首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
C Gualerzi  G Risuleo  C L Pon 《Biochemistry》1977,16(8):1684-1689
Initial rate kinetics of the formation of ternary complexes of Escherichia coli 30S ribosomal subunits, poly(uridylic acid), and N-acetylphenylalanyl transfer ribonucleic acid in the presence and in the absence of IF-3 are consistent with the hypothesis that the ternary complex is formed through a random order of addition of polynucleotide and aminoacyl-tRNA to separate and independent binding sites on the 30S ribosomes. The transformation of an intermediate into a stable ternary complex which probably entails a rearrangement of the ribosome structure leading to a codon-anticodon interaction represents the rate-limiting step in the formation of the ternary complex. The rate constant of this transformation, as well as the association constants for the formation of the 30S-poly(U) and 30S-N-AcPhe-tRNA binary complexes, are enhanced by the presence of IF-3 which acts as a kinetic effector on reactions which are intrinsic properties of the 30S ribosome. The IF-3-induced modification of these kinetic parameters of the 30S ribosomal subunit can per se explain the effect of IF-3 on protein synthesis without invoking a specific action at the level of the mRNA-ribosome interaction. This seems to be confirmed by the finding that IF-3 can stimulate several-fold the formation of a ternary complex even if one by-passes the ribosome-template binding step by starting with a covalent 30S-polynucleotide binary complex. Furthermore, the above-mentioned changes induced by IF-3 appear to be compatible with the previously proposed idea that the binding of the factor modifies the conformation of the 30S subunit. The random order of addition of substrates determined for the 30S-N-AcPhe-tRNA-poly(U) model system was found to be valid also for the more physiological 30S initiation complex containing poly(A,U.G) and (fMet-tRNA formed at low Mg2+ concentration in the presence of GTP and all three initiation factors.  相似文献   

2.
The formation of 30-S initiation complexes depends strongly on initiation factor IF-3; at molar ratios of IF-3 to 30-S ribosomes up to one a stimulation is observed, whereas at ratios higher than one, initiation complex formation declines strongly. The target of the observed inhibition of fMet-tRNA binding at high concentrations of IF-3 is the 30-S initiation complex itself. On the one hand addition of IF-3 to preformed 30-S initiation complexes leads to a release of bound fMet-tRNA which is linear with the amount of factor added, whereas no effect on isolated 70-S initiation complexes is seen. The release of fMet-tRNA from preformed 30-S initiation complexes is accompanied by a release of IF-2 in a one-to-one molar ratio which is in agreement with our previous findings showing that binding of fMet-tRNA takes place via a binary complex: IF-2 . fMet-tRNA (Eur. J. Biochem. 66, 181--192 and 77, 69--75). On the other hand increasing amounts of both IF-2 and fMet-tRNA relieve the IF-3-induced inhibition of 30-S initiation complex formation. From these findings it is concluded that IF-3 and the IF-2 . fMet-tRNA complex are mutually exclusive on the 30-S ribosome. This implies that under our experimental conditions MS2 RNA binding precedes fMet-tRNA binding if one accepts that the presence of IF-3 on the 30-S subunit is obligatory for messenger binding.  相似文献   

3.
1. Studies on the function of initiation factor 1 (IF-1) in the formation of 30 S initiation complexes have been carried out. IF-1 appears to prevent the dissociation of initiation factor 2 (IF-2) from the 30 S initiation complex. The factor has no effect on either the initial binding of IF-2 nor does it increase the amount of IF-2 dependent fMet-tRNA and GTP bound to the 30 S subunit. Bound fMet-tRNA remains stable to sucrose gradient centrifugation even in the absence of IF-1. 2. It is postulated that the presence of IF-2 on the 30 S complex is necessary so that at the time of junction with the 50 S subunit to form a 70 S complex, the 70 S-dependent GTPase activity of IF-2 can hydrolyze GTP. This hydrolysis provides a means by which GTP can be removed to facilitate formation of a 70 S initiation complex active in peptidyl transfer. In support of this postulate, it was observed that 30 S initiation complexes formed in the absence of IF-1 could be depleted of their complexes were still able to accept 50 S subunits to form 70 S complexes which could still donate fMet-tRNA into peptide linkages. These results indicate that 30 S complexes lacking GTP do not require IF-2 for formation of active 70 S complexes. 3. IF-1, which is required to prevent dissociation of IF-2 from the 30 S initiation complex, is also required for release of IF-2 from ribosomes following 70 S initiation complex formation. The mechanisms of the release of IF-2 has been studied in greater detail. Evidence is presented which rules out the presence of a stable IF-2 GDP complex on the surface of the 70 S ribosome following GTP hydrolysis and of any exchange reactions between IF-1 and guanine nucleotides necessary for effecting the release of IF-2. IF-2 remains on the 70 S initiation complexes after release of guanine nucleotides and can be liberated solely by addition of IF-1.  相似文献   

