetyl-CoA of 74 micromolar and a Vmax of 6.1 nanomoles per minute per milligram protein. CoA was a linear competitive inhibitor of the enzyme with a Kis of 16 micromolar. The sensitivity of the enzyme to changes in mole fraction of acetyl-CoA suggested that the changes in the intramitochondrial acetyl-CoA/CoA ratio may be an effective mechanism of control. The widespread distribution of mitochondrial acetyl-CoA hydrolase activity among different plant species indicated that this may be a general mechanism in plants for synthesizing acetate.  相似文献   

20.
Phosphoenolpyruvate carboxylase (EC 4.1.1.31) was purified to homogeneity with about 29% recovery from immature pods of chickpea using ammonium sulfate fractionation, DEAE-cellulose chromatography, and gel filtration through Sephadex G-200. The purified enzyme with molecular weight of about 200,000 daltons was a tetramer of four identical subunits and exhibited maximum activity at pH 8.1. Mg2+ ions were specifically required for the enzyme activity. The enzyme showed typical hyperbolic kinetics with phosphoenolpyruvate with a Km of 0.74 millimolar, whereas sigmoidal response was observed with increasing concentrations of HCO3 with S0.5 value as 7.6 millimolar. The enzyme was activated by inorganic phosphate and phosphate esters like glucose-6-phosphate, α-glycerophosphate, 3-phosphoglyceric acid, and fructose-1,6-bisphosphate, and inhibited by nucleotide triphosphates, organic acids, and divalent cations Ca2+ and Mn2+. Oxaloacetate and malate inhibited the enzyme noncompetitively. Glucose-6-phosphate reversed the inhibitory effects of oxaloacetate and malate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号