首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure to ozone (O3) at ambient photochemical smog alert levels has been shown to cause alteration in pulmonary function and exercise response in humans, but there is a paucity of data on females. The initial purpose of the present investigation was to study the effects of O3 inhalation on pulmonary function and selected exercise respiratory metabolism and breathing pattern responses in young adult females. Six female subjects exercised continuously on a bicycle ergometer for 1 h on 10 occasions at one of three intensities, while exposed to 0.0, 0.20, 0.30, or 0.40 ppm O3. Forced expiratory volume and flow rates and residual volume (RV) were measured before and immediately following each protocol. During exercise, expired minute ventilation (VE), respiratory frequency (fR), tidal volume, O2 uptake (VO2), and heart rate (HR) were measured every 10 min. O3 dose-dependent decrements were observed for forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1.0), and forced expiratory flow rate during the middle half of FVC, coupled with an increase in RV and altered exercise ventilatory pattern. There was also an increased VE but no significant O3 effect on VO2 or HR. Comparison of the females' responses to those of a group of young adult males (previously studied) at the same total O3 effective dose (i.e., expressed as the simple product of O3 concentration, VE, and exposure time) revealed significantly greater effects on FVC, FEV1.0, and fR for the females. With VE reduced for females as a function of exercise intensity at the same percent of maximum VO2, these differences were considerably attenuated, although not negated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Hypoxia and hypoxic exercise increase pulmonary arterial pressure, cause pulmonary capillary recruitment, and may influence the ability of the lungs to regulate fluid. To examine the influence of hypoxia, alone and combined with exercise, on lung fluid balance, we studied 25 healthy subjects after 17-h exposure to 12.5% inspired oxygen (barometric pressure = 732 mmHg) and sequentially after exercise to exhaustion on a cycle ergometer with 12.5% inspired oxygen. We also studied subjects after a rapid saline infusion (30 ml/kg over 15 min) to demonstrate the sensitivity of our techniques to detect changes in lung water. Pulmonary capillary blood volume (Vc) and alveolar-capillary conductance (D(M)) were determined by measuring the diffusing capacity of the lungs for carbon monoxide and nitric oxide. Lung tissue volume and density were assessed using computed tomography. Lung water was estimated by subtracting measures of Vc from computed tomography lung tissue volume. Pulmonary function [forced vital capacity (FVC), forced expiratory volume after 1 s (FEV(1)), and forced expiratory flow at 50% of vital capacity (FEF(50))] was also assessed. Saline infusion caused an increase in Vc (42%), tissue volume (9%), and lung water (11%), and a decrease in D(M) (11%) and pulmonary function (FVC = -12 +/- 9%, FEV(1) = -17 +/- 10%, FEF(50) = -20 +/- 13%). Hypoxia and hypoxic exercise resulted in increases in Vc (43 +/- 19 and 51 +/- 16%), D(M) (7 +/- 4 and 19 +/- 6%), and pulmonary function (FVC = 9 +/- 6 and 4 +/- 3%, FEV(1) = 5 +/- 2 and 4 +/- 3%, FEF(50) = 4 +/- 2 and 12 +/- 5%) and decreases in lung density and lung water (-84 +/- 24 and -103 +/- 20 ml vs. baseline). These data suggest that 17 h of hypoxic exposure at rest or with exercise resulted in a decrease in lung water in healthy humans.  相似文献   

3.
To test the effect of a cold condition on metabolic substrate and possible development of muscle injuries, short track skaters (n=9) and inline skaters (n=10) took rest and submaximal cycled (65% V(.)O2max) in cold (ambient temperature: 5+/-1 degrees C, relative humidity: 41+/-8%) and warm conditions (ambient temperature: 21+/-1 degrees C, relative humidity: 35+/-5%), for 60 min, each. Blood glucose (BG), triglyceride (TG), free fatty acid (FFA), and total cholesterol (TC) were determined to investigate the effect on energy metabolism. To estimate possible muscle injury in the cold condition, creatine kinase (CK), lactate dehydrogenase (LDH), and myoglobin (Mb) were also measured. TG and FFA levels were increased during exercise in the cold condition, but were unaffected by the difference of skaters. Of the myocellular enzymes, CK was significantly higher during the transition from submaximal exercise to recovery phase in a short track skater compared with inline skater group, indicating a higher physical strain. Additionally, the level of Mb in the inline skater group significantly elevated during recovery phase in the cold compared with in the warm condition. It is concluded that exercise caused stress that was dependent on the ambient temperature. Therefore, exercise in the cold condition altered the circulating level of energy substrate and increased muscle injuries.  相似文献   

