首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
To reveal the functional role of Glu87 and Trp89 in the lid ofHumicola lanuginosa lipase, site-directed mutagenesis at Glu87 and Trp89 was carried out. The catalytic performance of wild-type and mutated lipases was studied in transesterification reactions in cyclohexane at a controlled water activity. Two different acyl donors were used in the investigation: tributyrin, a natural substrate for a lipase, and vinyl butyrate, an activated ester suitable for fast and efficient lipase-catalyzed transformations in preparative organic synthesis. As acyl acceptor 1-heptanol was used. The Glu87Ala mutation decreased theV max,app value with tributyrin and vinyl butyrate by a factor of 1.5 and 2, respectively. TheK m,app for tributyrin was not affected by the Glu87Ala mutation, but theK m,app for vinyl butyrate increased twofold compared to the wild-type lipase. Changing Trp89 into a Phe residue afforded an enzyme with a 2.7- and 2-fold decreasedV max,app with the substrates tributyrin and vinyl butyrate, respectively, compared to the wild-type lipase. No significant effects on theK m,app values for tributyrin or vinyl butyrate were seen as a result of the Trp89Phe mutation. However, the introduction of a Glu residue at position 89 in the lid increased theK m,app for tributyrin and vinyl butyrate by a factor of >5 and 2, respectively. The Trp89Glu mutated lipase could not be saturated with tributyrin within the experimental conditions (0–680 mM) studied here. With vinyl butyrate as a substrate theV max,app was only 6% of that obtained with wild-type enzyme.  相似文献   

2.
The homologous lipases fromRhizomucor miehei andHumicola lanuginosa showed approximately the same enantioselectivity when 2-methyldecanoic acid esters were used as substrates. Both lipases preferentially hydrolyzed theS-enantiomer of 1-heptyl 2-methyldecanoate (R. miehei:E S =8.5;H. lanuginosa:E S =10.5), but theR-enantiomer of phenyl 2-methyldecanoate (E R =2.9). Chemical arginine specific modification of theR. miehei lipase with 1,2-cyclohexanedione resulted in a decreased enantioselectivity (E R =2.0), only when the phenyl ester was used as a substrate. In contrast, treatment with phenylglyoxal showed a decreased enantioselectivity (E S =2.5) only when the heptyl ester was used as a substrate. The presence of guanidine, an arginine side chain analog, decreased the enantioselectivity with the heptyl ester (E S =1.9) and increased the enantioselectivity with the aromatic ester (E R =4.4) as substrates. The mutation, Glu 87 Ala, in the lid of theH. lanuginosa lipase, which might decrease the electrostatic stabilization of the open-lid conformation of the lipase, resulted in 47% activity compared to the native lipase, in a tributyrin assay. The Glu 87 Ala mutant showed an increased enantioselectivity with the heptyl ester (E S =17.4) and a decreased enantioselectivity with the phenyl ester (E R =2.5) as substrates, compared to native lipase. The enantioselectivities of both lipases in the esterification of 2-methyldecanoic acid with 1-heptanol were unaffected by the lid modifications.  相似文献   

3.
Chromobacterium viscosum lipase, solubilized in microemulsion droplets of glycerol containing small amounts of water and stabilized by a surfactant, could catalyze the glycerolysis of triolein. Kinetic analysis of the lipase-catalyzed reaction was possible in the reversed micellar system. Among surfactants and organic solvents tested, bis(2-ethylhexyl)sodiumsulfosuccinate (AOT) and isooctane were respectively most effective, for the glycerolysis of triolein in reversed micelles. Temperature effects, pH profile, Km,app, and Vmax,app were determined. Among various chemical compounds, Fe3+, Cu2+, and Hg2+ inhibited the lipase-catalyzed glycerolysis severely. However, the glycerolysis activity was partially restorable by adding histidine or glycine to the system containing these metal ions. The glycerolysis activity was dependent on water content and maximum activity was obtained at an R value of 1.21. Higher stability of the lipase was obtained in the reversed micellar system.  相似文献   

