首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comprehensive analysis of the pharmacokinetics of human-mouse chimeric anti-ganglioside GD2 antibody mAb ch 14.18 was performed during a phase I clinical trial of ten children with neuroblastoma and one adult with osteosarcoma. The patients received a total of 20 courses of ch 14.18 at dose levels from 10 mg/m2 to 200 mg/m2. The plasma clearance of ch 14.18 was biphasic. Following the first course of treatmentt1/2, was 3.4±3.1 h andt1/2, 66.6±27.4 h in 9/10 children. Thet1/2, values were significantly less than those of 181±73 h previously reported in adult melanoma patients (P<-0.001), and 147.5 h in the adult osteosarcoma patient in our trial. The latter suggests different pharmacokinetics of mAb ch 14.18 in children and adults. After a second course of treatment, administered to 5/10 children,t1/2, decreased significantly from 72.9±19.8 h to 31.7±18.4 h (P=0.015). We there-fore conclude that the elimination kinetics of mAbs ch 14.18 in children and adults are different, and furthermore that repeated administration of mAb ch 14.18 to children with neuroblastoma leads to accelerated antibody clearance.This work was supported by grants from FDA, FD-R-000377 and NIH U10 CA 28439, and in part by a grant from the General Clinical Research Center Program, MOI RR00827, of the National Center for Research Resources, National Institutes of Health. M.M.U.-F. and C.S.H. were in part supported by a grant from the Children's Cancer Research Foundation, and M.M.U.-F. was in part supported by a grant of the Kommission für Forschung und wissenschaftlichen Nachwuchs, Charité 95-010/9610766  相似文献   

2.
Purpose: This study aimed to assess the safety, pharmacokinetic and activity profiles of the human-mouse chimeric monoclonal anti-disialoganglioside GD2 antibody ch14.18 produced in Chinese hamster ovary (CHO) cells (ch14.18/CHO).

Methods: Sixteen children with recurrent/refractory neuroblastoma (median age 7.6 y) were enrolled in this Phase 1 dose-finding study. Patients received ch14.18/CHO courses of 10, 20 or 30 mg/m2/day as an eight-hour infusion over five consecutive days. Three courses at the same dose level were allowed unless disease progressed. Clearance and biodistribution of radiolabelled ch14.18/CHO in Balb/c and A/J mice were analyzed.

Results: A total of 41 ch14.18/CHO courses were given (10 × 3 courses, 5 × 2 courses, 1 × 1 course). Side effects were similar in expectedness, frequency and magnitude to those reported for ch14.18/SP2/0. The dose level of 20 mg/m2/day was confirmed. Toxicity was reversible and no treatment-related deaths occurred. In children, the peak plasma concentration was 16.51 µg/ml ± 5.9 µg/ml and the half-life was 76.91 h ± 52.5 h. A partial response following ch14.18/CHO was observed in 2/7 patients with residual disease. In mice, the half-lives were 22.7 h ± 1.9h for ch14.18/CHO and 25.0 h ± 1.9 h for ch14.18/SP2/0. The biodistribution of 125I-ch14.18/CHO in mice with neuroblastoma was identical to 125I-ch14.18/SP2/0, indicating GD2 targeting activity in vivo.

Ch14.18 produced in CHO cells showed an unchanged toxicity profile and pharmacokinetics in neuroblastoma patients compared with ch14.18 produced in SP2/0 cells, and evidence of clinical activity was observed. In mice, analysis of pharmacokinetics and biodistribution showed comparable results between ch14.18/CHO and ch14.18/SP2/0. Based on these results, ch14.18/CHO was accepted for prospective clinical evaluation.  相似文献   

