首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quick, reliable, purification procedure was developed for purifying both benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II from a single batch of Acinetobacter calcoaceticus N.C.I.B. 8250. The procedure involved disruption of the bacteria in the French pressure cell and preparation of a high-speed supernatant, followed by chromatography on DEAE-Sephacel, affinity chromatography on Blue Sepharose CL-6B and Matrex Gel Red A, and finally gel filtration through a Superose 12 fast-protein-liquid-chromatography column. The enzymes co-purified as far as the Blue Sepharose CL-6B step were separated on the Matrex Gel Red A column. The final preparations of benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II gave single bands on electrophoresis under non-denaturing conditions or on SDS/polyacrylamide-gel electrophoresis. The enzymes are tetramers, as judged by comparison of their subunit (benzyl alcohol dehydrogenase, 39,700; benzaldehyde dehydrogenase II, 55,000) and native (benzyl alcohol dehydrogenase, 155,000; benzaldehyde dehydrogenase II, 222,500) Mr values, estimated by SDS/polyacrylamide-gel electrophoresis and gel filtration respectively. The optimum pH values for the oxidation reactions were 9.2 for benzyl alcohol dehydrogenase and 9.5 for benzaldehyde dehydrogenase II. The pH optimum for the reduction reaction for benzyl alcohol dehydrogenase was 8.9. The equilibrium constant for oxidation of benzyl alcohol to benzaldehyde by benzyl alcohol dehydrogenase was determined to be 3.08 x 10(-11) M; the ready reversibility of the reaction catalysed by benzyl alcohol dehydrogenase necessitated the development of an assay procedure in which hydrazine was used to trap the benzaldehyde formed by the NAD+-dependent oxidation of benzyl alcohol. The oxidation reaction catalysed by benzaldehyde dehydrogenase II was essentially irreversible. The maximum velocities for the oxidation reactions catalysed by benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II were 231 and 76 mumol/min per mg of protein respectively; the maximum velocity of the reduction reaction of benzyl alcohol dehydrogenase was 366 mumol/min per mg of protein. The pI values were 5.0 for benzyl alcohol dehydrogenase and 4.6 for benzaldehyde dehydrogenase II. Neither enzyme activity was affected when assayed in the presence of a range of salts. Absorption spectra of the two enzymes showed no evidence that they contain any cofactors such as cytochrome, flavin, or pyrroloquinoline quinone. The kinetic coefficients of the purified enzymes with benzyl alcohol, benzaldehyde, NAD+ and NADH are also presented.  相似文献   

2.
Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase, two enzymes of the xylene degradative pathway encoded by the plasmid TOL of a Gram-negative bacterium Pseudomonas putida, were purified and characterized. Benzyl alcohol dehydrogenase catalyses the oxidation of benzyl alcohol to benzaldehyde with the concomitant reduction of NAD+; the reaction is reversible. Benzaldehyde dehydrogenase catalyses the oxidation of benzaldehyde to benzoic acid with the concomitant reduction of NAD+; the reaction is irreversible. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase also catalyse the oxidation of many substituted benzyl alcohols and benzaldehydes, respectively, though they were not capable of oxidizing aliphatic alcohols and aldehydes. The apparent Km value of benzyl alcohol dehydrogenase for benzyl alcohol was 220 microM, while that of benzaldehyde dehydrogenase for benzaldehyde was 460 microM. Neither enzyme contained a prosthetic group such as FAD or FMN, and both enzymes were inactivated by SH-blocking agents such as N-ethylmaleimide. Both enzymes were dimers of identical subunits; the monomer of benzyl alcohol dehydrogenase has a mass of 42 kDa whereas that of the monomer of benzaldehyde dehydrogenase was 57 kDa. Both enzymes transfer hydride to the pro-R side of the prochiral C4 of the pyridine ring of NAD+.  相似文献   