4.
The present study was carried out on seven healthy ponies to examine the extent of blood flow in various inspiratory and expiratory muscles at rest and during maximal exertion as well as to determine the proportion of cardiac output needed to perfuse respiratory muscles during these conditions. Tissue blood flow was studied with 15 micron-diameter radionuclide-labeled microspheres injected into the left ventricle during steady conditions. The inspiratory and expiratory muscles comprised 2.41 and 3.05% of body weight, respectively, and received 6.17 and 3.75% of the cardiac output at rest. With maximal exercise, heart rate (from 55 +/- 3 to 218 +/- 4 beats/min), mean aortic pressure (from 125 +/- 5 to 170 +/- 6 mmHg), and cardiac output (from 96 +/- 11 to 730 +/- 78 ml.min-1.kg-1) increased markedly. During exercise blood flow increased significantly in all respiratory muscles (P less than 0.0001) as vascular resistance decreased precipitously. Marked heterogeneity of perfusion existed among various inspiratory as well as expiratory muscles during exercise. Among the inspiratory muscles, the highest perfusion occurred in the diaphragm followed by serratus ventralis, and among the expiratory muscles, the highest perfusion occurred in the internal oblique abdominis and the transverse thoracis (triangularis sterni). Collectively, the inspiratory (8.44%) and expiratory (6.35%) muscle blood flow comprised 14.8 +/- 1.2% of the cardiac output during maximal exercise, a significant increase above resting value, whereas renal fraction of cardiac output decreased from 21% (at rest) to 0.72%.  相似文献   

5.
Sixteen healthy nonsmoking subjects (7 women), 21-49 yr old, were exposed in a climate chamber to either clean air or 300 parts/billion ozone on 4 days for 5 h each day. Before each exposure, the subjects had been pretreated with either oxidants (fish oil) or antioxidants (multivitamins). The study design was double-blind crossover with randomized allocation to the exposure regime. Full and partial flow-volume curves were recorded in the morning and before and during a histamine provocation at the end of the day. Nasal cavity volume and inflammatory markers in nasal lavage fluid were also measured. Compared with air, ozone exposure decreased peak expiratory flow, forced expiratory volume in 1 s, and forced vital capacity (FVC), with no significant effect from the pretreatment regimens. Ozone decreased the ratio of maximal to partial flow at 40% FVC by 0.08 +/- 0.03 (mean +/- SE, analysis of variance: P = 0.018) and at 30% FVC by 0.10 +/- 0.05 (P = 0.070). Ozone exposure did not significantly increase bronchial responsiveness, but, after treatment with fish oil, partial flows decreased more than after vitamins during the histamine test, without changing the maximal-to-partial flow ratio. The decreased effect of a deep inhalation after ozone exposure can be explained by changes in airway hysteresis relative to parenchymal hysteresis, due either to ozone-induced airway inflammation or to less deep inspiration after ozone, not significantly influenced by multivitamins or fish oil.  相似文献   