3.
Immunotherapy with short term infusion (STI) of monoclonal anti-GD2 antibody (mAb) ch14.18 (4 × 25 mg/m2/d; 8–20 h) in combination with cytokines and 13-cis retinoic acid (RA) prolonged survival in high-risk neuroblastoma (NB) patients. Here, we investigated long-term infusion (LTI) of ch14.18 produced in Chinese hamster ovary cells (ch14.18/CHO; 10 × 10 mg/m2; 24 h) in combination with subcutaneous (s.c.) interleukin-2 (IL-2) in a single center program and report clinical response, toxicity and survival. Fifty-three high-risk NB patients received up to 6 cycles of 100 mg/m2 ch14.18/CHO (d8–17) as LTI combined with 6 × 106 IU/m2 s.c. IL-2 (d1–5; 8–12) and 160 mg/m2 oral RA (d19–32). Pain toxicity was documented with validated pain scores and intravenous (i.v.) morphine usage. Response was assessed in 37/53 evaluable patients following International Neuroblastoma Risk Group criteria. Progression-free (PFS) and overall survival (OS) was analyzed by the Kaplan-Meier method and compared to a matched historical control group from the database of AIEOP, the “Italian Pediatric Ematology and Oncology Association”. LTI of ch14.18/CHO showed acceptable toxicity profile indicated by low pain scores, reduced i.v. morphine usage and low frequency of Grade ≥3 adverse events that allowed outpatient treatment. We observed a best response rate of 40.5% (15/37; 5 CR, 10 PR), 4-year (4 y) PFS of 33.1% (observation 0.1- 4.9 y, mean: 2.2 y) and a 4 y OS of 47.7% (observation 0.27 – 5.20 y, mean: 3.6 y). Survival of the entire cohort (53/53) and the relapsed patients (29/53) was significantly improved compared to historical controls. LTI of ch14.18/CHO thus shows an acceptable toxicity profile, objective clinical responses and a strong signal of clinical efficacy in NB patients.  相似文献   

4.
A phase I trial of a murine anti-ganglioside (GD2) monoclonal antibody (mAb) 14G2a was conducted in 14 neuroblastoma patients and 1 osteosarcoma patient to assess its safety, toxicity and pharmacokinetics in pediatric patients. The pharmacokinetics of mAb 14G2a were biphasic with at 1 2/ of 2.8±2.8 h and at 1 2/ of 18.3±11.8 h. In general,t 1 2/ was dose-dependent with a level of significance ofP=0.036, and it reached a plateau at doses of 250 mg/m2 or more. Overall the peak serum levels were dose-dependent atP<0.001. However, they demonstrated an abrupt increase between doses of 100 mg/m2 and 250 mg/m2. The latter two suggest a saturable mechanism for mAb elimination. In addition, peak serum concentrations were observed earlier at higher mAb doses, which indicates the achievement of a steady state. Thet 1 2/ of mAb 14G2a in children appears to be shorter than in adults. Furthermore, 2 patients demonstrated a considerable decrease int 1 2/ following retreatment with 14G2a. This was paralleled by high human anti-(mouse Ig) antibody levels. This study represents the first comprehensive analysis of murine mAb pharmacokinetics in children and will be useful in the future design of mAb therapy.This work was supported by grants from FDA, FD-R-000377 and NIH U10 CA 28439 and in part by a grant from the general Clinical Research Center program, MOI RR00827, of the National Center for Research Resources, National Institutes of Health. M. M. U.-F. and C.-S. H. were supported in part by a grant from the Children's Cancer Research Foundation, and R. A. R. was supported in part by NIH grant CA 42508  相似文献   

5.

Background

Treatment for children with high-risk neuroblastoma with anti-disialoganglioside mAb ch14.18, IL-2, and GM-CSF plus 13-cis-retinoic acid after myeloablative chemotherapy improves survival, but 40 % of patients still relapse during or after this therapy. The microenvironment of high-risk neuroblastoma tumors includes macrophages, IL-6, and TGFβ1. We hypothesized that this microenvironment suppresses anti-tumor functions of natural killer (NK) cells and that lenalidomide, an immune-modulating drug, could overcome suppression.

Methods

Purified NK cells were cultured with IL-2, neuroblastoma/monocyte-conditioned culture medium (CM), IL-6, TGFβ1, and lenalidomide in various combinations and then characterized using cytotoxicity (direct and antibody-dependent cell-mediated cytotoxicity), cytokine, flow cytometry, and Western blotting assays. Anti-tumor activity of NK cells with lenalidomide, ch14.18, or both was evaluated with a xenograft model of neuroblastoma.

Results

CM from neuroblastoma/monocyte co-cultures contains IL-6 and TGFβ1 that suppress IL-2 activation of NK cell cytotoxicity and IFNγ secretion. IL-6 and TGFβ1 activate the STAT3 and SMAD2/3 pathways in NK cells and suppress IL-2 induction of cytotoxicity, granzymes A and B release, perforin expression, and IFNγ secretion. Lenalidomide blocks IL-6 and TGFβ1 activation of these signaling pathways and inhibits their suppression of NK cells. Neuroblastoma cells in NOD/SCID mice exhibit activated STAT3 and SMAD2/3 pathways. Their growth is most effectively inhibited by co-injected peripheral blood mononuclear cells (PBMC) containing NK cells when mice are treated with both ch14.18 and lenalidomide.