3.
The transient kinetics of aldehyde reduction by NADH catalyzed by liver alcohol dehydrogenase consist of two kinetic processes. This biphasic rate behavior is consistent with a model in which one of the two identical subunits in the enzyme is inactive during the reaction at the adjacent protomer. Alternatively, enzyme heterogeneity could result in such biphasic behavior. We have prepared liver alcohol dehydrogenase containing a single major isozyme; and the transient kinetics of this purified enzyme are biphasic.Addition of two [14C]carboxymethyl groups per dimer to the two “reactive” sulfhydryl groups (Cys46) yields enzyme which is catalytically inactive toward alcohol oxidation. Alkylated enzyme, as initially isolated by gel filtration chromatography at pH 7·5, forms an NAD+-pyrazole complex. However, the ability to bind NAD+-pyrazole is rapidly lost in pH 8·75 buffer; therefore, our alkylated preparations, as isolated by chromatography at pH 8·75, are inactive toward NAD+-pyrazole complex formation. We have prepared partially inactivated enzyme by allowing iodoacetic acid to react with liver alcohol dehydrogenase until 50% of the NAD+-pyrazole binding capacity remains; under these reaction conditions one [14C]carboxymethyl group is added per dimer. This partially alkylated enzyme preparation is isolated by gel filtration and has been aged sufficiently to lose NAD+-pyrazole binding ability at alkylated subunits. When solutions of native liver alcohol dehydrogenase and partially alkylated liver alcohol dehydrogenase containing the same number of unmodified active sites are allowed to react with substrate under single turnover conditions, partially alkylated enzyme is only half as reactive as native enzyme. This indicates that some molecular species in partially alkylated liver alcohol dehydrogenase that react with pyrazole and NAD+ during the active site titration do not react with substrate. These data are consistent with a model in which a subunit adjacent to an alkylated protomer in the dimeric enzyme is inactive toward substrate. In addition, NAD+-pyrazole binding at the protomers adjacent to alkylated subunits is slowly lost so that 75% of the enzyme-NAD+-pyrazole binding capacity is lost in 50% alkylated enzyme. These data supply strong evidence for subunit interactions in liver alcohol dehydrogenase.Binding experiments performed on partially alkylated liver alcohol dehydrogenase indicate that coenzyme binding is normal at a subunit adjacent to an alkylated protomer even though active ternary complexes cannot be formed. One hypothesis consistent with these results is the unavailability of zinc for substrate binding at the active site in subunits adjacent to alkylated protomers in monoalkylated dimer.  相似文献   

4.
5.
The structural framework of cod liver alcohol dehydrogenase is similar to that of horse and human alcohol dehydrogenases. In contrast, the substrate pocket differs significantly, and main differences are located in three loops. Nevertheless, the substrate pocket is hydrophobic like that of the mammalian class I enzymes and has a similar topography in spite of many main-chain and side-chain differences. The structural framework of alcohol dehydrogenase is also present in a number of related enzymes like glucose dehydrogenase and quinone oxidoreductase. These enzymes have completely different substrate specificity, but also for these enzymes, the corresponding loops of the substrate pocket have significantly different structures. The domains of the two subunits in the crystals of the cod enzyme further differ by a rotation of the catalytic domains by about 6 degrees. In one subunit, they close around the coenzyme similarly as in coenzyme complexes of the horse enzyme, but form a more open cleft in the other subunit, similar to the situation in coenzyme-free structures of the horse enzyme. The proton relay system differs from the mammalian class I alcohol dehydrogenases. His 51, which has been implicated in mammalian enzymes to be important for proton transfer from the buried active site to the surface is not present in the cod enzyme. A tyrosine in the corresponding position is turned into the substrate pocket and a water molecule occupies the same position in space as the His side chain, forming a shorter proton relay system.  相似文献   