6.
Exhaled nitric oxide (NO) is altered in asthmatic subjects with exercise-induced bronchoconstriction (EIB). However, the physiological interpretation of exhaled NO is limited because of its dependence on exhalation flow and the inability to distinguish completely proximal (large airway) from peripheral (small airway and alveolar) contributions. We estimated flow-independent NO exchange parameters that partition exhaled NO into proximal and peripheral contributions at baseline, postexercise challenge, and postbronchodilator administration in steroid-naive mild-intermittent asthmatic subjects with EIB (24-43 yr old, n = 9) and healthy controls (20-31 yr old, n = 9). The mean +/- SD maximum airway wall flux and airway diffusing capacity were elevated and forced expiratory flow, midexpiratory phase (FEF(25-75)), forced expiratory volume in 1 s (FEV(1)), and FEV(1)/forced vital capacity (FVC) were reduced at baseline in subjects with EIB compared with healthy controls, whereas the steady-state alveolar concentration of NO and FVC were not different. Compared with the response of healthy controls, exercise challenge significantly reduced FEV(1) (-23 +/- 15%), FEF(25-75) (-37 +/- 18%), FVC (-12 +/- 12%), FEV(1)/FVC (-13 +/- 8%), and maximum airway wall flux (-35 +/- 11%) relative to baseline in subjects with EIB, whereas bronchodilator administration only increased FEV(1) (+20 +/- 21%), FEF(25-75) (+56 +/- 41%), and FEV(1)/FVC (+13 +/- 9%). We conclude that mild-intermittent steroid-naive asthmatic subjects with EIB have altered airway NO exchange dynamics at baseline and after exercise challenge but that these changes occur by distinct mechanisms and are not correlated with alterations in spirometry.  相似文献   

7.
Tracheobronchial circulation during exercise has previously not been examined. Therefore blood flow to the trachea and bronchi (up to 7th generation of branching) was studied in seven healthy adult ponies at rest and during the 3rd and 10th min of exercise performed at a treadmill speed setting of 25 km/h. The ambient air temperature varied from 19 to 20 degrees C and humidity from 35 to 45%. To determine blood flow radionuclide-labeled 15-microns-diameter microspheres were injected into the left ventricle via a catheter advanced from the left carotid artery (exposed using local anesthesia), and a reference sample was obtained from the aorta. Adequate mixing of microspheres with blood was demonstrated by similar perfusion values for left and right kidneys. Exercise increased heart rate (194 +/- 9 and 200 +/- 7 beats/min) and mean aortic pressure (169 +/- 8 and 156 +/- 4 mmHg) of ponies at 3rd and 10th min. Tracheal blood flow (6.7 +/- 0.5 ml.min-1 x 100 g-1) of resting ponies was only one-third of the bronchial blood flow (21.6 +/- 4.9 ml.min-1 x 100 g-1) Significant changes in tracheal perfusion did not occur at 3rd or 10th min of exercise. Although bronchial perfusion also did not change at the 3rd min of exercise, it rose dramatically to 202.8 +/- 30.3 ml.min-1 x 100 g-1 during the 10th min. Concomitantly, renal blood flow decreased at 10th min of exertion. The large increase in bronchial blood flow at 10th min of exertion may have been necessitated by the need to help dissipate body heat.  相似文献   

8.
Twenty-five dogs were anesthetized, paralyzed, and artificially ventilated. Their cranial tracheal arteries were perfused bilaterally with blood at constant flow, and the perfusion pressures (Patr) were measured. Tracheal smooth muscle function was assessed by recording changes in external diameter (delta Dtr). The perfused segment of the trachea was exposed to air at a constant unidirectional airflow of 25 l/min. Group 1 (n = 6) was exposed to cold dry air, ambient room air, and hot dry and hot humid air, each for 10 min with exposures starting from zero flow. The tracheal vascular responses to all four conditions were small vasodilations (delta Patr from -2 to -6%) followed by recovery or small vasoconstrictions. In group 2 (n = 19), exposures to cold dry and hot humid air were preceded and followed by body-temperature fully humidified air. Cold dry air caused a sustained vasodilation (delta Patr -9.0 +/- 1.1%), and hot humid air usually caused a biphasic response: a vasoconstriction (delta Patr 4.4 +/- 1.0%) followed by a vasodilation (delta Patr -5.7 +/- 1.9%). The warm humid air after cold dry air or hot humid air caused a further vasodilation, which lasted a short time after cold dry air (delta Patr -3.7 +/- 0.4%) but greater than 10 min after hot humid air (delta Patr -13.8 +/- 1.4%). In both groups, all exposures that cooled the trachea (cold dry air, ambient room air, and hot dry air) caused smooth muscle contraction, and hot humid air that warmed the trachea caused relaxation.  相似文献   