Conclusion

Immunotherapy with anti-tumor cell antibodies may be improved by lenalidomide, which enhances activation of NK cells and inhibits their suppression by IL-6 and TGFβ1.  相似文献   

6.

Purpose

Immunotherapy targeting disialoganglioside GD2 emerges as an important treatment option for neuroblastoma, a pediatric malignancy characterized by poor outcome. Here, we report the induction of a GD2-specific immune response with ganglidiomab, a new anti-idiotype antibody to anti-GD2 antibodies of the 14.18 family.

Experimental design and results

Ganglidiomab was generated following immunization of Balb/c mice with 14G2a, and splenocytes were harvested to generate hybridoma cells. Clones were screened by ELISA for mouse antibody binding to hu14.18. One positive clone was selected to purify and characterize the secreted IgG protein (κ, IgG1). This antibody bound to anti-GD2 antibodies 14G2a, ch14.18/CHO, hu14.18, and to immunocytokines ch14.18-IL2 and hu14.18-IL2 as well as to NK-92 cells expressing scFv(ch14.18)-zeta receptor. Binding of these anti-GD2 antibodies to the nominal antigen GD2 as well as GD2-specific lysis of neuroblastoma cells by NK-92-scFv(ch14.18)-zeta cells was competitively inhibited by ganglidiomab, proving GD2 surrogate function and anti-idiotype characteristics. The dissociation constants of ganglidiomab from anti-GD2 antibodies ranged from 10.8 ± 5.01 to 53.5 ± 1.92 nM as determined by Biacore analyses. The sequences of framework and complementarity-determining regions of ganglidiomab were identified. Finally, we demonstrated induction of a GD2-specific humoral immune response after vaccination of mice with ganglidiomab effective in mediating GD2-specific killing of neuroblastoma cells.

Conclusion

We generated and characterized a novel anti-idiotype antibody ganglidiomab and demonstrated activity against neuroblastoma.  相似文献   

7.
Ch14.18 manufactured in Chinese hamster ovary (CHO) cells is currently being evaluated in clinical trials. Short-term infusion (STI) (8–20 h/day; 4–5 days) of 100 mg/m2 ch14.18/CHO (dinutiximab β) per cycle in combination with cytokines is standard treatment of neuroblastoma (NB) patients. As pain is a limiting factor, we investigated a novel delivery method by continuous long-term infusion (LTI) of 100 mg/m2 over 10 days. 53 NB patients were treated with 5–6 cycles of 6 × 106 IU/m2 subcutaneous interleukin-2 (d 1-5, 8-12), LTI of 100 mg/m2 ch14.18/CHO (d 8-18) and 160 mg/m2 oral 13-cis-retinoic acid (d 22-35). Human anti-chimeric antibody (HACA), antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity were determined. With LTI, we observed a maximum concentration of ch14.18/CHO (Cmax) of 12.56 ± 0.68 µg/ml and a terminal half-life time (t1/2 β) of 32.7 ± 16.2 d. The clearance values for LTI and STI of 0.54 ± 0.13 and 0.41 ± 0.29 L/d m2 and area under the serum concentration-time curve (AUC) values of 189.6 ± 41.4 and 284.8 ± 156.8 µg×d/ml, respectively, were not significantly different. Importantly, we detected ch14.18/CHO trough concentration of ≥ 1 µg/ml at time points preceding subsequent antibody infusions after cycle 1, allowing a persistent activation of antibody effector mechanisms over the entire treatment period of 6 months. HACA responses were observed in 10/53 (19%) patients, similar to STI (21%), indicating LTI had no effect on the immunogenicity of ch14.18/CHO. In conclusion, LTI of ch14.18/CHO induced effector mechanisms over the entire treatment period, and may therefore emerge as the preferred delivery method of anti-GD2 immunotherapy to NB patients.  相似文献   