6.
We investigated by stopped-flow techniques the oxidation of benzyl alcohol catalyzed by horse liver alcohol dehydrogenase varying the concentration of the reagents, pH and temperature. The course of the reaction under enzymelimiting conditions is biphasic and the measured amplitude of the initial step corresponds under saturation conditions to half of the total enzyme concentration (half-burst). The fast initial step (with a maximum rate of 20 s?1 at pH 7.0) shows an isotope effect of approximately 2, which indicates that this rate contains a contribution from a hydrogen transfer. It is also shown that this rate differs by at least one order of magnitude with respect to that of the hydrogen transfer during benzaldehyde reduction. The half-of-the-sites reactivity of alcohol dehydrogenase in the initial transient process is obtained independent of reagent concentration, pH and/or temperature. It is obtained also when coenzyme analogues are substituted for NAD, and when different alcohols are substituted for benzyl alcohol. These data are taken to demonstrate unequivocally that the half-of-the-sites reactivity of alcohol dehydrogenase cannot be due to an interplay of rate constants (as proposed by various authors) and must rather be ascribed to a kinetic non-equivalence of the two subunits when active ternary complexes are being formed. When oxidation of benzyl alcohol is carried out in the presence of 0.1 m-isobutyramide (which makes a very tight complex with NADH at the enzyme active site), reaction stops after formation of an amount of NADH product that is equivalent to one half of the enzyme active site concentration.This is considered in the light of the pyrazole experiment designed by McFarland &; Bernhard (1972), in which reduction of benzaldehyde is carried out in the presence of pyrazole (which forms a very tight ternary complex with NAD at the enzyme active site). In this case, reaction stops after formation of an amount of NAD-product which is equivalent to the total enzyme active site concentration. It is shown that accommodation of these two seemingly contradictory sets of data poses severe restrictions on the alcohol dehydrogenase mechanism. In particular, it is shown that the only mechanism that adheres to such requirements is one in which the two subunits have distinct and alternating functions in each enzyme cycle. These two functions are the triggering of the chemical transformation and the chemical transformation itself. It is also shown that binding of NAD-substrate to one subunit triggers chemical reactivity in the other NAD-alcohol-containing subunit, whereas on aldehyde reduction, the triggering event is desorption of alcohol product from the first reacted subunit.  相似文献   

7.
C Grubmeyer  H Teng 《Biochemistry》1999,38(22):7355-7362
L-Histidinol dehydrogenase catalyzes the biosynthetic oxidation of L-histidinol to L-histidine with sequential reduction of two molecules of NAD. Previous isotope exchange results had suggested that the oxidation of histidinol to the intermediate histidinaldehyde occurred 2-3-fold more rapidly than overall catalysis. In this work, we present kinetic isotope effects (KIE) studies at pH 9.0 and at pH 6.7 with stereospecifically mono- and dideuterated histidinols. The data at pH 9.0 support minimal participation of the first hydride transfer and substantial participation of the second hydride transfer in the overall rate limitation. Stopped-flow experiments with protiated histidinol revealed a small burst of NADH production with stoichiometry of 0.12 per subunit, and 0.25 per subunit with dideuterated histidinol, indicating that the overall first half-reaction was not significantly faster than the second reaction sequence. Results from kcat and kcat/KM titrations with histidinol, NAD, and the alternative substrate imidazolyl propanediol demonstrated an essential base with pKa values between 7.7 and 8.4. In KIE experiments performed at pH 6.7 or with a coenzyme analogue at pH 9. 0, the first hydride transfer became more rate limiting. Kinetic simulations based on rate constants estimated from this work fit well with a mechanism that includes a relatively fast, and thermodynamically unfavorable, hydride transfer from histidinol and a slower, irreversible second hydride transfer from a histidinaldehyde derivative. Thus, although the chemistry of the first hydride transfer is fast, both partial reactions participate in the overall rate limitation.  相似文献   