4.
Summary The Vmax and KM of various forms of lipase from Pseudomonas cepacia (powder, adsorbed onto Celite or covalently linked to polyethylene glycol) were determined in organic solvents preequilibrated to water activities (a w) from <0.1 to 0.84. The model reaction was the transesterification between n-octanol and vinyl butyrate. It was found that KM for the nucleophile increased with increasing a w for all three lipase forms. Vmax increased with increasing a w for polyethylene glycol-lipase, whereas there was an optimum at intermediate a w values (0.11 – 0.38) for lipase powder and Celite-immobilized lipase.  相似文献   

5.
The influences of nonuniform activity distribution within a porous solid support on the apparent kinetic parameters, Vmapp and Kmapp, of immobilized enzyme reactions following the Michaelis-Menten kinetics were theoretically investigated. As the enzyme is distributed to the neighborhood of the external surface of the support, Vmapp and Kmapp approach their respective intrinsic values over a wide range of substrate concentration. There is a close relationship between the nonuniform distribution and internal diffusional resistance. Changes in these two factors provide similar effects on Vmapp and Kmapp. As long as the immobilized enzyme reaction follows Michaelis-Menten kinetics, the nonuniform activity distribution never makes Kmapp less than its intrinsic value.  相似文献   

6.
Diffusional and electrostatic effects on the apparent maximum reaction rate Vmapp and the apparent Michaelis constant Kmapp were investigated theoretically for a system in which an enzyme immobilized on the external surface of a solid support catalyzes a reaction according to Michaelis-Menten kinetics. In such a system, the dependence of Vmapp and Kmapp on the substrate concentration can be expressed analytically. When the support and substrate carry charges of the same sign, resulting in a repulsive force between them, both Vmapp and Kmapp decrease with increasing substrate concentration, but they never decrease below the respective intrinsic values. On the other hand, when the support and substrate carry charges of opposite sign and therefore an attractive force occurs, Vmapp decreases towards its intrinsic value, while Kmapp decreases to values below its intrinsic value in the region of high substrate concentration.  相似文献   

7.
The utilization of natural mica as a biocatalyst support in kinetic investigations is first described in this study. The formation of lactose caprate from lactose sugar and capric acid, using free lipase (free-CRL) and lipase immobilized on nanoporous mica (NER-CRL) as a biocatalyst, was evaluated through a kinetic study. The apparent kinetic parameters, K m and V max, were determined by means of the Michaelis-Menten kinetic model. The Ping-Pong Bi-Bi mechanism with single substrate inhibition was adopted as it best explains the experimental findings. The kinetic results show lower K m values with NER-CRL than with free-CRL, indicating the higher affinity of NER-CRL towards both substrates at the maximum reaction velocity (V max,app>V max). The kinetic parameters deduced from this model were used to simulate reaction rate data which were in close agreement with the experimental values.  相似文献   

8.
Penaeus vannamei lipase was purified from midgut gland of whiteleg shrimp. Pure lipase (E.C. 3.1.1.3) was obtained after Superdex 200 gel filtration and Resource Q anionic exchange. The pure lipase, which is a glycosylated molecule, is a monomer having a molecular mass of about 44.8 kDa, as determined by SDS-PAGE analysis. The lipase hydrolyses short and long-chain triacylglycerols and naphthol derivates at comparable rates. A specific activity of 1787 U mg−1 and 475 U mg−1 was measured with triolein and tributyrin as substrates, respectively, at pH 8.0 and 30°C in the absence of colipase. The lipase showed a K m, app of 3.22 mM and k cat, app/K m, app of 0.303 × 103 mM−1 s−1 using triolein as substrate. Natural detergents, such as sodium deoxycholate, act as potent inhibitors of the lipase. This inhibition can be reversed by adding fresh oil emulsion. Result with tetrahydrolipstatin, an irreversible inhibitor, suggests that the lipase is a serine enzyme. Peptide sequences of the lipase were determined and compared with the full-length sequence of lipase which was obtained by the rapid amplification of cDNA ends method. The full cDNA of the pvl was 1,186 bp, with a deduced protein of 362 amino acids that includes a consensus sequence (GXSXG) of the lipase superfamily of α/β-hydrolase. The gene exhibits features of conserved catalytic residues and high homology with various mammalian and insect lipase genes. A potential lid sequence is suggested for pvl.  相似文献   

9.

