首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five singly modified nitrodiazirine derivatives of neurotoxin II (NT-II) fromNaja naja oxiana were obtained after NT-II reaction with N-hydroxysuccinimide ester of {2-nitro-4 [3-(trifluoromethyl)-3H-diazirin-3yl]phenoxy}acetic acid followed by Chromatographic separation of the products. To localize the label positions, each derivative was first UV-irradiated and then subjected to reduction, carboxymethylation, and trypsinolysis. Tryptic digests were separated by reversed phase-HPLC, the labeled peptides being identified by mass spectrometry. The derivatives containing the photolabel at the position Lys 25, Lys 26, Lys 44, or Lys 46 were [125I]iodinated by the chloramine T procedure. Each iodinated derivative was found to form photoinduced cross-links with the membrane bound nicotinic acetylcholine receptor (AChR) fromTorpedo californica. The pattern of labeling the receptor's, , , or subunits was dependent on the photolabel position in the NT-II molecule and differed from that obtained earlier with an analogous series ofp-azidobenzoyl derivatives of NT-II. The results obtained indicate that (i) different sides of the neurotoxin molecule are involved in the AChR binding, and (ii) fragments of the different AChR subunits are located close together at the neurotoxin-binding sites.Abbreviations AChR Acetylcholine receptor - NDPA [2-nitro-4-[3-(trifluoromethyl)-3H-diazirin-3-yl]]phenoxy]acetyl - NT-II neurotoxin II  相似文献   

2.
By chemical modification of different lysine residues, benzoylbenzoyl (BzBz) groups were introduced into neurotoxin II Naja naja oxiana (NT-II), a short-chain snake venom alpha-neurotoxin, while p-benzoylphenylalanyl (Bpa) residue was incorporated in the course of peptide synthesis at position 11 of alpha-conotoxin G1, a neurotoxic peptide from marine snails. Although the crosslinking yields for iodinated BzBz derivatives of NT-II and for Bpa analogue of G1 to the membrane-bound Torpedo californica nicotinic acetylcholine receptor (AChR) are relatively low, the subunit labeling patterns confirm the earlier conclusions, derived from arylazide or diazirine photolabels, that alpha-neurotoxins and alpha-conotoxins bind at the subunit interfaces. Detecting the labeled alpha-subunit with iodinated Bpa analogue of G1 provided a direct proof for the contact between this subunit and alpha-conotoxin molecule.  相似文献   

3.
A series of neurotoxin II (Naja naja oxiana) derivatives, each containing one p-azido-[14C]benzoyl group, have been prepared. Those labeled at Leu1, Lys15, Lys25, Lys26, or Lys46 associate specifically with the acetylcholine receptor from the Torpedo marmorata electric organs and form the crosslinks with it as a result of irradiation. Electrophoresis in polyacrylamide gel and gel chromatography revealed the contacts between the neurotoxins and alpha, beta, gamma and delta subunits of the receptor, modification of a particular subunit being governed by the photoactivable group position in the neurotoxin molecule. The differences of the two neurotoxin binding sites in the receptor were demonstrated by analysis of the photoinduced crosslinks under the conditions of one site being blocked by hexa (trifluoroacetyl) neurotoxin II. The mutual arrangement of the two bound neurotoxin molecules was established. On the basis of data obtained, two models for the acetylcholine receptor subunit topography were proposed.  相似文献   

4.
A binding site for the channel-blocking noncompetitive antagonist [3H]triphenylmethylphosphonium ([3H]TPMP+) was localized in the alpha-, beta- and delta-chains of the nicotinic acetylcholine receptor (AChR) from Torpedo marmorata electric tissue. The photolabel was found in homologous positions of the highly conserved sequence helix II, alpha 248, beta 254, and delta 262. The site of the photoreaction appears to not be affected by the functional state of the receptor. [3H]TPMP+ was found in position delta 262 independent of whether photolabeling was performed with the receptor in its resting, desensitized or antagonist state. A model of the AChR ion channel is proposed, according to which the channel is formed by the five helices II contributed by the five receptor subunits.  相似文献   