9.
The effects of cold air inhalation and isometric exercise on coronary blood flow are currently unknown, despite the fact that both cold air and acute exertion trigger angina in clinical populations. In this study, we used transthoracic Doppler echocardiography to measure coronary blood flow velocity (CBV; left anterior descending coronary artery) and myocardial function during cold air inhalation and handgrip exercise. Ten young healthy subjects underwent the following protocols: 5 min of inhaling cold air (cold air protocol), 5 min of inhaling thermoneutral air (sham protocol), 2 min of isometric handgrip at 30% of maximal voluntary contraction (grip protocol), and 5 min of isometric handgrip at 30% maximal voluntary contraction while breathing cold air (cold + grip protocol). Heart rate, blood pressure, inspired air temperature, CBV, myocardial function (tissue Doppler imaging), O(2) saturation, and pulmonary function were measured. The rate-pressure product (RPP) was used as an index of myocardial O(2) demand, whereas CBV was used as an index of myocardial O(2) supply. Compared with the sham protocol, the cold air protocol caused a significantly higher RPP, but there was a significant reduction in CBV. The cold + grip protocol caused a significantly greater increase in RPP compared with the grip protocol (P = 0.045), but the increase in CBV was significantly less (P = 0.039). However, myocardial function was not impaired during the cold + grip protocol relative to the grip protocol alone. Collectively, these data indicate that there is a supply-demand mismatch in the coronary vascular bed when cold ambient air is breathed during acute exertion but myocardial function is preserved, suggesting an adequate redistribution of blood flow.  相似文献   

10.
This study assessed reduction in expiratory function in 12 asthmatic subjects both after 5 min of cold air provocation (CAP) with dry air conditioned to approximately 0 degrees C and after exercise (to 85% of predicted maximum heart rate) while breathing ambient room air (approximately 21 degrees C and 40% relative humidity). These assessments were done both before and after the following training protocol. Three 5-min periods of isocapnic cold air hyperpnea separated by 5-min rest periods were performed breathing 0 degrees to -10 degrees C air, for 36 sessions over 12 wk. As expected, pretraining expiratory function was significantly reduced (P less than 0.001) after both CAP and exercise. The posttraining reduction in expiratory function after CAP and exercise, however, was significantly less pronounced (largest P less than 0.05). These data support our hypothesis that repeated bouts of cold air challenge result in airway acclimatization to cold air and consequent decrease in exercise-induced bronchospasm. Acclimatization may result directly either by habituation of the airways or by vasodilation leading to increased bronchial blood flow and consequent reduced airway cooling. An unanticipated finding, though, is that repeated cold air challenge may also cause long-term inflammatory changes in the airways. A significant percentage of subjects experienced reduced base-line pulmonary function and overall exacerbation of asthma symptoms during the training period.  相似文献   

11.
The purpose was to compare patterns of brain activation during imagined handgrip exercise and identify cerebral cortical structures participating in "central" cardiovascular regulation. Subjects screened for hypnotizability, five with higher (HH) and four with lower hypnotizability (LH) scores, were tested under two conditions involving 3 min of 1) static handgrip exercise (HG) at 30% of maximal voluntary contraction (MVC) and 2) imagined HG (I-HG) at 30% MVC. Force (kg), forearm integrated electromyography, rating of perceived exertion, heart rate (HR), mean blood pressure (MBP), and differences in regional cerebral blood flow distributions were compared using an ANOVA. During HG, both groups showed similar increases in HR (+13 +/- 5 beats/min) and MBP (+17 +/- 3 mmHg) after 3 min. However, during I-HG, only the HH group showed increases in HR (+10 +/- 2 beats/min; P < 0.05) and MBP (+12 +/- 2 mmHg; P < 0.05). There were no significant increases or differences in force or integrated electromyographic activity between groups during I-HG. The rating of perceived exertion was significantly increased for the HH group during I-HG, but not for the LH group. In comparison of regional cerebral blood flow, the LH showed significantly lower activity in the anterior cingulate (-6 +/- 2%) and insular cortexes (-9 +/- 4%) during I-HG. These findings suggest that cardiovascular responses elicited during imagined exercise involve central activation of insular and anterior cingulate cortexes, independent of muscle afferent feedback; these structures appear to have key roles in the central modulation of cardiovascular responses.  相似文献   