8.
The primary structure of bovine liver UDP-glucose dehydrogenase (UDPGDH), a hexameric, NAD(+)-linked enzyme, has been determined at the protein level. The 52-kDa subunits are composed of 468 amino acid residues, with a free N-terminus and a Ser/Asn microhetergeneity at one position. The sequence shares 29.6% positional identity with GDP-mannose dehydrogenase from Pseudomonas, confirming a similarity earlier noted between active site peptides. This degree of similarity is comparable to the 31.1% identity vs. the UDPGDH from type A Streptococcus. Database searching also revealed similarities to a hypothetical sequence from Salmonella typhimurium and to "UDP-N-acetyl-mannosaminuronic acid dehydrogenase" from Escherichia coli. Pairwise identities between bovine UDPGDH and each of these sequences were all in the range of approximately 26-34%. Multiple alignment of all 5 sequences indicates common ancestry for these 4-electron-transferring enzymes. There are 27 strictly conserved residues, including a cysteine residue at position 275, earlier identified by chemical modification as the expected catalytic residue of the second half-reaction (conversion of UDP-aldehydoglucose to UDP-glucuronic acid), and 2 lysine residues, at positions 219 and 338, one of which may be the expected catalytic residue for the first half-reaction (conversion of UDP-glucose to UDP-aldehydoglucose). A GXGXXG pattern characteristic of the coenzyme-binding fold is found at positions 11-16, close to the N-terminus as with "short-chain" alcohol dehydrogenases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
FDH (10-formyltetrahydrofolate dehydrogenase, Aldh1L1, EC 1.5.1.6) converts 10-formyltetrahydrofolate (10-formyl-THF) to tetrahydrofolate and CO(2) in a NADP(+)-dependent reaction. It is a tetramer of four identical 902 amino acid residue subunits. The protein subunit is a product of a natural fusion of three unrelated genes and consists of three distinct domains. The N-terminal domain of FDH (residues 1-310) carries the folate binding site and shares sequence homology and structural topology with other enzymes utilizing 10-formyl-THF as a substrate. In vitro it functions as 10-formyl-THF hydrolase, and evidence indicate that this activity is a part of the overall FDH mechanism. The C-terminal domain of FDH (residues 400-902) originated from an aldehyde dehydrogenase-related gene and is capable of oxidation of short-chain aldehydes to corresponding acids. Similar to classes 1 and 2 aldehyde dehydrogenases, this domain exists as a tetramer and defines the oligomeric structure of the full-length enzyme. The two catalytic domains are connected by an intermediate linker (residues 311-399), which is a structural and functional homolog of carrier proteins possessing a 4'-phosphopantetheine prosthetic group. In the FDH mechanism, the intermediate linker domain transfers a formyl, covalently attached to the sulfhydryl group of the phosphopantetheine arm, from the N-terminal domain to the C-terminal domain. The overall FDH mechanism is a coupling of two sequential reactions, a hydrolase and a formyl dehydrogenase, bridged by a substrate transfer step. In this mechanism, one domain provides the folate binding site and a hydrolase catalytic center to remove the formyl group from the folate substrate, another provides a transfer vehicle between catalytic centers and the third one contributes the dehydrogenase machinery further oxidizing formyl to CO(2).  相似文献   

10.
The structure of bovine heart mitochondrial NADH dehydrogenase was investigated by using two cleavable cross-linking agents, disuccinimidyl tartrate and (ethylene glycol)yl bis-(succinimidyl succinate). Cross-linking was analysed primarily by immunoblotting to detect products containing subunits of the iron-protein fraction from chaotropic resolution of the enzyme, namely those of 75, 49, 30 and 13 kDa. By using both the isolated iron-protein fraction and the intact dehydrogenase, cross-links were identified between these four subunits, from these subunits to the largest subunit of the flavoprotein fraction, which contains the active site for NADH, and from these subunits to polypeptides in the hydrophobic shell, which surrounds the hydrophilic iron-protein and flavoprotein fractions.  相似文献   

11.
A quinoprotein catalyzing oxidation of cyclic alcohols was found in the membrane fraction for the first time, after extensive screening among aerobic bacteria. Gluconobacter frateurii CHM 9 was finally selected in this study. The enzyme tentatively named membrane-bound cyclic alcohol dehydrogenase (MCAD) was found to occur specifically in the membrane fraction, and pyrroloquinoline quinone (PQQ) was functional as the primary coenzyme in the enzyme activity. MCAD catalyzed only oxidation reaction of cyclic alcohols irreversibly to corresponding ketones. Unlike already known cytosolic NAD(P)H-dependent alcohol-aldehyde or alcohol-ketone oxidoreductases, MCAD was unable to catalyze the reverse reaction of cyclic ketones or aldehydes to cyclic alcohols. MCAD was solubilized and purified from the membrane fraction of the organism to homogeneity. Differential solubilization to eliminate the predominant quinoprotein alcohol dehydrogenase (ADH), and the subsequent two steps of column chromatographies, brought MCAD to homogeneity. Purified MCAD had a molecular mass of 83 kDa by SDS-PAGE. Substrate specificity showed that MCAD was an enzyme oxidizing a wide variety of cyclic alcohols. Some minor enzyme activity was found with aliphatic secondary alcohols and sugar alcohols, but not primary alcohols, differentiating MCAD from quinoprotein ADH. NAD-dependent cytosolic cyclic alcohol dehydrogenase (CCAD) in the same organism was crystallized and its catalytic and physicochemical properties were characterized. Judging from the catalytic properties of CCAD, it was apparent that CCAD was distinct from MCAD in many respects and seemed to make no contributions to cyclic alcohol oxidation.  相似文献   

