首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nicotinic acetylcholine receptors found in the peripheral and central nervous system differ from those found at the neuromuscular junction. Recently we isolated a cDNA clone encoding the alpha subunit of a neuronal acetylcholine receptor expressed in both the peripheral and central nervous system. In this paper we report the isolation of a cDNA encoding the alpha subunit of a second acetylcholine receptor expressed in the central nervous system. Thus it is clear that there is a family of genes coding for proteins with sequence and structural homology to the alpha subunit of the muscle nicotinic acetylcholine receptor. Members of this gene family are expressed in different regions of the central nervous system and, presumably, code for subtypes of the nicotinic acetylcholine receptor.  相似文献   

2.
The effect of tetanus toxin in doses of 30 mcg/kg on the content, synthesis and release of acetylcholine, and on the activity of choline acetylase and acetylcholine esterase in the central nervous system of the rat was studied. The investigations were carried out after the appearance of tetanus. We found that the tetanus toxin: a) caused no changes in the acetylcholine content in the cerebral cortex and brain stem, and also in the cervical and lumbar parts of the spinal cord; b) stimulated acetylcholine synthesis in the brain stem and in the cervical and lumbar parts of the spinal cord but not in the cerebral cortex; c) activated choline acetylase; d) had no effect on acetylcholine esterase activity; e) released acetylcholine from the neurons in the brain stem and spinal cord. The release could not be inhibited by low concentration of potassium ions in the medium or increased with electrical stimulation.  相似文献   

3.
The results of a series of experimental studies have culminated in the identification of an acetylcholine receptor from the invertebrate Limulus polyphemus. The binding ligand α-bungarotoxin was used to identify a specific protein in the central nervous system tissue of this organism. The specific interaction of α-bungarotoxin with an acetylcholine receptor has been confirmed by physiological, competitive binding, subcellular fractionation and autoradiographic techniques. The toxin binding protein was solubilized and exhibited properties consistent with the nature of a nicotinic cholinergic receptor. Therefore, the identified protein is proposed as an acetylcholine receptor protein from the central nervous system of this invertebrate species.  相似文献   

4.
The binding of 125I-labeled α-bungarotoxin in the central nervous system of the horseshoe crab, Limulus polyphemus, was investigated. Comparative binding studies in various tissues of L. polyphemus demonstrated a selective association of the toxin with nervous tissues. The greatest enrichment of toxin binding in subcellular fractions of brain tissue was observed in a fraction enriched in mitochondria and acetylcholinesterase-containing membranes. Autoradiographic studies revealed the localization of α-bungarotoxin binding to the longitudinal connectives and neuropile regions of the abdominal ganglia. Three toxin binding components with approximate sedimentation coefficients of 9 S, 15.4 S and 17.4 S were present in solubilized extracts of brain tissue. 125I-labeled α-bungarotoxin binding to these components was inhibited 72%, 47%, 9% and 0% by 10 μM concentrations of (+)-tubocurarine, nicotine, scopolamine and pilocarpine, respectively. The apparent formation of the 15.4 S and 17.4 S proteins from the 9 S protein was obtained. The 15.4 S and 17.4 S components are suggested as aggregates of the 9 S protein. This 9 S protein is proposed as an acetylcholine receptor from the central nervous system of L. polyphemus.  相似文献   

5.
We have examined the requirement for normal acetylcholine metabolism in the formation and maintenance of the larval and adult central nervous system in Drosophila melanogaster. By using mutations at the Ace and Cha loci, which respectively encode the degradative and synthetic enzymes for acetylcholine (ACh), acetylcholinesterase (AChE), and choline acetyltransferase (ChAT), we have been able to disrupt acetylcholine metabolism in situ. An ultrastructural analysis of embryonic nervous tissue lacking either enzymatic function has indicated that while neither function is required for the formation of the larval central nervous system, each is required for the subsequent maintenance of its structural integrity and function. Using temperature sensitive mutations at the Cha locus, the normal developmental profile of ChAT activity during the late larval and pupal stages was disrupted. Subsequent examination of the morphology and behavior of the treated animals has indicated that normal acetylcholine metabolism is not required for the initial formation of the adult nervous system, but is required for the subsequent maintenance of its structural integrity and function. The results obtained in these studies are discussed with respect to data presented on the adult distribution of the cholinergic markers' AChE activity and ChAT immunoreactivity. The projections of adult peripheral neurons innervating Ace+ tissue from Ace cuticular clones has been examined to address the nature of the structure of Ace neuropil. Normal projections are apparently achieved and maintained, suggesting that the defects seen in adult Ace mosaics arise as an aberrant intracellular organization of morphologically normal cells.  相似文献   