8.
Purpose: We conducted a phase I trial of interleukin 2 (IL-2) in combination with chimeric 14.18 (ch14.18) and murine R24 antibodies to determine the maximal tolerated dose (MTD), immunological effects, and toxicity of this treatment combination. Experimental Design: Twenty-seven patients with either melanoma (23 patients) or sarcoma (4 patients) were enrolled to receive a combination therapy with ch14.18 and R24 antibodies together with continuous infusion of Roche IL-2 (1.5×106 U/m2/day, 26 patients) or Chiron IL-2 (4.5×106 U/m2/day, 1 patient) given 4 days/week for 3 weeks. The antibodies ch14.18 (2–7.5 mg/m2/day) and R24 (1–10 mg/m2/day) were scheduled to be administered for 5 days during the second week of IL-2 therapy. Results: When given in combination in this study, the MTD for ch14.18 was 5 mg/m2/day and the MTD for R24 was 5 mg/m2/day. Dose-limiting toxicities were severe allergic reactions to both ch14.18 and R24 as well as pain related to ch14.18. This ch14.18 MTD was lower than the 7.5 mg/m2/day MTD previously determined for ch14.18 given alone with the same dose and schedule of IL-2. Immunological effects included the induction of lymphokine-activated killer (LAK) activity and antibody-dependent cell-mediated cytoxicity (ADCC). Anti-idiotype response to ch14.18 was seen in six patients, including two melanoma patients who had a partial response to treatment. In addition to two partial responses, four patients had a stable disease and one patient remained without any evidence of disease. Conclusions: Immunotherapy with IL-2 in combination with ch14.18 and R24 antibodies augments LAK function and ADCC measured in vitro in all patients. While there exist theoretical advantages of combining these two antibodies, the MTD of ch14.18 and of R24 were lower than the MTD of each antibody in prior studies evaluating single antibody therapy with IL-2. As such, the combination of these two antibodies together with IL-2 therapy appeared to influence the MTD and toxicity of each of the administered antibodies. This work is supported by NIH grants M01-RR03186, R01-CA32685, and P30-CA14520  相似文献   

9.
Effective treatment of high-risk neuroblastoma (NB) remains a major challenge in pediatric oncology. Human/mouse chimeric monoclonal anti-GD2 antibody (mAb) ch14.18 is emerging as a treatment option to improve outcome. After establishing a production process in Chinese hamster ovary (CHO) cells, ch14.18/CHO was made available in Europe for clinical trials. Here, we describe validated functional bioassays for the purpose of immune monitoring of these trials and demonstrate GD2-specific immune effector functions of ch14.18/CHO in treated patients. Two calcein-based bioassays for complement-dependent- (CDC) and antibody-dependent cellular cytotoxicity (ADCC) were set up based on patient serum and immune cells tested against NB cells. For this purpose, we identified LA-N-1 NB cells as best suited within a panel of cell lines. Assay conditions were first established using serum and cells of healthy donors. We found an effector-to-target (E:T) cell ratio of 20∶1 for PBMC preparations as best suited for GD2-specific ADCC analysis. A simplified method of effector cell preparation by lysis of erythrocytes was evaluated revealing equivalent results at an E:T ratio of 40∶1. Optimal results for CDC were found with a serum dilution at 1∶8. For validation, both within-assay and inter-assay precision were determined and coefficients of variation (CV) were below 20%. Sample quality following storage at room temperature (RT) showed that sodium-heparin-anticoagulated blood and serum are stable for 48 h and 96 h, respectively. Application of these bioassays to blood samples of three selected high-risk NB patients treated with ch14.18/CHO (100 mg/m2) revealed GD2-specific increases in CDC (4.5–9.4 fold) and ADCC (4.6–6.0 fold) on day 8 compared to baseline, indicating assay applicability for the monitoring of multicenter clinical trials requiring sample shipment at RT for central lab analysis.  相似文献   

10.
 Superantigens such as the staphylococcal enterotoxin A (SEA) are among the most potent T cell activators known. They bind to major histocompatibility complex (MHC) class II molecules and interact with T cells depending on their T cell receptor (TCR) Vβ expression. Superantigens also induce a variety of cytokines and trigger a direct cytotoxic effect against MHC-class-II-positive target cells. In order to extend superantigen-dependent cell-mediated cytotoxicity (SDCC) to MHC-class-II-negative neuroblastoma cells, SEA was linked to the anti-ganglioside GD2 human/mouse chimeric monoclonal antibody (mAb) ch14.18. Ganglioside GD2 is expressed on most tumours of neuroectodermal origin but is expressed to a lesser extent on normal tissues. The linkage of ch14.18 to SEA was achieved either with a protein-A–SEA fusion protein or by chemical coupling. Both constructs induced T-cell-mediated cytotoxicity towards GD2-positive neuroblastoma cells in an effector-to-target(E:T)-ratio-and dose-dependent manner in vitro. To reduce the MHC class II affinity of SEA, a point mutation was introduced in the SEA gene (SEAm9) that resulted in 1000-fold less T cell killing of MHC-class-II-expressing cells as compared to native SEA. However, a protein-A–SEAm9 fusion protein mediated cytotoxicity similar to that of protein-A–SEA on ch14.18-coated, MHC-class-II-negative neuroblastoma cells. Taken together, these findings suggest that superantigen-dependent and monoclonal-antibody-targeted lysis may be a potent novel approach for neuroblastoma therapy. Received: 15 March 1995 / Accepted: 22 May 1995  相似文献   