12.
UDP-glucose dehydrogenase catalyzes the NAD+-dependent twofold oxidation of UDP-glucose to give UDP-glucuronic acid. A sequestered aldehyde intermediate is produced in the first oxidation step and a covalently bound thioester is produced in the second oxidation step. This work demonstrates that the Streptococcus pyogenes enzyme incorporates a single solvent-derived oxygen atom during catalysis and probably does not generate an imine intermediate. The reaction of UDP-[6",6"-di-2H]-d-glucose is not accompanied by a primary kinetic isotope effect, indicating that hydride transfer is not rate determining in this reaction. Studies with a mutant of the key active site nucleophile, Cys260Ala, show that it is capable of both reducing the aldehyde intermediate, and oxidizing the hydrated form of the aldehyde intermediate but is incapable of oxidizing UDP-glucose to UDP-glucuronic acid. In the latter case, a ternary Cys260Ala/aldehyde intermediate/NADH complex is presumably formed, but it does not proceed to product as both release and hydration of the bound aldehyde occur slowly. A washout experiment demonstrates that the NADH in this ternary complex is not exchangeable with external NADH, indicating that dissociation only occurs after the addition of a nucleophile to the aldehyde carbonyl. Studies on Thr118Ala show that the value of kcat is reduced 160-fold by this mutation, and that the reaction of UDP-D-[6",6"-di-2H]-glucose is now accompanied by a primary kinetic isotope effect. This indicates that the barriers for the hydride transfer steps have been selectively increased and supports a mechanism in which an ordered water molecule (H-bonded to Thr118) serves as the catalytic base in these steps.  相似文献   

13.
Drosophila alcohol dehydrogenase (DADH) is an NAD+-dependent enzyme that catalyzes the oxidation of alcohols to aldehydes/ketones and that is also able to further oxidize aldehydes to their corresponding carboxylic acids. The structure of the ternary enzyme-NADH-acetate complex of the slow alleloform of Drosophila melanogaster ADH (DmADH-S) was solved at 1.6 A resolution by X-ray crystallography. The coenzyme stereochemistry of the aldehyde dismutation reaction showed that the obtained enzyme-NADH-acetate complex reflects a productive ternary complex although no enzymatic reaction occurs. The stereochemistry of the acetate binding in the bifurcated substrate-binding site, along with previous stereochemical studies of aldehyde reduction and alcohol oxidation shows that the methyl group of the aldehyde in the reduction reaction binds to the R1 and in the oxidation reaction to the R2 sub-site. NMR studies along with previous kinetic studies show that the formed acetaldehyde intermediate in the oxidation of ethanol to acetate leaves the substrate site prior to the reduced coenzyme, and then binds to the newly formed enzyme-NAD+ complex. Here, we compare the three-dimensional structure of D.melanogaster ADH-S and a previous theoretically built model, evaluate the differences with the crystal structures of five Drosophila lebanonensis ADHs in numerous complexed forms that explain the substrate specificity as well as subtle kinetic differences between these two enzymes based on their crystal structures. We also re-examine the electrostatic influence of charged residues on the surface of the protein on the catalytic efficiency of the enzyme.  相似文献   

14.
Purification and characterization of human liver sorbitol dehydrogenase   总被引:1,自引:0,他引:1  
W Maret  D S Auld 《Biochemistry》1988,27(5):1622-1628
Sorbitol dehydrogenase from human liver was purified to homogeneity by affinity chromatography on immobilized triazine dyes, conventional cation-exchange chromatography, and high-performance liquid chromatography. The major form is a tetrameric, NAD-specific enzyme containing one zinc atom per subunit. Human liver sorbitol dehydrogenase oxidizes neither ethanol nor other primary alcohols. It catalyzes the oxidation of a secondary alcohol group of polyol substrates such as sorbitol, xylitol, or L-threitol. However, the substrate specificity of human liver sorbitol dehydrogenase is broader than that of the liver enzymes of other sources. The present report describes the stereospecific oxidation of (2R,3R)-2,3-butanediol, indicating a more general function of sorbitol dehydrogenase in the metabolism of secondary alcohols. Thus, the enzyme complements the substrate specificities covered by the three classes of human liver alcohol dehydrogenase.  相似文献   