4.
5.
A method that permits the preparation of Euglena gracilis chloroplast 30 S ribosomal subunits that are largely free of endogenous initiation factors and that are active in the binding of fMet-tRNA in response to poly(A, U, G), has been developed. These 30 S subunits have been tested for activity in initiation complex formation with initiation factors from both procaryotes and eucaryotes. We have observed that Escherichia coli IF-2 binds fMet-tRNA nearly as well to Euglena chloroplast ribosomal subunits as it does to its homologous subunits. Neither wheat germ eIF-2 nor Euglena eIF-2A can bind fMet-tRNA efficiently to Euglena chloroplast or E. coli 30 S subunits although both are active with wheat germ 40 S ribosomal subunits. Euglena chloroplast 68 S ribosomes will also bind the initiator tRNA. Both E. coli IF-2 and E. coli IF-3 stimulate this reaction on chloroplast ribosomes with approximately the same efficiency as they do on their homologous ribosomes. E. coli IF-1 enhances the binding of fMet-tRNA to the chloroplast 68 S ribosomes when either IF-2 or IF-3 is limiting. The chloroplast ribosomes unlike E. coli ribosomes show considerable activity over a broad range of Mg2+ ion concentrations.  相似文献   

6.
The conformation of the Escherichia coli initiator tRNA has been investigated using enzymatic and chemical probes. This study was conducted on the naked tRNA and on the tRNA involved in the various steps leading to the formation of the 30 S.IF-2.GTP.fMet-tRNA.AUG complex. A three-dimensional model of the initiator tRNA is presented, which displays several differences with yeast tRNAPhe: (i) the anticodon arm is more rigid; (ii) the presence of an additional nucleotide in the D loop results in specific features in both T and D loops; (iii) C1 and A72 might form a noncanonical base pair. Aminoacylation and formylation induce subtle conformational adjustments near the 3' end, the T arm and the D loop. Initiation factor (IF) 2 interacts with a rather limited portion of the tRNA, covering the T loop and the minor groove of the T stem, and induces an increased flexibility in the anticodon arm. The specific structural features observed in the T loop are probably recognized by IF-2. In the 30 S.IF-2.GTP.fMet-tRNA.AUG complex, additional protections are observed in the acceptor stem and in the anticodon arm, resulting from a strong steric hindrance and from the codon-anticodon interaction within the subunit decoding site.  相似文献   

7.
70 S ribosomes were programmed with initiator tRNA and messenger oligonucleotides AUG(U)n and AUG(C)n, where n = 1, 2 or 3. The binding of the ternary complexes [Phe-tRNA X EF-Tu X GTP] and [Pro-tRNA X EF-Tu X GTP] to the programmed ribosomes was studied. If codon-anticodon interaction is restricted to only one basepair, the ternary complex leaves the ribosome before GTP hydrolysis. Two basepairs allow hydrolysis of GTP, but the aminoacyl-tRNA dissociates and is recycled, resulting in wastage of GTP. Three basepairs result in apparently stable binding of aminoacyl-tRNA to the ribosome. The antibiotic sparsomycin weakens the binding by an amount roughly equivalent to one messenger base, while viomycin has the reverse effect.  相似文献   

8.
The use of some bifunctional Pt(II)-containing cross-linking reagents for investigation of structural organization of ribosomal tRNA- and mRNA-binding centres is demonstrated for various types of [70S ribosome.mRNA-tRNA] complexes. It is shown that treatment of the complexes [70S ribosome.Ac[14C]Phe-tRNA(Phe).poly(U)], [70S ribosome.3'-32pCp-tRNA(Phe).poly(U)] and [70S ribosome.f[35S]Met-tRNA(fMet).AUGU6] with Pt(II)-derivatives results in covalent attachment of tRNA to ribosome. AcPhe-tRNA(Phe) and 3'-pCp-tRNA(Phe) bound at the P site were found to be cross-linked preferentially to 30S subunit. fMet-tRNA(fMet) within the 70S initiation complex is cross-linked to both ribosome subunits approximately in the same extent, which exceeds two-fold the level of the tRNA(Phe) cross-linking. All used tRNA species were cross-linked in the comparable degree both to rRNA and proteins of both subunits in all types of the complexes studied. 32pAUGU6 cross-links exclusively to 30S subunit (to 16S RNA only) within [70S ribosome.32pAUGU6.fMet-tRNA(fMet)] complex. In the absence of fMet-tRNAfMet the level of the cross-linking is 4-fold lower.  相似文献   