5.
All four subunits of the acetylcholine receptor (AChR) are labeled by the lipid-soluble photolabel 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine [( 125I]TID) with different stoichiometries and levels of saturable modification sites, dependent on the conformational state of the AChR. This probe is specific for hydrophobic targets such as the membrane-spanning regions of intrinsic proteins. In the resting state, the gamma subunit is labeled 4.5 times greater and the beta and delta subunits 1.65-1.69 greater than the alpha subunit. Carbamylcholine-induced desensitization of the AChR lowers the level and alters the stoichiometry of [125I]TID incorporation into each subunit. This effect is shown to be specific in two ways. First, it is eliminated by prior equilibration with excess alpha-bungarotoxin, which does not change the [125I]TID-labeling pattern of the AChR from that of the resting state. Second, bacteriorhodopsin is labeled by [125I]TID to the same extent both in the presence and absence of carbamylcholine. The noncompetitive blocker phencyclidine does not alter [125I]TID labeling of the AChR relative to the resting state. The 43-kDa protein, which is believed to cross-link the AChR to the cytoskeleton at the synapse, is not modified by [125I]TID, in agreement with earlier conclusions that the 43-kDa protein is not an intrinsic membrane protein.  相似文献   

6.
Azidobenzoyl (AzBz) and benzoylbenzoyl (BzBz) derivatives of alpha-conotoxin MI and L-benzoylphenylalanine (Bpa) analogs of alpha-conotoxin GI were synthesized. All these compounds, similarly to native alpha-conotoxins, completely displaced the radioiodinated MI or GI from the membrane-bound nicotinic acetylcholine receptor (AChR) of Torpedo californica. However, the GI(Bpa11) analog was considerably less potent than GI in competing with radioiodinated alpha-bungarotoxin (alphaBgt). Irradiation of iodinated AzBz derivatives bound to AChR resulted in labeling of all AChR subunits. The BzBz and Bpa derivatives gave lower levels of specific cross-linking but considerable labeling at additional sites that was enhanced, rather than suppressed, by an excess of native alpha-conotoxins or alphaBgt. Both equilibrium binding of benzophenone-derivatized alpha-conotoxins and their cross-linking could be totally abolished by physostigmine. The results obtained demonstrate that (a) specific binding sites for alpha-conotoxins and alphaBgt are overlapping but not identical, (b) each of the AChR subunits can be labeled with photoactivatable alpha-conotoxins and (c) enhancement of benzophenone-derivatized alpha-conotoxins cross-linking at additional (physostigmine-related) sites by alphaBgt or GI indicates that these antagonists induce structural alterations in the AChR outside their binding sites.  相似文献   

7.
Condensation of 3-(d-erythro -2,3,4-trihydroxy-l-oxobutyl)-2-quinoxalinone and its 6-chloro derivative (obtained by the reaction of d-erythro-2,3-hexodiulosono-1,4-lactone with ortho-diamines) with aryl- or aroyl-hydrazines gave 3-[l-(phenylhydrazono)-d-erythro-2,3,4-trihydroxybutyl]-2-quinoxalinone (5) and relatives. Whereas boiling acetic anhydride causes the loss of two molecules of water per molecule of such hydrazones, affording, the 3-[5-(acetoxymethyl)-l-arylpyrazol-3-yl]-2-quinoxalinones, identical with those obtained from the l-threo isomer, alkali causes the loss of only one molecule, affording, the corresponding flavazoles. Periodate oxidation of 5 gave 3-[l-(phenylhydrazono)glyoxal-l-yl]-2-quinoxalinone, which afforded the corresponding mixed bis(hydrazones). A similar sequence of reactions was conducted with the aryl analogs, 4-phenyl-2,3-dioxobutano-1,4-lactone and its p-chlorophenyl derivative, whereby the 3-[2-aryl-l-(arylhydrazono)-2-hydroxyethyl]2-quinoxalinones, were prepared; these were transformed into 3-(α-hydroxybenzyl)-flavazoles that gave monoacetyl derivatives.  相似文献   