15.
In this study a new insight was provided to understand the functions of membrane-bound alcohol dehydrogenase (mADH) and aldehyde dehydrogenase (mALDH) in the bio-oxidation of primary alcohols, diols and poly alcohols using the resting cells of Gluconobacter oxydans DSM 2003 and its mutant strains as catalyst. The results demonstrated that though both mADH and mALDH participated in most of the oxidation of alcohols to their corresponding acid, the exact roles of these enzymes in each reaction might be different. For example, mADH played a key role in the oxidation of diols to its corresponding organic acid in G. oxydans, but it was dispensable when the primary alcohols were used as substrates. In contrast to mADH, mALDH appears to play a relatively minor role in organic acid-producing reactions because of the possible presence of other isoenzymes. Aldehydes were, however, found to be accumulated in the mALDH-deficient strain during the oxidation of alcohols.  相似文献   

16.
Pyruvate dehydrogenase kinase (PDK) is the primary regulator of flux through the mitochondrial pyruvate dehydrogenase complex (PDC). Analysis of the primary amino-acid sequences of PDK from various sources reveals that these enzymes include the five domains characteristic of prokaryotic two-component His-kinases, despite the fact that PDK exclusively phosphorylates Ser residues in the E1alpha subunit of the PDC. This seeming contradiction might be resolved if the PDK-catalyzed reaction employed a phospho-His intermediate. The results from pH-stability studies of autophosphorylated Arabidopsis thaliana PDK did not provide any support for a phospho-His intermediate. Furthermore, site-directed mutagenesis of the two most likely phosphotransfer His residues (H121 and H168) did not abolish either PDK autophosphorylation or the ability to transphosphorylate E1alpha. Thus, PDK is a unique type of protein kinase having a His-kinase-like sequence but Ser-kinase activity.  相似文献   

17.
Four isoenzymes of aldehyde dehydrogenase were partially purified from rat liver mitochondria by hydroxylapatite chromatography and gel filtration. While three forms display low affinity for acetaldehyde, the fourth is active at extremely low aldehyde concentrations (Km less than or equal to 2 microM) and allows the oxidation of the acetaldehyde formed by catalysis of alcohol dehydrogenase at pH 7.4. Different models of alcohol dehydrogenase have been examined by analysis of progress curves of ethanol oxidation obtained in the presence of low-km aldehyde dehydrogenase. According to the only acceptable model, when the acetaldehyde concentration is kept low by the action of aldehyde dehydrogenase, NADH no longer binds to alcohol dehydrogenase, but acetaldehyde still competes with ethanol for the active site of the enzyme. The seven kinetic parameters of the two enzymes (four for alcohol dehydrogenase and three for aldehyde dehydrogenase) and the equilibrium constant of the reaction catalyzed by alcohol dehydrogenase have been determined by applying a new fitting procedure here described.  相似文献   

18.
To identify the enzyme responsible for pentitol oxidation by acetic acid bacteria, two different ribitol oxidizing enzymes, one in the cytosolic fraction of NAD(P)-dependent and the other in the membrane fraction of NAD(P)-independent enzymes, were examined with respect to oxidative fermentation. The cytoplasmic NAD-dependent ribitol dehydrogenase (EC 1.1.1.56) was crystallized from Gluconobacter suboxydans IFO 12528 and found to be an enzyme having 100 kDa of molecular mass and 5 s as the sedimentation constant, composed of four identical subunits of 25 kDa. The enzyme catalyzed a shuttle reversible oxidoreduction between ribitol and D-ribulose in the presence of NAD and NADH, respectively. Xylitol and L-arabitol were well oxidized by the enzyme with reaction rates comparable to ribitol oxidation. D-Ribulose, L-ribulose, and L-xylulose were well reduced by the enzyme in the presence of NADH as cosubstrates. The optimum pH of pentitol oxidation was found at alkaline pH such as 9.5-10.5 and ketopentose reduction was found at pH 6.0. NAD-Dependent ribitol dehydrogenase seemed to be specific to oxidoreduction between pentitols and ketopentoses and D-sorbitol and D-mannitol were not oxidized by this enzyme. However, no D-ribulose accumulation was observed outside the cells during the growth of the organism on ribitol. L-Ribulose was accumulated in the culture medium instead, as the direct oxidation product catalyzed by a membrane-bound NAD(P)-independent ribitol dehydrogenase. Thus, the physiological role of NAD-dependent ribitol dehydrogenase was accounted to catalyze ribitol oxidation to D-ribulose in cytoplasm, taking D-ribulose to the pentose phosphate pathway after being phosphorylated. L-Ribulose outside the cells would be incorporated into the cytoplasm in several ways when need for carbon and energy sources made it necessary to use L-ribulose for their survival. From a series of simple experiments, membrane-bound sugar alcohol dehydrogenase was concluded to be the enzyme responsible for L-ribulose production in oxidative fermentation by acetic acid bacteria.  相似文献   