6.
The in vivo effects of beta-bungarotoxin (beta-BT) on the acetylcholine (ACh) system were studied in the whole cerebrum and in different brain regions. The effect of beta-BT on cerebral ACh and choline (Ch) contents was time-dependent. The results show that a single intracerebroventricular injection of 1 microgram toxin increased both the ACh and Ch contents in the cortex, hippocampus, and cerebellum, while in the striatum the ACh level was decreased. Ten nanograms of toxin injected into the lateral ventricle twice, on the first and third days, led to a reduced ACh level 2 days after the last treatment. In animals treated with the same dose three times, on the first, third, and fifth days, and sacrificed 2 days after the last injection, the choline acetyltransferase and acetylcholinesterase activities were reduced and the number of muscarinic acetylcholine receptors was decreased. A biphasic effect of the toxin was therefore demonstrated. It is suggested that in the first phase of the toxin effect the increased levels of ACh and Ch may be due to the inhibition of neuronal transmission, while in the second phase, when the elements of the ACh system are reduced, the neuronal degenerating effect of beta-BT plays a significant role.  相似文献   

7.
The distribution of choline metabolites has been studied in the nervous system of housefly larvae reared on diets containing various amounts of choline or on diets containing either β-methylcholine (β-MCh) or N-dimethylethylcholine (DMECh). Adult houseflies were obtained from larvae reared on diets containing at least 4·6 times the level of choline in the basic diet or on diets containing the two choline analogues. The distribution of choline metabolites has been studied in the heads and thoraces plus abdomina of these adults.

Acetylcholine was found to be concentrated in the larval nervous system where it was synthesized preferentially to other choline metabolites when the amount of choline available to the insect was severely restricted. The acetylcholine content of the adult was between six and nine times that of the larval nervous system and approximately 70 per cent was concentrated in the head. The amount of acetylcholine present in flies obtained from larvae fed on diets containing the lowest amount of choline which allowed adults to develop was 230 pmole/insect. Flies obtained from larvae fed on diets with added β-MCh contained 150 pmole of acetylcholine/insect but no detectable acetyl-βMCh. Flies obtained from larvae fed on diets with added DMECh contained 43 pmole of acetylcholine and 127 pmole of acetyl-DMECh/insect.

It is concluded that the two choline analogues spare the choline requirement of the housefly by two different mechanisms. β-MCh displaces choline from the lipids of non-nervous tissue making more available for uptake into the nervous system where sufficient acetylcholine is synthesized for adult development. DMECh is a complete replacement for choline; the acetyl-DMECh acting as a neurotransmitter in place of acetylcholine.  相似文献   


8.
J. Neurochem. (2012) 122, 1065-1080. ABSTRACT: Acetylcholinesterase (AChE) rapidly hydrolyzes acetylcholine. At the neuromuscular junction, AChE is mainly anchored in the extracellular matrix by the collagen Q, whereas in the brain, AChE is tethered by the proline-rich membrane anchor (PRiMA). The AChE-deficient mice, in which AChE has been deleted from all tissues, have severe handicaps. Surprisingly, PRiMA KO mice in which AChE is mostly eliminated from the brain show very few deficits. We now report that most of the changes observed in the brain of AChE-deficient mice, and in particular the high levels of ambient extracellular acetylcholine and the massive decrease of muscarinic receptors, are also observed in the brain of PRiMA KO. However, the two groups of mutants differ in their responses to AChE inhibitors. Since PRiMA-KO mice and AChE-deficient mice have similar low AChE concentrations in the brain but differ in the AChE content of the peripheral nervous system, these results suggest that peripheral nervous system AChE is a major target of AChE inhibitors, and that its absence in AChE- deficient mice is the main cause of the slow development and vulnerability of these mice. At the level of the brain, the adaptation to the absence of AChE is nearly complete.  相似文献   

9.
Neuronal nicotinic receptors: from protein structure to function   总被引:7,自引:0,他引:7  
Itier V  Bertrand D 《FEBS letters》2001,504(3):118-125
Neuronal nicotinic acetylcholine receptors are a prototype of ligand-gated channels that mediate transmission in the central and peripheral nervous system. Structure-function studies performed at the amino acid level are now unraveling the determinant residues either for the properties of the ligand-binding domain or the ionic pore. In this work we review, in the light of the latest finding, the structure-function relationship of these receptors and their implication in neurological diseases.  相似文献   