12.
It has been suggested that lung size accounts for observed gender differences in responsiveness to the same total inhaled dose of O3. To test the hypothesis that lung size is a determinant of magnitude of response within a gender, two groups of 14 healthy young adult females differing significantly in forced vital capacity [FVC; i.e., small-lung group mean = 3.74 liters (range 3.2-4.0) and large-lung group mean = 5.11 liters (range 4.5-6.2] were exposed for 1 h to filtered air (FA) and to 0.18 and 0.30 ppm O3. On each occasion, subjects exercised continuously on a cycle ergometer at a work rate that elicited a mean minute ventilation of approximately 47 l/min. For the small-lung group [mean total lung capacity (TLC) = 4.52 liters] exercise O2 uptake was 67% of maximal O2 uptake (VO2max), and that for the large-lung group (TLC 6.37 liters) was 61% of VO2max. Statistical analysis revealed significant decrements for both groups in FVC, forced expiratory volume in 1 s (FEV1.0), and forced expiratory flow rate in the middle half of FVC on exposure to 0.18 and 0.30 ppm O3. Exercise respiratory frequency increased, and tidal volume decreased significantly in both groups in response to 0.18 and 0.30 ppm O3 exposure. On exposure to 0.30 ppm O3, the number of individual subjective symptoms reported and their severity were significantly greater for both groups than those reported for the FA and 0.18 ppm O3 exposures. Both groups evidenced similar percent changes in pulmonary function and exercise ventilation response, and in subjective symptom response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We examined the effect of maternal weight gain during pregnancy on exercise performance. Ten women performed submaximal cycle (up to 60 W) and treadmill (4 km/h, up to 10% grade) exercise tests at 34 +/- 1.5 (SD) wk gestation and 7.6 +/- 1.7 wk postpartum. Postpartum subjects wearing weighted belts designed to equal their body weight during the antepartum tests performed two additional treadmill tests. Absolute O2 uptake (VO2) at the same work load was higher during pregnancy than postpartum during cycle (1.04 +/- 0.08 vs. 0.95 +/- 0.09 l/min, P = 0.014), treadmill (1.45 +/- 0.19 vs. 1.27 +/- 0.20 l/min, P = 0.0002), and weighted treadmill (1.45 +/ 0.19 vs. 1.36 +/- 0.20 l/min, P = 0.04) exercise. None of these differences remained, however, when VO2 was expressed per kilogram of body weight. Maximal VO2 (VO2max) estimated from the individual heart rate-VO2 curves was the same during and after pregnancy during cycling (1.96 +/- 0.37 to 1.98 +/- 0.39 l/min), whereas estimated VO2max increased postpartum during treadmill (2.04 +/- 0.38 to 2.21 +/- 0.36 l/min, P = 0.03) and weighted treadmill (2.04 +/- 0.38 to 2.19 +/- 0.38 l/min, P = 0.03) exercise. We conclude that increased body weight during pregnancy compared with the postpartum period accounts for 75% of the increased VO2 during submaximal weight-bearing exertion in pregnancy and contributes to reduced exercise capacity. The postpartum increase in estimated VO2max during weight-bearing exercise is the result of consistently higher antepartum heart rates during all submaximal work loads.  相似文献   