9.
10.
Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites   总被引:63,自引:0,他引:63  
D Moazed  H F Noller 《Cell》1989,57(4):585-597
Three sets of conserved nucleotides in 23 rRNA are protected from chemical probes by binding of tRNA to the ribosomal A, P, and E sites, respectively. They are located almost exclusively in domain V, primarily in or adjacent to the loop identified with the peptidyl transferase function. Some of these sites are also protected by antibiotics such as chloramphenicol, which could explain how these drugs interfere with protein synthesis. Certain tRNA-dependent protections are abolished when the 3'-terminal A or CA or 2',3'-linked acyl group is removed, providing direct evidence for the interaction of the conserved CCA terminus of tRNA with 23S rRNA. When the EF-Tu.GTP.aminoacyl-tRNA ternary complex is bound to the ribosome, no tRNA-dependent A site protections are detected in 23S rRNA until EF-Tu is released. Thus, EF-Tu prevents interaction of the 3' terminus of the incoming aminoacyl-tRNA with the peptidyl transferase region of the ribosome during anticodon selection, thereby permitting translational proofreading.  相似文献   

11.
The bovine liver mitochondrial factor that promotes the binding of fMet-tRNA to mitochondrial ribosomes, initiation factor 2 (IF-2mt), has been identified in the postribosomal supernatant fraction of isolated liver mitochondria. This factor has been purified approximately 5,000-fold and present preparations are estimated to be about 10% pure. IF-2mt has an apparent molecular weight of about 140,000 as determined by gel filtration chromatography. IF-2mt is active in stimulating fMet-tRNA binding to Escherichia coli ribosomes but E. coli IF-2 is not active in promoting initiator tRNA binding to animal mitochondrial ribosomes. The IF-2mt-mediated binding of fMet-tRNAi(Met) to mitochondrial ribosomes is dependent on the presence of a message such as poly(A,U,G) and on GTP. Nonhydrolyzable analogs of GTP are 2-3-fold less effective in promoting initiation complex formation on mitochondrial ribosomes than is GTP suggesting that IF-2mt is capable of recycling to some extent under the current assay conditions.  相似文献   

12.
Affinity labelling of the Escherichia coli ribosomes with the 2',3'-O-[4-(N-(2-chloroethyl)-N-methylamino]benzylidene derivative of AUGU3(AUGU3[14C]CHRCl) has been studied within 70S initiation complexes ribosome.AUGU3[14C]CHRCl.fMet-tRNA(Metf) and binary complex ribosome.AUGU3[14C]CHRCl. Various ways of the 70S initiation complex formation resulted in differently labelled products. Proteins S5, S7, S9, L1, L16 were thus identified as cross-linked with AUGU3[14C]CHRCl within an initiation complex obtained in the presence of initiation factors IF-1, IF-2, IF-3, whereas only proteins S5 and S7 were cross-linked within the complex obtained with the sole factor IF-2. Proteins S1, S3, L1 and L33 were labelled within the initiation complex obtained nonenzymatically but only protein S1 within the binary complex. In all complexes formed with use of initiation factors labelling of IF-2 factor was invariably observed.  相似文献   