10.
A Wieraszko 《Life sciences》1985,37(22):2059-2065
The influence of tetanus toxin on the efficiency of recurrent inhibition in the rat hippocampal slice was tested. The efficiency of the recurrent inhibition diminished in a dose-dependent manner following incubation of the slices with tetanus toxin. The effect was not observed in the slices preincubated for 3 hours with neuraminidase from Vibrio cholerae. This treatment reduces markedly the level of polysialogangliosides (receptor for tetanus toxin). It is concluded that tetanus toxin influences the efficiency of some inhibitory synapses in the central nervous system and that a certain level of polysialogangliosides is necessary for tetanus toxin to exert its action.  相似文献   

11.
Experiments were conducted on 100 rabbits with asscending, hematogenic and cerebral tetanus caused by the administration of tetanus toxin (1 Dcl). The therapeutic efficacy of "Diaferm-3" antitoxin was compared depending on the route--intracysternal or intralumbar--of its administration (400 IU/kg). Intracysternal antitoxin administration proved to be thrice as effective as the intralumbar one (31.4 and 10.2% of the sick animals recovered, respectively). The latter route was effective only in animals with the ascending intoxication, this apparently being connected with the site of entrance of the toxin into the central nervous system by the peripheral nerves of the hind limbs.  相似文献   

12.
Regulation of acetylcholine synthesis and storage   总被引:7,自引:0,他引:7  
  相似文献   

13.
Studies were conducted on curaremimetic neurotoxin binding to the nicotinic acetylcholine receptor present on membrane fractions derived from the human medulloblastoma clonal line, TE671. High-affinity binding sites (KD = 2 nM for 1-h incubation at 20 degrees C) and low-affinity binding sites (KD = 40 nM) for 125I-labeled alpha-bungarotoxin are present in equal quantities (60 fmol/mg membrane protein). The kinetically determined dissociation constant for high-affinity binding of toxin is 0.56 nM (k1 = 6.3 X 10(-3) min-1 nM-1; k-1 = 3.5 X 10(-3) min-1) at 20 degrees C. Nicotine, d-tubocurarine, and acetylcholine are among the most effective inhibitors of high-affinity toxin binding. The quantity of toxin binding sites and their affinity for cholinergic agonists is sensitive to reduction, alkylation, and/or oxidation of membrane sulfhydryl residues. High-affinity toxin binding sites that have been subjected to reaction with the sulfhydryl reagent dithiothreitol are irreversibly blocked by the nicotinic receptor affinity reagent bromoacetylcholine. High-affinity toxin binding is inhibited in the presence of either of two polyclonal antisera or a monoclonal antibody raised against nicotinic acetylcholine receptors from fish electric tissue. Taken together, these results indicate that curaremimetic neurotoxin binding sites on membrane fractions of the TE671 cell line share some properties with nicotinic acetylcholine receptors of peripheral origin and with toxin binding sites on other neuronal tissues.  相似文献   

14.
Abstract— The isolation and purification of an antigenic polypeptide fragment from tetanus toxin is described. The main physico-chemical, chemical, immunological, and pharmacological characteristics of this fragment, designated as B-IIb fraction, are reported. It is a polypeptide with a molecular weight close to 46,000. Its amino acid composition is on the whole comparable with that of the toxin. It contains one disulphide link and two free sulphhydryl groups which are not directly available for reaction. Tyrosine and lysine were found to be the two N -terminal groups. However, that B-IIb fraction has a subchain structure is still to be demonstrated. There is some evidence that B-IIb fraction may consist of 'isofragments'. This toxin fragment shows a cross-reaction with intact toxin and a specific flocculating activity of about three times that of the latter. In contrast, however, B-IIb fraction exhibits a specific toxicity approximately one hundred thousand times lower than the intact toxin. Although practically atoxic, this toxin fragment is still able to bind to gangliosides with an affinity which is even greater than that of the toxin. It is also capable of migrating towards the central nervous system by a mechanism of retrograde axonal transport as shown in peripheral adrenergic, sensory and motoneurons.
These unique features of B-IIb fraction are discussed in relation to the use of such fragments both for competing in vivo with the attachment of the toxin in the central nervous system and for specifically carrying therapeutic and pharmacological drugs into the central nervous system by neural route.  相似文献   

15.
The gill withdrawal reflex is suppressed in sexually active Aplysia   总被引:1,自引:0,他引:1  
In Aplysia, the central nervous system and peripheral nervous system interact and form an integrated system that mediates adaptive gill withdrawal reflex behaviours evoked by tactile stimulation of the siphon. The central nervous system (CNS) exerts suppressive and facilitatory control over the peripheral nervous system (PNS) in the mediation of these behaviours. We found that the CNS's suppressive control over the PNS was increased significantly in animals engaged in sexual activity as either a male or female. In control animals, the evoked gill withdrawal reflex met a minimal response amplitude criterion, while in sexually active animals the reflex did not meet this criterion. At the neuronal level, the increased CNS suppressive control was manifested as a decrease in excitatory input to the central gill motor neurons.  相似文献   