In the present work, we have investigated biochemical thermo-kinetic stability of lipases immobilized on a biocompatible polymeric material. Immobilization of lipase Candida rugosa (CRL) was carried out on biocompatible blend of poly vinyl alcohol (PVA) and chitosan (CHY) support via entrapment and glutardehyde (Glu) cross-linking method to produce PVA:CHY:CRL and PVA:CHY:Glu:CRL as robust biocatalyst. These immobilized lipases were characterized by various physico-biochemical characterization techniques. Later on, thermal and solvent stability of polymer immobilized lipase was determined in term of half-life time (t 0.5), D values, enthalpy (ΔH°), entropy (ΔS°), and free energy (ΔG°) of deactivation at different temperatures and in various solvents. The thermodynamic deactivation stability trend was found as: cross-linked lipase CRL > entrapped lipase CRL > free lipase CRL. Moreover, kinetic parameters, such as K m, V max, and catalytic efficiency, were also determined to understand the kinetic features. The polymer immobilized enzyme was reused to investigate the economic viability of the developed biocatalyst.

  相似文献   

10.
Actin filaments (F-actin) interact with myosin and activate its ATPase to support force generation. By comparing crystal structures of G-actin and the quasi-atomic model of F-actin based on high-resolution cryo-electron microscopy, the tyrosine-143 was found to be exposed more than 60 Å2 to the solvent in F-actin. Because tyrosine-143 flanks the hydrophobic cleft near the hydrophobic helix that binds to myosin, the mutant actins, of which the tyrosine-143 was replaced with tryptophan, phenylalanine, or isoleucine, were generated using the Dictyostelium expression system. It polymerized significantly poorly when induced by NaCl, but almost normally by KCl. In the presence of phalloidin and KCl, the extents of the polymerization of all the mutant actins were comparable to that of the wild-type actin so that the actin-activated myosin ATPase activity could be reliably compared. The affinity of skeletal heavy meromyosin to F-actin and the maximum ATPase activity (Vmax) were estimated by a double reciprocal plot. The Tyr143Trp-actin showed the higher affinity (smaller Kapp) than that of the wild-type actin, with the Vmax being almost unchanged. The Kapp and Vmax of the Tyr143Phe-actin were similar to those of the wild-type actin. However, the activation by Tyr143Ile-actin was much smaller than the wild-type actin and the accurate determination of Kapp was difficult. Comparison of the myosin ATPase activated by the various mutant actins at the same concentration of F-actin showed that the extent of activation correlates well with the solvent-accessible surface areas (ASA) of the replaced amino acid molecule. Because 1/Kapp reflects the affinity of F-actin for the myosin–ADP-phosphate intermediate (M.ADP.Pi) through the weak binding, these data suggest that the bulkiness or the aromatic nature of the tyrosin-143 is important for the initial binding of the M.ADP.Pi intermediate with F-actin but not for later processes such as the phosphate release.  相似文献   