11.
 The study was designed to clarify the difference in pharmacokinetics of monoclonal antibodies (mAb) in animal models and humans, and to elucidate the applicability of animal models. 99mTc-labeled murine mAb – against carcinoembryonic antigen (designated BW431/26), and neural cell adhesion molecule (NE150) – and one chimeric mouse/human mAb against nonspecific cross-reacting antigen (chNCA) were administered i.v. to normal mice and athymic mice (370 kBq, 400 ng) xenografted with human cancer cells expressing antigens, and into patients with tumor (925 MBq, 1 mg). The biodistribution of two of the three mAb (not 99mTc-BW431/26) differed clearly in mice and patients. 99mTc-NE150 showed specific uptake in xenografted tumor and otherwise a normal biodistribution; however, clinical examination showed increased uptake in the liver with rapid blood clearance (mean α half-life = 31.1 min) compared with 99mTc-BW431/26 (28.4 h). 99mTc-chNCA demonstrated increased blood clearance and renal excretion in both normal and athymic mice, with accumulation in tumors. Clinical examination showed rapid blood clearance (mean α half-life = 6.4 min) and increased uptake in the liver. High-performance liquid chromatographic analysis of 99mTc-chNCA revealed the immune complex in blood, suggesting uptake of the complex by the reticuloendothelial cells. The biodistribution of radiolabeled mAb in animal and human models was variable and specific for each of the three mAb. The results of animal studies with mAb should be evaluated carefully before being extrapolated to humans, on the basis of the nature of the mAb and interacting substances. Received: 9 April 1997 / Accepted 3 March 1998  相似文献   

12.
The metabolic clearance rates (MCR) of estrone (1) and estradiol were determined by pulse injections and constant infusions of 3H-estrone and 3H-estradiol in seven women taking mestranol-containing compounds and in seven women taking ethinyl estradiol-containing compounds. These results were compared with the results previously obtained in our laboratory (2, 3, 4, 5) in comparable women not taking these compounds. In the women taking mestranol the mean (± SE) MCR for estradiol, 750 ± 600 1/day/m2, was similar to our normal mean value, 790 ± 30 1/day/m2. However, the mean MCR for estrone was less 1,010 ± 60 1/day/m2 than that in normals 1,230 ± 30 1/day/m2. In the women taking ethinyl estradiol the mean MCR for estradiol, 1,070 ± 60 1/day/m2 was significantly (P < 0.01) greater than the normal value. The mean MCR for estrone, 1,180 ± 80 1/day/m2 was not different from the normal.Using an immunoassay to measure the concentrations of estradlol and. estrone in plasma, the mean level of estradlol in mestranol users was 40 ± 7 Pg/ml and in ethinyl estradlol users 69 ± 4 pg/ml.The mean calculated production rate for estradlol in the mestranol users was 47 ± 8 μg/day and in the ethinyl estradlol users was 120 ± 22 μg/day. The mean calculated, production rates for estrone were 71 ± 12 and 93 ± 12 μg/day in the respective groups.Thus while mestranol appears to have little effect on endogenous estrogen metabolism, the use of ethinyl estradiol appears to increase the MCR of estradlol, but not of estrone. The MCR of estradlol returns to the normal range when ethinyl estradlol is stopped.  相似文献   