8.
The interaction of 18-methoxycoronaridine (18-MC) with nicotinic acetylcholine receptors (AChRs) was compared with that for ibogaine and phencyclidine (PCP). The results established that 18-MC: (a) is more potent than ibogaine and PCP inhibiting (±)-epibatidine-induced AChR Ca2+ influx. The potency of 18-MC is increased after longer pre-incubation periods, which is in agreement with the enhancement of [3H]cytisine binding to resting but activatable Torpedo AChRs, (b) binds to a single site in the Torpedo AChR with high affinity and inhibits [3H]TCP binding to desensitized AChRs in a steric fashion, suggesting the existence of overlapping sites. This is supported by our docking results indicating that 18-MC interacts with a domain located between the serine (position 6′) and valine (position 13′) rings, and (c) inhibits [3H]TCP, [3H]ibogaine, and [3H]18-MC binding to desensitized AChRs with higher affinity compared to resting AChRs. This can be partially attributed to a slower dissociation rate from the desensitized AChR compared to that from the resting AChR. The enthalpic contribution is more important than the entropic contribution when 18-MC binds to the desensitized AChR compared to that for the resting AChR, and vice versa. Ibogaine analogs inhibit the AChR by interacting with a luminal domain that is shared with PCP, and by inducing desensitization.  相似文献   

9.
Two photoactivatable analogues of alpha-conotoxin GI with the benzoylphenylalanine residue (Bpa) substituted for His10 or Tyr11 were synthesized using the method of solid-phase peptide synthesis. In addition, alpha-conotoxin MI was chemically modified by placing an azidobenzoyl or a benzoylbenzoyl photo label at N alpha of Gly1 or N epsilon of Lys10. All the photoactivatable analogues were purified by HPLC, their structures were confirmed by MALDI MS, and the label positions in their molecules were localized by MS of their trypsinolysis fragments. All the analogues interacted with the nicotinic acetylcholine receptor (AChR) from Torpedo californica as efficiently as the native alpha-conotoxins, with the differences in the inhibition constants being within one order of magnitude under the same conditions. [125I]Derivatives prepared from all the analogues retained the ability to be bound by AChR and were used in the photoinduced AChR cross-linking. All the AChR subunits were found to be cross-linked to the photoactivatable analogues, with the linking depending on both the chemical nature of label and its position in the alpha-conotoxin molecule.  相似文献   

10.
After neurotoxin II Naja naja oxiana reaction with N-hydroxysuccinimidyl 2,2,6,6-tetramethyl-4-carboxymethylpiperidine-1-oxyl, six derivatives were isolated, each containing one spin label. Their analysis (reduction, carboxymethylation, tryptic hydrolysis, isolation and identification of the spin labeled peptide) allowed to localize the label position: the epsilon-amino groups of Lys15, Lys25, Lys26, Lys44, Lys48, and alpha-amino group of Leu1. The neurotoxin II reaction with N-hydroxysuccinimidyl 2,2,5,5-tetramethyl-3-carboxypyrrolin-1-oxyl followed by chromatography afforded 10 derivatives, each having two labeled lysine residues, wherein the position of the modified residues was determined. The reactivity and microenvironment of amino groups are discussed basing on the dependence between the reaction conditions and yields. For di-spin labeled derivatives of the pyrroline series, the inter-label distances were determined by EPR from the standard curve and used for refinement of the neurotoxin conformation in solution.  相似文献   

11.
Notexin fromNotechis scutatus scutatus snake venom was subjected to Lys modification with pyridoxal 5′-phosphate (PLP), and one major modified derivative was purified on a cation-exchanger SP-8HR column. The results of amino acid analysis and sequence determination revealed that only 2 Lys residues at positions 82 and 115 out of 11 Lys residues in notexin were modified. The incorporation of PLP into the protein was accompanied by the loss of 53% lethal toxicity, but the modified notexin showed an about 1.2-fold increase in enzymatic activity. However, the secondary structure of the toxin molecule did not significantly change after modification with PLP as revealed by the CD spectra, and the antigenicity of PLP derivative remained unchanged. The modified derivative retained its affinity for Ca2+, indicating that the modified Lys residues did not participate in Ca2+ binding. These results indicate that modification of Lys residues causes a differential effect on the enzymatic activity and lethal toxicity of notexin, and suggest that notexin might possess two functional sites, one responsible for the catalytic activity and the other associated with its lethal effect.  相似文献   