13.
The binding of the initiator tRNA Met-tRNAf, and of acetylphenylalanyl-tRNA, has been examined with rat liver 40S subunits derived from 80S ribosomes by dissociation with native 40S subunits sedimented from the postmicrosomal fraction and with native 40S subunits extracted with high salt-containing solutions. Binding of Met-tRNAf and acetylphenylalanyl-tRNA to derived and to salt-extracted native 40S subunits is observed in the presence of the appropriate polynucleotide template and a highly purified binding factor obtain from the soluble fraction of rat liver homogenates (R.L. IF-1). Native 40S subunits bind acetylphenylalanyl-tRNA in a reaction that requires poly(U) but not exogenous binding factor; however, Met-tRNAf is not bound to native subunits, even when supplemented with the soluble binding factor, or under conditions where factor-independent, high Mg2+-stimulated binding is observed with the derived and the salt-washed native 40S subunits. The extract obtained from native 40S subunits promotes the binding of acetylphenylalanyl-tRNA but not Met-tRNAf to derived and to salt-extracted native subunits. The addition of native 40S extract to incubations containing R.L. IF-1, Met-tRNAf, and derived 40S subunits, inhibits the formation of 40S-Met-tRNAf complex. These data suggest that the binding activity that is specific for 40S subunits and initiator tRNA, and an activity that inhibits the interaction with Met-tRNAf specifically, are both associated with native 40S subunits, and can be extracted from them by treatment with high salt-containing solutions. Derived 40S subunits react quantitatively with 60S particles to form 80S ribosomes which do not bind acetylphenylalanyl-tRNA with binding factor R.L. IF-1. Native 40S subunits react only partly with 60S subunits; about half of the native 40S subunit population forms 80S ribosomes which do not subsequently bind acetylphenylalanyl-tRNA; the remaining native 40S subunits which do not react with 60S particles bind acetylphenylalanyl-tRNA but to a lesser extent. When preformed native 40S-acetylphenylalanyl-tRNA complex is incubated with 60S subunits, about half of the subunits form an 80S-acetylphenylalanyl-tRNA complex, while the rest remains as 40S-acetylphenylalanyl-tRNA. The addition of native 40S subunit salt extract to incubations containing preformed 80S ribosomes dissociates the particles to subunits. These data suggest that in addition to the initiator tRNA binding activity and the activity that inhibits Met-tRNAf interaction, part of the native 40S subunit population also contains an activity that dissociates 80S ribosomes.  相似文献   

14.
A complex between initiation factor IF-2 and fMet-tRNA can be formed under ionic conditions, which are optimal for initiation complex formation. The complex can be retained on cellulose nitrate filters after fixing with glutaraldehyde. The IF-2 - FMet-tRNA complex formation is not influenced by GTP and GDP. Other nucleoside di of triphosphates also have no effect. Evidence is presented that this complex acts as an intermediate in polypeptide chain initiation. The IF-2 - fMet-tRNA complex formation is not influenced by initiation factors IF-1 and IF-3. The binary complex can be bound to the 30-S subunit in the absence of GTP, which indicates that there is no concomittant binding of the IF-2 - fMet-tRNA complex and the nucleotide moiety to the 30-S subunit. The binding of the binary complex is stimulated by GTP. The influence of some inhibitors of initiation on the IF-2 - fMet-tRNA complex formation has been tested. Aurin tricarboxylic acid appeared to be a strong inhibitor, whereas the sulfhydryl reagents N-ethylmaleimide and p-chloromercuribenzoate had no effect.  相似文献   

15.
The analysis of initial velocity kinetic data was used to examine the order in which fMet-tRNA and the coat cistron of genomic bacteriophage R17 or Q beta RNA bind to the 30 S ribosome subunit. These data were obtained using a quantitative assay for protein synthesis in Escherichia coli extracts where the rate of accumulation of protein product is dependent on the concentration of mRNA and is partially dependent on fMet-tRNA. Under the conditions of this assay, the amount of protein synthesized was proportional to the formation of ternary complexes between the mRNA, fMet-tRNA, and the 30 S ribosomal subunit. The results from the initial velocity and alternative substrate experiments are consistent with a rapid equilibrium ordered mechanism as opposed to a rapid equilibrium random mechanism. Analysis of the rate of coat protein synthesis at varied concentrations of mRNA and fixed concentrations of fMet-tRNA indicated that fMet-tRNA was the first substrate to bind to the 30 S subunit when either coat cistron was used as the mRNA. This scheme assumes the existence of a relatively slow step in protein synthesis that occurs after both the initiating tRNA and mRNA are bound to the ribosome and which allows substrate addition to reach thermodynamic equilibrium.  相似文献   

16.
17.
Guillon L  Schmitt E  Blanquet S  Mechulam Y 《Biochemistry》2005,44(47):15594-15601
To carry initiator Met-tRNA(i)(Met) to the small ribosomal subunit, eukaryal and archaeal cells use a heterotrimeric factor called e/aIF2. These cells also possess a homologue of bacterial IF2 called e/aIF5B. Several results indicate that the mode of action of e/aIF5B resembles some function of bacterial IF2. The e/aIF5B factor promotes the joining of ribosomal subunits. Moreover, there is genetic evidence that the factor participates in the binding of initiator tRNA to the small ribosomal subunit. However, up to now, an interaction between e/aIF5B and initiator tRNA was not evidenced. In this study, we use an assay based on protection of aminoacyl-tRNA against spontaneous deacylation to demonstrate that archaeal aIF5B indeed can interact with initiator tRNA. In complex formation, aIF5B shows specificity toward the methionyl moiety of the ligand. The complex between Saccharomyces cerevisiae eIF5B and methionylated initiator tRNA is less stable than that formed with aIF5B. In addition, this complex is almost indifferent to the side chain of the esterified amino acid. These results support the idea that, beyond the channeling of Met-tRNA(i)(Met) to the 40S subunit by e/aIF2, e/aIF5B comes to interact with initiator tRNA on the ribosome. Recognition of an aminoacylated tRNA species at this site would then allow translation to begin. In the case of archaea, this checkpoint would also include the verification of the presence of a methionine at the P site.  相似文献   