14.
The purpose of this study was to assess the effects of a 2 h cycle exercise (50% VO2max) on heart rate (HR) and blood pressure (BP), and on plasma epinephrine (E) and norepinephrine (NE) concentrations, during the recovery period in seven normotensive subjects. Measurements were made at rest in supine (20 min) and standing (10 min) positions, during isometric exercise (hand-grip, 3 min, 25% maximal voluntary, contraction), in response to a mild psychosocial challenge (Stroop conflicting color word task) and during a 5-min period of light exercise (42 +/- 3% VO2max). Data were compared to measurements taken on another occasion under similar experimental conditions, without a previous exercise bout (control). The results showed HR to be slightly elevated in all conditions following the exercise bout. However, diastolic and systolic BP during the recovery period following exercise were not significantly different from the values observed in the control situation. Plasma NE concentrations in supine position and in response to the various physiological and/or psychosocial challenges were similar in the control situation and during the recovery period following exercise. On the other hand plasma E (nmol.1-1) was about 50% lower at rest (0.11 +/- 0.03 vs 0.23 +/- 0.04) as well as in response to hand-grip (0.21 +/- 0.04 vs 0.41 +/- 0.20) and the Stroop-test (0.21 +/- 0.05 vs 0.41 +/- 0.15) following the exercise bout.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The following aspects were studied during the annual cycle in young men (aged 19.0 ± 0.9 years) living in northern European Russia (62°N): the peak and instantaneous volumetric flow rates (PVFR and IVFR, respectively) at the moments of expiration of 25, 50, and 75% of the forced vital capacity of the lungs (FVC); the average volumetric expiratory flow rate in the process of expiration from 25 to 75% of FVC; the respiratory rate; and the time of attainment of PVFR and FVC. The pulmonary function parameters were determined using an SPM-01-R-D microprocessor spirograph. It was found that only the velocity characteristics of the external respiratory function significantly (the F test) changed in young men during the annual cycle; the time functions were not significantly different. A greater variation in the velocity parameters of the external respiratory function was found during the annual cycle compared to those for the inhabitants of temperate latitudes, which is indicative of adaptive reactions of the external respiratory function and a slightly restricted bronchial patency at the level of mediumand, especially, small-caliber bronchi. The PVFR and IVFR at the moments of expiration of 25, 50, and 75% of FVC and the average volumetric expiratory flow rate in the 25–75% range of the FVC in the male residents of the North are higher during the cold season and lower in the warm season.  相似文献   

16.
This study compared the effects of hypohydration (HYP) on endurance exercise performance in temperate and cold air environments. On four occasions, six men and two women (age = 24 +/- 6 yr, height = 170 +/- 6 cm, weight = 72.9 +/- 11.1 kg, peak O2 consumption = 48 +/- 9 ml.kg(-1).min(-1)) were exposed to 3 h of passive heat stress (45 degrees C) in the early morning with [euhydration (EUH)] or without (HYP; 3% body mass) fluid replacement. Later in the day, subjects sat in a cold (2 degrees C) or temperate (20 degrees C) environment with minimal clothing for 1 h before performing 30 min of cycle ergometry at 50% peak O2 consumption followed immediately by a 30-min performance time trial. Rectal and mean skin temperatures, heart rate, and ratings of perceived exertion measurements were made at regular intervals. Performance was assessed by the total amount of work (kJ) completed in the 30-min time trial. Skin temperature was significantly lower in the cold compared with the temperate trial, but there was no independent effect of hydration. Rectal temperature in both HYP trials was higher than EUH after 60 min of exercise, but the difference was only significant within the temperate trials (P < 0.05). Heart rate was significantly higher at 30 min within the temperate trial (HYP > EUH) and at 60 min within the cold trial (HYP > EUH) (P < 0.05). Ratings of perceived exertion increased over time with no differences among trials. Total work performed during the 30-min time trial was not influenced by environment but was less (P < 0.05) for HYP than EUH in the temperate trials. The corresponding change in performance (EUH-HYP) was greater for temperate (-8%) than for cold (-3%) (P < 0.05). These data demonstrate that 1) HYP impairs endurance exercise performance in temperate but not cold air but 2) cold stress per se does not.  相似文献   

17.
Experimental data suggest the presence of sensory receptors specific to the nasopharynx that may reflexly influence respiratory activity. To investigate the effects of inspired air temperature on upper airway dilator muscle activity during nose breathing, we compared phasic genioglossus electromyograms (EMGgg) in eight normal awake adults breathing cold dry or warm humidified air through the nose. EMGgg was measured with peroral bipolar electrodes during successive trials of cold air (less than or equal to 15 degrees C) and warm air (greater than or equal to 34 degrees C) nasal breathing and quantified for each condition as percent activity at baseline (room temperature). In four of the subjects, the protocol was repeated after topical nasal anesthesia. For all eight subjects, mean EMGgg was greater during cold air breathing than during baseline (P less than 0.005) or warm air breathing (P less than 0.01); mean EMGgg during warm air breathing was not significantly changed from baseline. Nasal anesthesia significantly decreased the mean EMGgg response to cold air breathing. Nasal airway inspiratory resistance, measured by posterior rhinomanometry in six subjects under similar conditions, was no different for cold or warm air nose breathing [cold 1.4 +/- 0.7 vs. warm 1.4 +/- 1.1 (SD) cmH2O.l-1.s at 0.4 l/s flow]. These data suggest the presence of superficially located nasal cold receptors that may reflexly influence upper airway dilating muscle activity independently of pressure changes in awake normal humans.  相似文献   