19.
C T Grubmeyer  K W Chu  S Insinga 《Biochemistry》1987,26(12):3369-3373
Salmonella typhimurium histidinol dehydrogenase produces histidine from the amino alcohol histidinol by two sequential NAD-linked oxidations which form and oxidize a stable enzyme-bound histidinaldehyde intermediate. The enzyme was found to catalyze the exchange of 3H between histidinol and [4(R)-3H]NADH and between NAD and [4(S)-3H]NADH. The latter reaction proceeded at rates greater than kcat for the net reaction and was about 3-fold faster than the former. Histidine did not support an NAD/NADH exchange, demonstrating kinetic irreversibility in the second half-reaction. Specific activity measurements on [3H]histidinol produced during the histidinol/NADH exchange reaction showed that only a single hydrogen was exchanged between the two reactants, demonstrating that under the conditions employed this exchange reaction arises only from the reversal of the alcohol dehydrogenase step and not the aldehyde dehydrogenase reaction. The kinetics of the NAD/NADH exchange reaction demonstrated a hyperbolic dependence on the concentration of NAD and NADH when the two were present in a 1:2 molar ratio. The histidinol/NADH exchange showed severe inhibition by high NAD and NADH under the same conditions, indicating that histidinol cannot dissociate directly from the ternary enzyme-NAD-histidinol complex; in other words, the binding of substrate is ordered with histidinol leading. Binding studies indicated that [3H]histidinol bound to 1.7 sites on the dimeric enzyme (0.85 site/monomer) with a KD of 10 microM. No binding of [3H]NAD or [3H]NADH was detected. The nucleotides could, however, displace histidinol dehydrogenase from Cibacron Blue-agarose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
K Ma  F T Robb    M W Adams 《Applied microbiology》1994,60(2):562-568
Thermococcus litoralis is a strictly anaerobic archaeon that grows at temperatures up to 98 degrees C by fermenting peptides. Little is known about the primary metabolic pathways of this organism and, in particular, the role of enzymes that are dependent on thermolabile nicotinamide nucleotides. In this paper we show that the cytoplasmic fraction of cell extracts contained NADP-specific glutamate dehydrogenase (GDH) and NADP-specific alcohol dehydrogenase (ADH) activities, neither of which utilized NAD as a cofactor. The GDH is composed of identical subunits having an M(r) of 45,000 and had an optimal pH and optimal temperature for glutamate oxidation of 8.0 and > 95 degrees C, respectively. Potassium phosphate (60 mM), KCl (300 mM), and NaCl (300 mM) each stimulated the rate of glutamate oxidation activity between two- and threefold. For glutamate oxidation the apparent Km values at 80 degrees C for glutamate and NADP were 0.22 and 0.029 mM, respectively, and for 2-ketoglutarate reduction the apparent Km values for 2-ketoglutarate, NADPH, and NH4+ were 0.16, 0.14, and 0.63 mM, respectively. This enzyme is the first NADP-specific GDH purified form a hyperthermophilic organism. T. litoralis ADH is a tetrameric protein composed of identical subunits having an M(r) of 48,000; the optimal pH and optimal temperature for ethanol oxidation were 8.8 and 80 degrees C, respectively. In contrast to GDH activity, potassium phosphate (60 mM), KCl (0.1 M), and NaCl (0.3 M) inhibited ADH activity, whereas (NH4)2SO4 (0.1 M) had a slight stimulating effect. This enzyme exhibited broad substrate specificity for primary alcohols, but secondary alcohols were not oxidized.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号