13.
The fusion protein formed from ch14.18 and interleukin-2 (ch14.18-IL-2), shown to exhibit antitumor efficacy in mouse models, consists of IL-2 genetically linked to each heavy chain of the ch14.18 chimeric anti-GD2 monoclonal antibody. The purpose of this study was to determine the pharmacokinetics of ch14.18-IL-2 in mice and assess its stability in murine serum. Following i.v. injection, the fusion protein was found to have a terminal half-life of 4.1 h. Detection of IL-2 following injection of the ch14.18-IL-2 fusion protein showed a similar half-life, indicating that the fusion protein prolongs the circulatory half-life of IL-2. Detection of human IgG1 following injection of ch14.18-IL-2 showed a terminal half-life of 26.9 h. These data suggested that the native fusion protein is being altered in vivo, resulting in a somewhat rapid loss of detectable IL-2, despite prolonged circulation of its immunoglobulin components. In vitro incubation of the ch14.18-IL-2 fusion protein in pooled mouse serum at 37 degrees C for 48 h resulted in a loss of its IL-2 component, as detected in enzyme-linked immunosorbent assay systems and in proliferation assays. Polyacrylamide gel electrophoresis and Western blot analysis of the fusion protein incubated in mouse serum at 37 degrees C indicated that the ch14.18-IL-2 is cleaved, resulting in a loss of the 67-kDa band (representing the IL-2 linked to the IgG1 heavy chain) and the detection of a band of more than 50 kDa, slightly heavier than the IgG1 heavy chain itself. This suggests that the fusion protein is being cleaved in vitro within the IL-2 portion of the molecule. These studies show that (1) ch14.18-IL-2 prolongs the circulatory half-life of IL-2 (compared to that of soluble IL-2) and (2) the in vivo clearance of the fusion protein occurs more rapidly than the clearance of the ch14.18 antibody itself, possibly reflecting in vivo cleavage within the IL-2 portion of the molecule, resulting in loss of IL-2 activity.  相似文献   

14.
Administration-time differences of gentamicin pharmacokinetics were studied by crossover design after a single intravenous administration of gentamicin (80 mg) to 10 human subjects at 09:00 (morning time) and 22:00 (nighttime). The profiles of serum gentamicin concentration showed a significant statistical difference between 09:00 and 22:00, suggesting circadian variations of pharmacokinetic behaviors. A significant circadian rhythm of pharmacokinetic parameters as a function of time of day was noted in human subjects, showing lower total body clearance Clt and higher serum area under the curve (AUC) when given at nighttime. The half-life t1/2 was shorter in the morning (2.82h ± 0.43h) when compared to the nighttime (2.97h ± 0.36h), but the difference was not statistically significant. The AUC was significantly greater in the morning (23.4 ± 3.84 μg-h/mL) than that in the nighttime (26.3 ± 5.79 μg-h/mL) (p<. 05), most likely because the Clt, was significantly higher when gentamicin was given in the morning (3.51 ± 0.57 L/h) versus in the nighttime (3.18 ± 0.65 L/h). Although the volume of distribution Vd decreased when given at nighttime, it was independent of the dosing time. From this study, there was an administration-time difference of gentamicin pharmacokinetics in human beings. The optimized dosing regimen of gentamicin can be decided by considering circadian rhythm and rest-activity routine so that minimized toxicity and effective therapy are established for patients. The current findings also can be applied to other drugs with circadian rhythms of pharmacokinetics and narrow therapeutic windows in clinical chronotherapeutics.  相似文献   

15.
The [13C]octanoic acid breath test was used for the measurement of differences in gastric emptying in preterm infants for the evaluation of pharmacological therapy. In order to perform a good intra-individual comparison of the gastric emptying in preterm infants under non-standardisable test conditions, we adjusted t1/2 for variations in non-recovered label (=label retention) and introduced an “effective half 13CO2 breath excretion time” t1/2eff=t1/2/m expressed as min per percentage of the cumulative dose recovered. In a pilot study, we investigated the action of the gastrointestinal prokinetic drug cisapride on gastric emptying in seven premature infants, of whom four suffered from gastric stasis and three had constipation. The postnatal age and weight at the start of treatment ranged from 15 to 64 days and from 815 to 1635 g, respectively. All infants received the standard formula for premature infants (Nenatal, Nutricia). Cisapride was administered orally 0.2 mg/kg, four times daily. The changes in gastrointestinal motility were studied using the total bowel transit time of carmine red. After 7 days of treatment in all children, the gastric emptying coefficient and the half 13CO2 breath excretion time adjusted for label retention were improved (n=7, the gastric emptying coefficient range before treatment was 1.69–3.34 (mean 2.59±0.80) and after treatment it was 2.79–3.76 (mean 3.28±0.30); the half 13CO2 breath excretion time adjusted for label retention range before treatment was 3.0–14.7 min/% dose (mean 7.0±5.0) and after treatment 2.6–4.0 min/% dose (mean 3.1±0.6). The total bowel transit time was only slightly improved in two patients (n=7, mean total bowel transit time before: 23.7 h compared to mean total bowel transit time after 7 days of treatment: 35.5 h). Side effects during cisapride treatment were not seen. We conclude that in premature infants cisapride is effective in shortening gastric emptying time and reducing gastric stasis; the therapeutic role in constipation has to be further investigated.  相似文献   