11.
The β2-receptor agonist class of drugs is metabolized in humans almost exclusively by sulfate conjugation. The objective of this investigation was to determine the influence of chemical structure on the stereoselectivity of the sulfoconjugation of these chiral drugs. The pure enantiomers of six β2-agonists, including those clinically most widely used, were all effectively sulfated both by the cytosol of the human intestine and the recombinant human M-form phenolsulfotransferase (PST). Whereas the apparent Km values (Km,app) for the sulfation of the individual drug enantiomers by the intestinal cytosol varied widely, ranging from 4.8 μM for (S)-isoproterenol to 889 μM for (S)-albuterol, these Km,app values were highly correlated with those obtained with M-PST (correlation coefficient 0.994). In contrast, the M-PST Vmax,app values were similar for all drug enantiomers, ranging from 276 to 914 pmol min−1 mg−1 protein, implying that substrate binding to M-PST by far is the main determinant of the sulfation activity. For isoproterenol, the Km,app for M-PST was 6.1 times higher for the active (R)- than for the inactive (S)-enantiomer. For other β2-agonists, the stereoselectivity decreased towards unity as the Km,app increased. However, for albuterol, containing a hydroxymethyl substituent at the aromatic ring, the stereoselectivity was dramatically reversed, with 10 times higher Km,app for the inactive (S)- than for the active (R)-enantiomer. Chirality 10:800–803, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
A novel lipase, SCNL, was isolated from Staphylococcus caprae NCU S6 strain in the study. The lipase was purified to homogeneity with a yield of 6.13% and specific activity of 502.76 U/mg, and its molecular weight was determined to be approximately 87 kDa. SCNL maintained above 80% of its initial activity at a wide range of temperatures (20–50 °C) and pH values (6–11), with an optimal temperature at 40 °C and optimal pH at 9.0 with p-nitrophenyl palmitate as a substrate. SCNL exhibited a higher residual activity than the other staphylococcal lipases in the presence of common enzyme inhibitors and commercial detergents. The lipase activity was enhanced by organic solvents (isooctane, glycerol, DMSO and methanol) and metal ions (Na+, Ba2+, Ca2+, and Mn2+). The Km and Vmax values of SCNL were 0.695 mM and 262.66 s−1 mM−1, respectively. The enzyme showed a preference for p-NP stearate, tributyrin and canola oil. These biochemical features of SCNL suggested that it may be an excellent novel lipase candidate for industrial and biotechnological applications.  相似文献   

13.
Oxidized polyvinyl alcohol hydrolase (OPH) catalyzes the cleavage of C–C bond in β-diketone. It belongs to the α/β-hydrolase family and contains a unique lid region that covers the active site. The lid is the most variable region when pOPH from Pseudomonas sp. VM15C and sOPH from Sphingopyxis sp. 113P3 are compared. The wild-type enzymes and the pOPH mutants W255A, W255Y and W255F were analyzed for lipase activity by using p-nitrophenyl (pNP) esters as the substrates. The wild-type enzymes showed increased Km and decreased kcat/Km with the acyl chain length, and the mutants showed reduced kcat/Km for pNP acetate, indicating the importance of Trp255 in sequestering the active site from solvent. The significantly lower activity for pNP butyrate can be a result of product inhibition, as suggested by the complex crystal structures, in which butyric acid, DMSO or PEG occupied the same substrate-binding cleft. The mutant activity was retained with pNP caprylate and pNP laurate as the substrates, reflecting the amphipathic nature of the cleft. Moreover, the disulfide bond formation of Cys257/267 is important for the activity of pOPH, but it is not essential for sOPH, which has a shorter lid structure.  相似文献   

14.
The homologous lipases fromRhizomucor miehei andHumicola lanuginosa showed approximately the same enantioselectivity when 2-methyldecanoic acid esters were used as substrates. Both lipases preferentially hydrolyzed theS-enantiomer of 1-heptyl 2-methyldecanoate (R. miehei:E S =8.5;H. lanuginosa:E S =10.5), but theR-enantiomer of phenyl 2-methyldecanoate (E R =2.9). Chemical arginine specific modification of theR. miehei lipase with 1,2-cyclohexanedione resulted in a decreased enantioselectivity (E R =2.0), only when the phenyl ester was used as a substrate. In contrast, treatment with phenylglyoxal showed a decreased enantioselectivity (E S =2.5) only when the heptyl ester was used as a substrate. The presence of guanidine, an arginine side chain analog, decreased the enantioselectivity with the heptyl ester (E S =1.9) and increased the enantioselectivity with the aromatic ester (E R =4.4) as substrates. The mutation, Glu 87 Ala, in the lid of theH. lanuginosa lipase, which might decrease the electrostatic stabilization of the open-lid conformation of the lipase, resulted in 47% activity compared to the native lipase, in a tributyrin assay. The Glu 87 Ala mutant showed an increased enantioselectivity with the heptyl ester (E S =17.4) and a decreased enantioselectivity with the phenyl ester (E R =2.5) as substrates, compared to native lipase. The enantioselectivities of both lipases in the esterification of 2-methyldecanoic acid with 1-heptanol were unaffected by the lid modifications.  相似文献   