12.
α-Bungarotoxin (α-BTX) is a highly toxic snake neurotoxin that binds to acetylcholine receptor (AChR) at the neuromuscular junction, and is a potent inhibitor of this receptor. In the following we review multi-phase research of the design, synthesis and structure analysis of peptides that bind α-BTX and inhibit its binding to AChR. Structure-based design concomitant with biological information of the α-BTX/AChR system yielded 13-mer peptides that bind to α-BTX with high affinity and are potent inhibitors of α-BTX binding to AChR (IC50 of 2 nM). X-Ray and NMR spectroscopy reveal that the high-affinity peptides fold into an anti-parallel β-hairpin structure when bound to α-BTX. The structures of the bound peptides and the homologous loop of acetylcholine binding protein, a soluble analog of AChR, are remarkably similar. Their superposition indicates that the toxin wraps around the binding-site loop, and in addition, binds tightly at the interface of two of the receptor subunits and blocks access of acetylcholine to its binding site. The procedure described in this article may serve as a paradigm for obtaining high-affinity peptides in biochemical systems that contain a ligand and a receptor molecule.  相似文献   

13.
The preparation of iodinated N-chloroacetyltyramine and its evaluation as a specific sulfhydryl reagent are described. N-Chloroacetyltyramine was synthesized by a carbodiimide-mediated condensation of chloro- or iodoacetic acid and tyramine·HCL, and the crystalline product was iodinated in a reaction with chloramine T to yield either a 3,5-[125I]diiodotyramine derivative, or a trace-iodinated product when carrier-free 125I was employed. These iodinated derivatives react specifically with sulfhydryl groups, as judged by their ability to label reduced but not unreduced ribonuclease A and immunoglobulin E. Specific activities of 1 Ci/mmole in 125I or 131I can be readily achieved with both the diiodinated and trace-iodinated (carrier-free) derivatives, and the specific activity of the former can be used directly to quantitate sulfhydryl groups in subnanomolar quantities of protein. N-Chloroacetyl 125I-labeled tyramine prepared by trace iodination with carrier-free 125I is more useful when very high specific activities (100–1000 mCi/μmol) are required. The utility of these reagents is discussed.  相似文献   

14.
It was discovered that illumination of the complex formed by the solubilized acetylcholine receptor from Torpedo marmorata and Lys25-p-azidobenzoyl derivative of neurotoxin II results in the appearance on the receptor of up to 4 additional binding sites. Acetylcholine and neurotoxin II, but not the long-chain neurotoxins bind specifically to these sites. The additional binding sites could be also detected after illuminating the receptor complex with other photoactivable derivatives, provided the latter were displaced from one of the two main binding sites by hexa(trifluoroacetyl)neurotoxin II. A similar, but less pronounced effect, was observed on binding Lys25 (Ac) derivative of neurotoxin II. The formation of the additional binding sites was found to depend on the activity of the receptor preparations as well as on the mutual influence of the two main toxin-binding sites.  相似文献   

15.
《Process Biochemistry》2010,45(3):390-398
A novel approach is proposed to prepare a set of immobilized derivatives of a enzyme covalently rigidified through different regions of its surface. Six different variants of penicillin G acylase (PGA) from Escherichia coli (which lacks Cys) were prepared by introducing a unique Cys residue via site-directed mutagenesis in six different enzyme regions which were rich in Lys residues. All variants exhibited a similar activity and stability compared to those of the native enzyme. Each variant was immobilized on supports having a low concentration of reactive disulfide moieties and a high concentration of poorly reactive epoxy groups. After immobilization at pH 7.0 by site-directed thiol-disulfide intermolecular exchange, derivatives were further incubated at pH 10.0 for 48 h to promote an additional intramolecular reaction between Lys residues of enzyme and epoxy groups of the support. The establishment of at least three covalent attachments per PGA molecule was determined for all immobilized enzyme variants. The different derivatives exhibited diverse stability against several distorting agents and different selectivity in two interesting reactions. The derivative of the PGA variant obtained by replacement of GlnB380 by Cys was the most stable against heat and organic cosolvents: it preserved 90% of the initial activity and was 30-fold more stable than soluble PGA. This derivative also exhibited an improved enantioselectivity in the hydrolysis of chiral esters (E was improved from 8 to 16) and in kinetically controlled synthesis of amides (synthetic yields were increased from 31 to 49%).  相似文献   