18.
In this study we explored the effects of physical training on the response of the respiratory system to exercise. Eight subjects with irreversible mild-to-moderate airflow obstruction [forced expiratory volume in 1 s of 85 +/- 14 (SD) % of predicted and ratio of forced expiratory volume in 1 s to forced vital capacity of 68 +/- 5%] and six normal subjects with similar anthropometric characteristics underwent a 2-mo physical training period on a cycle ergometer three times a week for 31 min at an intensity of approximately 80% of maximum heart rate. At this work intensity, tidal expiratory flow exceeded maximal flow at control functional residual capacity [FRC; expiratory flow limitation (EFL)] in the obstructed but not in the normal subjects. An incremental maximum exercise test was performed on a cycle ergometer before and after training. Training improved exercise capacity in all subjects, as documented by a significant increase in maximum work rate in both groups (P < 0.001). In the obstructed subjects at the same level of ventilation at high workloads, FRC was greater after than before training, and this was associated with an increase in breathing frequency and a tendency to decrease tidal volume. In contrast, in the normal subjects at the same level of ventilation at high workloads, FRC was lower after than before training, so that tidal volume increased and breathing frequency decreased. These findings suggest that adaptation to breathing under EFL conditions does not occur during exercise in humans, in that obstructed subjects tend to increase FRC during exercise after experiencing EFL during a 2-mo strenuous physical training period.  相似文献   

19.
The purpose of this study was to assess whether our method of inducing forced expiration detects small airway obstruction in horses. Parameters derived from forced expiratory flow-volume (FEFV) curves were compared with lung mechanics data obtained during spontaneous breathing in nine healthy horses, in three after histamine challenge, and in two with chronic obstructive pulmonary disease (COPD) pre- and posttherapy with prednisone. Parameters measured in the healthy horses included forced vital capacity (FVC = 41.6 +/- 5.8 liters; means +/- SD) and forced expiratory flow (FEF) at various percentages of FVC (range of 20.4-29.7 l/s). Histamine challenge induced a dose-dependent decrease in FVC and FEF at low lung volume. After therapy, lung function of the two COPD horses improved to a point where one horse had normal lung mechanics during tidal breathing; however, FEF at 95% of FVC (4.9 l/s) was still decreased. We concluded that FEFV curve analysis allowed the detection of induced or naturally occurring airway obstruction.  相似文献   

20.
Tracheobronchial blood flow in dogs increases with cold or dry air hyperventilation, possibly as a result of airway drying leading to increased osmolarity of airway surface fluid. This study was designed to examine whether administration of aerosols of various tonicity to alter airway surface fluid osmolarity would induce similar blood flow changes. Tracheobronchial blood flow was measured by the radioactive microsphere technique in six anesthetized dogs ventilated with warm humid air (100% relative humidity) for 15 min (period 1), air containing ultrasonically nebulized saline aerosol (1,711 mosmol/kg) for 3 min (period 2) and 12 min (period 3), and the same aerosol at a higher nebulizer output for a further 3 min (period 4). Between periods 3 and 4, the dogs were ventilated with warm humid air for 30 min to reestablish base-line conditions. In another five dogs, measurements were made after 30 min of ventilation with 1) warm humid air, 2) isotonic saline aerosol, 3) warm humid air, 4) distilled water aerosol (3 dogs), and hypertonic saline aerosol (2 dogs). After the last measurement was made, each dog was killed, the trachea and major bronchi were excised, and blood flow was calculated. No change in blood flow was found during any period of aerosol inhalation. The osmolar load imposed on the airways was estimated and was similar to that occurring during cold or dry air hyperventilation. These data suggest that increasing osmolarity of airway surface fluid does not explain the blood flow changes seen during hyperventilation of cold or dry air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号