15.
d-Amino acid oxidase is a FAD-dependent enzyme that catalyses the conversion of the d-enantiomer of amino acids into the corresponding α-keto acid. Substrate specificity of the enzyme from the yeast Rhodotorula gracilis was investigated towards aromatic amino acids, and particularly synthetic α-amino acids.A significant improvement of the activity (Vmax,app) and of the specificity constant (the Vmax,app/Km,app ratio) on a number of the substrates tested was obtained using a single-point mutant enzyme designed by a rational approach. With R. gracilis d-amino acid oxidase the complete resolution of d,l-homo-phenylalanine was obtained with the aim to produce the corresponding pure l-isomer and to use the corresponding α-keto acid as a precursor of the amino acid in the l-form.  相似文献   

16.
Enzyme engineering via immobilization techniques is perfectly compatible against the other chemical or biological approximate to improve enzyme functions and stability. In this study lactoperoxidase was immobilized onto polyaniline polymer activated with glutaraldehyde as a bifunctional agent, to improve enzyme properties. Polyaniline polymer was used due its unique physical and chemical properties to immobilize lactoperoxidase (LPO). The optimum activity of immobilized LPO was observed at pH 6 and 55?°C, which has been increased about 10?°C for the immobilized enzyme. The immobilized enzyme maintained absolutely active for 60?days whereas the native enzyme lost 80?% of its initial activity within this period of time. Moreover, the immobilized enzyme can be reused for several times without loss of activity. The kinetic parameter studies showed slight differences between free and immobilized enzymes. The Km and Km.app were calculated to be 0.6 and 0.4; also Vmax and Vmax.app were 1.3 and 0.9 respectively.  相似文献   

17.
Luit Slooten  Adriaan Nuyten 《BBA》1983,725(1):49-59
Rhodospirillum rubrum chromatophores catalyze the formation of ADP-arsenate during illumination with ADP, Mg2+ and arsenate. The reaction was measured with (1) firefly luciferase, (2) a coupled enzyme assay involving hexokinase and glucose-6-phosphate dehydrogenase, and (3) a glass electrode. ADP-arsenate hydrolyzed spontaneously with rate constants ranging from 14 to 43 min?1. Magnesium, arsenate and phosphate accelerated hydrolysis of ADP-arsenate. From a comparison of the three methods, with ADP as the substrate, it is estimated that φR (i.e., the ratio between the quantum yields of ADP-arsenate and ATP for light emission from luciferase) is 0.19–0.23. Furthermore, arsenylation rates were 46–52% of phosphorylation rates in experiments with 30 μ M ADP and 0.8 mM arsenate or phosphate. Similarly, the Vapp for arsenylation of GDP or IDP was 47–59% of the Vapp for phosphorylation during measurements in the presence of 1 mM arsenate or phosphate. The Kapp(GDP) was higher during arsenylation than during phosphorylation; the Kapp(IDP) was about the same during arsenylation as during phosphorylation. It is suggested that a shift in the equilibrium of substrates and products on the enzyme, toward hydrolysis, is the main cause of the relatively low arsenylation rates.  相似文献   