16.
Several malignant tumors and fibrotic diseases are associated with PDGFRβ overexpression and excessive signaling, making this receptor attractive for molecular targeting and imaging approaches. A series of benzo[d]imidazole-quinoline derivatives were designed and synthesized to develop radioiodinated compounds as PDGFRβ-specific imaging probes. The structure activity relationship (SAR) evaluation of the designed compounds was performed. Among them, 2-[5-(2-methoxyethoxy)-1H-benzo[d]imidazol-1-yl]-8-(piperazin-1-yl)quinoline (5a) and 4-{2-[5-(2-methoxyethoxy)-1H-benzo[d]imidazol-1-yl]quinolin-8-yl}morpholine (5d) exhibited a relatively high PDGFRβ-TK inhibitory potency, whereas iodinated 5a derivative 5-iodo-2-[5-(2-methoxyethoxy)-1H-benzo[d]imidazol-1-yl]-8-(piperazin-1-yl)quinoline (8) exhibited a superior inhibitory potency as PDGFRβ inhibitor than iodinated 5d derivative 4-{5-iodo-2-[5-(2-methoxyethoxy)-1H-benzo[d]imidazol-1-yl]quinolin-8-yl}morpholine (11). Furthermore, [125I]8 and [125I]11 were synthesized and evaluated for PDGFRβ radioligand ability, both in vitro and in vivo. Cellular uptake experiments showed that [125I]8 had a higher uptake in BxPC3-luc cells as PDGFRβ-positive cells than [125I]11. Incubation of [125I]8 after pretreatment of PDGFRβ ligands significantly reduced the uptake of [125I]8. In biodistribution experiments using tumor-bearing mice, [125I]8 accumulation in the tumor 1?h postinjection was higher than that of the benzo[d]imidazol-quinoline derivative [125I]IIQP, used in our previous research. These results indicate that [125I]8 could be a promising PDGFRβ imaging agent. Although its clinical application requires further structural modifications, the results obtained in this research may be useful for the development of PDGFRβ-specific radioligands.  相似文献   

17.
Single-chain urokinase-type plasminogen activator (scu-PA) is converted to urokinase by hydrolysis of the Lys158-Ile159 peptide bond. Site-directed mutagenesis of Lys158 to Gly or Glu yields plasmin-resistant mutants with a 10-20-fold reduced catalytic efficiency for the activation of plasminogen [Nelles et al. (1987) J. Biol. Chem. 262, 5682-5689]. In the present study, we have further evaluated the enzymatic properties of derivatives of recombinant scu-PA (rscu-PA), produced by site-directed mutagenesis of Lys158, Ile159 or Ile160, in order to obtain additional information on the structure/function relations underlying the enzymatic properties of the single- and two-chain u-PA moieties. [Arg158]rscu-PA (rscu-PA with Lys158 substituted with Arg) appeared to be indistinguishable from wild-type rscu-PA with respect to plasminogen-activating potential (catalytic efficiency k2/Km = 0.21 mM-1 s-1 versus 0.64 mM-1 s-1), conversion to active two-chain urokinase by plasmin (k2/Km = 0.13 microM-1 s-1 versus 0.28 microM-1 s-1), as well as its specific activity (48,000 IU/mg as compared to 60,000 IU/mg) and its fibrinolytic potential in a plasma medium (50% lysis in 2 h with 2.8 micrograms/ml versus 2.1 micrograms/ml). [Pro159]rscu-PA (Ile159 substituted with Pro) and [Gly159]rscu-PA (Ile159 converted to Gly) are virtually inactive towards plasminogen (k2/Km less than 0.004 mM-1 s-1). They are however converted to inactive two-chain derivatives by plasmin following cleavage of the Arg156-Phe157 peptide bond in [Pro159]rscu-PA and of the Lys158-Gly159 peptide bond in [Gly159]rscu-PA. [Gly158,Lys160]rscu-PA (with Lys158 converted to Gly and Ile160 to Lys) has a low catalytic efficiency towards plasminogen both as a single-chain form (k2/Km = 0.012 mM-1 s-1) and as the two-chain derivative (k2/Km = 0.13 mM-1 s-1) generated by cleavage of both the Arg156-Phe157 and/or the Lys160-Gly161 peptide bonds by plasmin. These findings suggest that the enzymatic properties of rscu-PA are critically dependent on the amino acids in position 158 (requirement for Arg or Lys) and position 159 (requirement for Ile). Conversion of the basic amino acid in position 158 results in a 10-20-fold reduction of the catalytic efficiency of the single-chain molecule but yields a fully active two-chain derivative. The presence of Ile in position 159 is not only a primary determinant for the activity of the two-chain derivative, but also of the single-chain precursor. Cleavage of the Arg156-Phe157 or the Lys160-Gly161 peptide bonds by plasmin yields inactive two-chain derivatives.  相似文献   