16.
A serum factor from patients with myasthenia gravis which inhibited the binding of 125I-labeled alpha-bungarotoxin to acetylcholine receptor extracted with Triton X-100 from rat muscle has been studied in detail. The inhibitory activity was localized to the IgG fraction based upon the fractionations by sodium sulfate precipitation and DEAE chromatography as well as reaction with anti-IgG globulin. The myasthenic globulin inhibited toxin binding to receptors extracted from degenerated muscle but did not inhibit toxin binding to normal junctional receptors. At saturation levels of myasthenic globulin, the number of denervated acetylcholine receptors available for toxin binding was reduced approx. 50 percent. The myastehnic globulin was found to bind to denervated acetylcholine receptors but not to normal acetylcholine receptors by a radioimmunoassay technique in which myasthenic globulin incubated with 125I-labeled alpha bungarotoxin-receptor complexes was precipitated by anti-IgG serum. The globulin binding was saturable over the same range as inhibition of toxin binding. The data suggest that the myasthenic IgC binds to a site on the receptor complex juxtaposed to the acetylcholine receptor site. The myasthenic globulin appears to be a useful probe for investigation differences between acetylcholine receptors extracted from normal and denervated muscle and for investigating the pathogenesis of myasthenia gravis.  相似文献   

17.
To determine the basal aceylcholine level in the dialysate of rat frontal cortex, a horseradish peroxidase-osmium redox polymer-modified glassy carbon electrode (HRP-GCE) was employed instead of the conventional platinum electrode used in high-performance liquid chromatography-electrochemical detection (HPLC-ED). In initial experiments, an oxidizable unknown compounds interfered with the detection of basal acetylcholine release on HPLC-HRP-GCE. An immobilized peroxidase-choline oxidase precolumn (pre-reactor) was included in the HPLC system, to eliminate the interference from the unknown compound. This combination could detect less than 10 fmol of standard acetylcholine and basal acetylcholine levels in the dialysate from a conventional concentric design microdialysis probe, without the use of cholinesterase inhibitor, and may facilitate physiological investigation of cholinergic neuronal activity in the central nervous system.  相似文献   

18.
The effect of vegetative nervous system activation or depression (subdiaphragmatic vagotomy, atropine, proserine and acetylcholine treatments) on the hepatic microsomal enzymes activities has been studied on Wistar male rats. It is found, that hepatic denervation and atropine treatment decreased cytochrome P450 content and aniline hydroxylase activity. Proserine and acetylcholine induced an opposite effect. It is considered that these different changes in the microsomal enzyme activities with variations in the vegetative nervous system state have proved the nervous control of these processes.  相似文献   

19.
The enteric nervous system is formed by neural crest cells that proliferate, migrate and colonize the gut. Following colonization, neural crest cells must then differentiate into neurons with markers specific for their neurotransmitter phenotype. Cholinergic neurons, a major neurotransmitter phenotype in the enteric nervous system, are identified by staining for choline acetyltransferase (ChAT), the synthesizing enzyme for acetylcholine. Historical efforts to visualize cholinergic neurons have been hampered by antibodies with differing specificities to central nervous system versus peripheral nervous system ChAT. We and others have overcome this limitation by using an antibody against placental ChAT, which recognizes both central and peripheral ChAT, to successfully visualize embryonic enteric cholinergic neurons. Additionally, we have compared this antibody to genetic reporters for ChAT and shown that the antibody is more reliable during embryogenesis. This protocol describes a technique for dissecting, fixing and immunostaining of the murine embryonic gastrointestinal tract to visualize enteric nervous system neurotransmitter expression.  相似文献   

20.
The synthesis of diazidopropidium and diazidoethidium is described. The applicability of these compounds as photoaffinity labels for cholinergic proteins has been investigated: diazidopropidium inhibits neuromuscular transmission. This inhibition is reversible if the compound is applied in the dark but becomes irreversible after irradiation with white light. Inhibition is accompanied by a disappearance of miniature endplate potentials. Electrophysiological analysis of this effect indicates that diazidopropidium acts postsynaptically by blocking the acetylcholine receptors. At the molecular level the action of diazidopropidium and diazidoethidium on acetylcholinesterase has been investigated: both compounds appear to bind to a peripheral acetylcholine binding site of this enzyme. Binding of 125I-labeled alpha-neurotoxin from Naja naja siamensis to purified membranes from Torpedo californica electric tissue rich in acetylcholine receptors is diminished after incubation and irradiation with diazidopropidium. About half of the toxin binding sites appear to be blocked by the photoaffinity label.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号