18.
The activity of human α-thrombin (EC 3.4.21.5) on small peptide substrates was enhanced by NaCl or KCl while tetramethylammonium chloride ((CH3)4NCl) or choline chloride (HO(CH2)2N(CH3)3Cl) which were used as ionic strength controls were without effect. The steady-state kinetic parameters of thrombin amidolysis of several peptidyl p-nitroanilide substrates were measured. Na+ enhanced thrombin activity by decreasing the Km,app (0.2 to 0.7-fold) of all substrates, as well as increasing thombin turnover (3.4 to 4.5-fold) of some substrates. The average KA for Na+for the four substrates examined was 3.5 × 10?2m. A comparison of the effects of Na+ vs K+ on thrombin hydrolysis of a single substrate indicated that both cations similarly decreased the Km,app (0.2 to 04.-fold) and increased thekcat,app (3.1 to 3.4-fold) except that higher K+ concentrations (KA = 2.8 × 10?1M) were required. The rate of inactivation of thrombin by the active site-directed inhibitor N-p-tosyl-lysine chloromethyl ketone under pseudo-first-order conditions was enhanced 3-fold by saturating NaCl. Also, the fibrinogen clotting activity of thrombin was enhanced by NaCl compared to the choline chloride control. Spectral studies demonstrated that thrombin titration by Na+ caused a positive ultraviolet difference spectrum with maxima at 281.5 and 288.5 nm (Δ?288.5 = +1067). The Km for Na+ was 2.3 × 10?2m which agrees with the kinetically determined KA for Na+. The results are consistent with Na+ binding to thrombin causing a conformational change in the active site. It is concluded that human α-thrombin is a monovalent cation-activated enzyme.  相似文献   

19.
Prephenate dehydratase is a key regulatory enzyme in the phenylalanine-specific pathway of Corynebacterium glutamicum. PCR-based random mutagenesis and functional complementation were used to screen for m-fluorophenylalanine (mFP)-resistant mutants. Comparison of the amino acid sequence of the mutant prephenate dehydratases indicated that Ser-99 plays a role in the feedback regulation of the enzyme. When Ser-99 of the wild-type enzyme was replaced by Met, the specific activity of the mutant enzyme was 30% lower than that of the wild-type. The Ser99Met mutant was active in the presence of 50 M phenylalanine, whereas the wild-type enzyme was not. The functional roles of the eight conserved residues of prephenate dehydratase were investigated by site-directed mutagenesis. Glu64Asp substitution reduced enzyme activity by 15%, with a 4.5- and 1.7-fold increase in K m and k cat values, respectively. Replacement of Thr-183 by either Ala or Tyr resulted in a complete loss of enzyme activity. Substitution of Arg-184 with Leu resulted in a 50% decrease of enzyme activity. The specific activity for Phe185Tyr was more than 96% lower than that of the wild-type, and the K m value was 26-fold higher. Alterations in the conserved Asp-76, Glu-89, His-115, and Arg-236 residues did not cause a significant change in the K m and k cat values. These results indicated that Glu-64, Thr-183, Arg-184, and Phe-185 residues might be involved in substrate binding and/or catalytic activity.  相似文献   

20.
(S)-1-Phenylethanol derivatives, which are the precursors of many pharmacological products, have also been used as anti-Alzheimer drugs. Bioreduction experiments were performed in a batch and packed-bed bioreactor. Then, the kinetics constants were determined by examining the reaction kinetics in the batch system with free and immobilized carrot cells. Also, the effective diffusion coefficient (De) of acetophenone in calcium alginate-immobilized carrot cells was investigated. Kinetics constants for free cells, which are intrinsic values, are reaction rate Vmax?=?0.052?mmol?L?1?min?1, and constants of the Michaelis–Menten KM?=?2.31?mmol?L?1. Kinetics constants for immobilized cells, which are considered apparent values, are Vmax, app?=?0.0407?mmol?L?1 min?1, KM, app?=?3.0472?mmol?L?1 for 2?mm bead diameter, and Vmax, app?=?0.0453?mmol?L?1 min?1, KM, app?=?4.9383?mmol?L?1 for 3?mm bead diameter. Average value of effective diffusion coefficient of acetophenone in immobilized beads was determined as 1.97?×?10?6?cm2?s?1. Using immobilized carrot cells in an up-flow packed-bed reactor, continuous production of (S)-1-phenylethanol through asymmetric bioreduction of acetophenone was performed. The effects of the residence time and concentrations of substrate were investigated at pH 7.6 and 33°C. Enantiomerically pure (S)-1-phenylethanol (ee?>?99%) was produced with 75% conversion at 4-hr residence time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号