18.
Phospholipase A2 (PLA2) fromBungarus multicinctus snake venom was subjected to Lys modification with 4-chloro-3,5-dinitrobenzoate and trinitrobenzene sulfonic acid, and one major carboxydinitrophenylated (CDNP) PLA2 and two trinitrophenylated (TNP) derivatives (TNP-1 and TNP-2) were separated by high-performance liquid chromatography. The results of amino acid analysis and sequence determination revealed that CDNP-PLA2 and TNP-1 contained one modified Lys residue at position 6, and both Lys-6 and Lys-62 were modified in TNP-2. It seemed that the Lys-6 was more accessible to modified reagents than other Lys residues in PLA2. Modification of Lys-6 caused a 94% drop in enzymatic activity as observed with CDNP-PLA2 and TNP-1. Alternatively, the enzyme modified on both Lys-6 and Lys-62 retained little PLA2 activity. Either carboxydinitrophenylation or trinitrophenylation did not significantly affect the secondary structure of the enzyme molecule as revealed by the CD spectra, and Ca2+ binding and antigenicity of Lys-6-modified PLA2 were unaffected. Conversion of nitro groups to amino groups resulted in a partial restoration of enzymatic activity of CDNP-PLA2 to 32% of that of PLA2. It reflected that the positively charged side chain of Lys-6 might play an exclusive role in PLA2 activity. The TNP derivatives could be regenerated with hydrazine hydrochloride. The biological activity of the regenerated PLA2 is almost the same as that of native PLA2. These results suggest that the intact Lys-6 is essential for the enzymatic activity of PLA2, and that incorporation of a bulky CDNP or TNP group on Lys-6 might give rise to a distortion of the interaction between substrate and the enzyme molecule, and the active conformation of PLA2.  相似文献   

19.
Functional and structural approaches were used to examine the inhibitory mechanisms and binding site location for fluoxetine and paroxetine, two serotonin selective reuptake inhibitors, on nicotinic acetylcholine receptors (AChRs) in different conformational states. The results establish that: (a) fluoxetine and paroxetine inhibit hα1β1γδ AChR-induced Ca2+ influx with higher potencies than dizocilpine. The potency of fluoxetine is increased ~10-fold after longer pre-incubation periods, which is in agreement with the enhancement of [3H]cytisine binding to resting but activatable Torpedo AChRs elicited by these antidepressants, (b) fluoxetine and paroxetine inhibit the binding of the phencyclidine analog piperidyl-3,4-3H(N)]-(N-(1-(2 thienyl)cyclohexyl)-3,4-piperidine to the desensitized Torpedo AChR with higher affinities compared to the resting AChR, and (c) fluoxetine inhibits [3H]dizocilpine binding to the desensitized AChR, suggesting a mutually exclusive interaction. This is supported by our molecular docking results where neutral dizocilpine and fluoxetine and the conformer of protonated fluoxetine with the highest LUDI score interact with the domain between the valine (position 13′) and leucine (position 9′) rings. Molecular mechanics calculations also evidence electrostatic interactions of protonated fluoxetine at positions 20′, 21′, and 24′. Protonated dizocilpine bridges these two binding domains by interacting with the valine and outer (position 20′) rings. The high proportion of protonated fluoxetine and dizocilpine calculated at physiological pH suggests that the protonated drugs can be attracted to the channel mouth before binding deeper within the AChR ion channel between the leucine and valine rings, a domain shared with phencyclidine, finally blocking ion flux and inducing AChR desensitization.  相似文献   

20.
The frequency of elimination of plasmid pKM101 fromSalmonella typhimurium TA92 exposed to the action of 1-alkyl-1-ethylpiperidinium bromides and N-alkyl-N-[5-(benzoyloxy)-3-oxapentyl]-N,N-dimethylammonium bromides was nonlinear in the homologous series. Change in the length of the alkyl chain markedly affected the elimination properties of the piperidine derivatives but had no effect on the elimination of benzoyl derivatives. Piperidines exhibited a weaker elimination capacity than the benzoyl derivatives. The most potent eliminator was the octylbenzoyl derivative, which causes the elimination of the plasmid in 80–85% cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号