16.
Laboratory cultured Streptocephalus proboscideus (three sizes (mm), viz. 8.44 ± 0.95 (virgin), 14.18 ± 1.49 (adult I) and 19.24 ± 1.52 (adult II)) were offered (separately for males and females) field collected zooplankton (12 prey types) at three levels of abundance (1.0 ml−1, 2.0 ml−1 and 4.1 ind. ml−1 in 30-minute feeding experiments. Gut contents, analyzed for abundance and diversity of prey type, showed that predator size, sex and their interaction had strong effects on prey consumption. Regardless of their size, and of prey density, S. proboscideus females consumed 25–90% more prey than males. Their filtration rates (adult II) were higher (125 ml ind.−1 h.−1) than those of males (30 ml ind.−1 h.−1) too. Rotifers had the highest numerical percentage in the gut, regardless of predator size or sex. Cladocerans were only consumed by adults I and II. Adult II females consumed 28.5–43.3 μg zooplankton dry weight ind.−1 h.−1. Size distribution of B. longirostris in the field and in the gut were closely similar. This study confirms S. proboscideus as a non-selective filter feeder. Since it did not eat jumping rotifers, copepod nauplii and copepodites, it may contribute to structuring its prey communities, because good escapers will be enriched in the medium, while poor escapers will be depleted.  相似文献   

17.
DEAE-cellulose-purified Trypanosoma lewisi from 4-day (dividing trypanosomes) and 7-day (non-dividing trypanosomes) infections in rats were compared for initial uptake of glucose, leucine, and potassium. Glucose entered the parasitic cells by mediated (saturable) processes, whereas leucine and K+ entered by mediated processes and diffusion. Glucose entry was significantly elevated in 4-day cells (Vmax 4.00 ± 1.02 nmoles/ 1 × 108 cells/min) with respect to 7-day cells (Vmax 1.83 ± 0.62 nmoles 1 × 108 cells/min). Likewise, the affinity of the glucose carrier was significantly greater in 4-day cells (Km = 0.30 ± 0.02 mM) than in 7-day cells (Km = 0.59 ± 0.11 mM). When leucine and K+ transport were compared in 4- and 7-day populations, significant elevations in the rate of entry (Vmax) of both substrates were observed for 4-day cells; Km values for leucine and K+ were not altered by the stage of infection. For leucine, the Vmax and Km for 4-day cells were 2.40 ± 0.50 nmoles/1 × 108 cells/30 sec and 78 ± 7 μM, respectively; corresponding values in 7-day cells were 1.06 ± 0.02 nmoles/1 × 108 cells/30 sec and 66 ± 11 μM. For K+, the Vmax and Km for 4-day cells were 15.97 ± 0.38 nmoles/1 × 108 cells/min and 1.2 mM, respectively; corresponding values in 7-day cells were 4.76 ± 1.82 nmoles/1 × 108 cells/min and 1.05 mM. The observed increase in the rate of K+ entry into 4-day cells was attributable to enhanced influx; no significant difference in the rate of K+ efflux was noted when 4- and 7-day cells were compared (t12 of K+ leak for 4- and 7-day cells were 68.1 ± 9.3 and 67.9 ± 15.2 min, respectively). Potassium influx was ouabain insensitive. Membrane function in 7-day cells was not uniformly inhibited. No significant difference in the activity of the membrane-bound enzyme, 5′-nucleotidase, was observed when 4- and 7-day cells were compared.  相似文献   

18.

Background and aims

Wetlands are important carbon sinks across the planet. However, soil carbon sequestration in tropical freshwater wetlands has been studied less than its counterpart in temperate wetlands. We compared carbon stocks and carbon sequestration in freshwater wetlands with various geomorphic features (estuarine, perilacustrine and depressional) and various plant communities (marshes and swamps) on the tropical coastal plain of the Gulf of Mexico in the state of Veracruz, Mexico. These swamps are dominated by Ficus insipida, Pachira aquatic and Annona glabra and the marshes by Typha domingensis, Thalia geniculata, Cyperus giganteus, and Pontederia sagittata.

Methods

The soil carbon concentration and bulk density were measured every 2 cm along 80 cm soil profiles in five swamps and five marshes. Short-term sediment accretion rates were measured during a year using horizontal makers in three of the five swamps and marshes, the carbon sequestration was calculated using the accretion rates, and the bulk density and the percentage of organic carbon in the surficial layer was measured.