18.
Anticodon sequence mutants of Escherichia coli initiator tRNA initiate protein synthesis with codons other than AUG and amino acids other than methionine. Because the anticodon sequence is, in many cases, important for recognition of tRNAs by aminoacyl-tRNA synthetases, the mutant tRNAs are aminoacylated in vivo with different amino acids. The activity of a mutant tRNA in initiation in vivo depends on (i) the level of expression of the tRNA, (ii) the extent of aminoacylation of the tRNA, (iii) the extent of formylation of the aminoacyl-tRNA to formylaminoacyl-tRNA (fAA-tRNA), and (iv) the affinity of the fAA-tRNA for the initiation factor IF2 and the ribosome. Previously, using E. coli overproducing aminoacyl-tRNA synthetases, methionyl-tRNA formyltransferase, or IF2, we identified the steps limiting the activity in initiation of mutant tRNAs aminoacylated with glutamine and valine. Here, we have identified the steps limiting the activity of mutant tRNAs aminoacylated with isoleucine and phenylalanine. The combined results of experiments involving a variety of initiation codons (AUG, UAG, CAG, GUC, AUC, and UUC) provide support to the hypothesis that the ribosome.fAA-tRNA complex can act as an intermediate in initiation of protein synthesis. Comparison of binding affinities of various fAA-tRNAs (fMet-, fGln-, fVal-, fIle-, and fPhe-tRNAs) to IF2 using surface plasmon resonance supports the idea that IF2 can act as a carrier of fAA-tRNA to the ribosome. Other results suggest that the C1xA72 base pair mismatch, unique to eubacterial and organellar initiator tRNAs, may also be important for the binding of fAA-tRNA to IF2.  相似文献   

19.
Marc Mirande 《FEBS letters》2010,584(2):443-41068
Several lines of evidence led to the conclusion that mammalian ribosomal protein synthesis is a highly organized biological process in vivo. A wealth of data support the concept according to which tRNA aminoacylation, formation of the ternary complex on EF1A and delivery of aminoacyl-tRNA to the ribosome is a processive mechanism where tRNA is vectorially transferred from one component to another. Polypeptide extensions, referred to as tRBDs (tRNA binding domains), are appended to mammalian and yeast aminoacyl-tRNA synthetases. The involvement of these domains in the capture of deacylated tRNA and in the sequestration of aminoacylated tRNA, suggests that cycling of tRNA in translation is mediated by the processivity of the consecutive steps. The possible origin of the tRBDs is discussed.  相似文献   

20.
We have determined several kinetic parameters for the reaction of poly(U)-programmed ribosomes with ternary complexes of elongation factor Tu, GTP, and yeast Phe-tRNA analogs with different bases substituted for uridine in position 33. These analogs test whether disruption of the hydrogen bonds normally formed by uridine 33 and steric crowding in the anticodon loop are detrimental to tRNA function on the ribosome. Single-turnover kinetic studies of the reaction of these ternary complexes with ribosomes show that these Phe-tRNA analogs decrease the apparent rate of GTP hydrolysis (kGTP) and the ratio of peptide formed to GTP hydrolyzed. Thus, the substitution of uridine 33 affects not only the selection of a ternary complex by the ribosome but also the selection of an aminoacyl-tRNA in the proofreading reaction. The effects become greater as first one, and then the other, H-bond is disrupted. Steric crowding in the anticodon loop is also important, but does not have as great an effect on the rate constants. An analysis of the elementary rate constants which comprise the rate constant, kGTP, demonstrates that the reduction in kGTP results from a decreased rate of ternary complex association with the ribosome (k1) and that there is little or no effect on the rate of GTP cleavage (k2). An analysis of the rate constants involved in proofreading shows that all the modified (tRNAs have increased rates of aminoacyl-tRNA rejection (k4) but that the rate of peptide bond formation (k3) is unaffected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号