Results

The average carbon concentration ranged from 50 to 150 gC kg?1 in the marshes and 50 to 225 gC kg?1 in the swamps. When the wetlands were grouped according to their geomorphic features, no significant differences in the carbon stock (P?=?0.095) were found (estuarine (25.50?±?2.26 kgC m?2), perilacustrine (28.33?±?2.74 kgC m?2) and depressional wetlands (34.93?±?4.56 kgC m?2)). However, the carbon stock was significantly higher (P?=?0.030) in the swamps (34.96?±?1.3 kgC m?2) than in the marshes (25.85?±?1.19 kgC m?2). The average sediment accretion rates were 1.55?±?0.09 cm yr?1 in the swamps and 0.84?±?0.02 cm yr?1 in the marshes with significant differences (P?=?0.040). The rate of carbon sequestration was higher (P?=?0.001) in swamp soils (0.92?±?0.12 kgC m?2 yr?1) than marsh soils (0.31?±?0.08 kgC m?2 yr?1). Differences in the rates of carbon sequestration associated with geomorphic features were found between the swamp ecosystems (P?<?0.05); i.e., higher values were found in the swamps than in the marshes in perilacustrine and estuarine wetlands (P?<?0.05). However, no significant differences (P?=?0.324) in carbon sequestration rates were found between the marsh and swamp areas of the depressional site.

Conclusions

Swamp soils are more important contributors to the carbon stock and sequestration than are marsh soils, resulting in a reduction in global warming, which suggests that the plant community is an important factor that needs to be considered in global carbon budgets and projects of restoration and conservation of wetlands.  相似文献   

19.
 A major problem in the treatment of solid tumors is the eradication of established, disseminated metastases. Here we describe an effective treatment for established experimental hepatic metastases of human neuroblastoma in C. B.-17 scid/scid mice. This was accomplished with an antibody-cytokine fusion protein, combining the unique targeting ability of antibodies with the multifunctional activity of cytokines. An anti-(ganglioside GD2) antibody (ch14.18) fusion protein with interleukin-2 (ch14.18-IL2), constructed by fusion of a synthetic sequence coding for human interleukin-2 (IL-2) to the carboxyl end of the Cγ1 gene of ch14.18, was tested for its therapeutic efficacy against xenografted human neuroblastoma in vivo. The ch14.18-IL2 fusion protein markedly inhibited growth of established hepatic metastases in SCID (severe combined immunodeficiency) mice previously reconstituted with human lymphokine-activated killer cells. Animals treated with ch14.18-IL2 showed an absence of macroscopic liver metastasis. In contrast, treatment with combinations of ch14.18 and recombinant IL2 at dose levels equivalent to the fusion protein only reduced the tumor load. Survival times of SCID mice treated with the fusion protein were more than double that of control animals. These results demonstrate that an immunotherapeutic approach using a cytokine targeted by an antibody to tumor sites is highly effective in eradicating the growth of established tumor metastases. Received: 7 November 1995 / Accepted: 15 December 1995  相似文献   

20.
Polyhydroxyalkanoates (PHAs) are a replacement of conventional single-use plastics. Bioprocess conditions of the extreme halophilic archaeon Halogeometricum borinquense strain RM-G1 were selected resulting in the synthesis of 66.80 ± 1.69 % PHA (of cell dry mass) in 72 h using glycerol and tryptone as carbon and nitrogen sources respectively, yielding volumetric productivity of 0.206 ± 0.006 gL−1 h−1 in a repeated batch process in a small-scale bioreactor where 20 % of the production medium was used as the inoculum for the subsequent batch. The purified PHA was characterized as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with 10.21 mol% 3-hydroxyvalerate content possessing glass transition temperature -12.6 °C, degradation temperature 285 °C, number average molecular weight 156,899 Da, weight average molecular weight 288,723 Da, polydispersity index 1.8 and melting temperatures 139.1 °C and 152.5 °C. Maximum (21.7 ± 0.6 L m-2 h−1) and average (17.2 ± 0.6 L m-2 h−1) flux values were their respective highest and crystallization time was its least (3.0 ± 0.16 h) when ΔT was 90 °C and polytetrafluoroethylene membrane was applied for desalination of the bioreactor effluent by Direct Contact Membrane Distillation. While using polyvinylidene fluoride membrane, maximum 25.5 ± 0.5 L m-2 h−1 and average 18.6 ± 0.2 L m-2 h−1 fluxes were obtained and crystallization time decreased (3.25 ± 0.16 h) even when ΔT was lowered by 20 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号