首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
Gelatin-specific protease activity from hamster lung fibroblasts and their culture media is described. The fibroblasts were derived from hamster lung explant cultures. The gelatin-specific protease activity is latent and seen only after dialysis of either cells or media. The enzyme activity shares many properties of previously reported gelatinases. The activity is inhibited by EDTA, cysteine, and dithioerythritol, whereas it is not inhibited by p-chloromecuribenzoate, N-ethyl maleimide, or phenylmethylsulfonyl fluoride. Of all substrates tested, activity was observed only against gelatin and not against other substrates tested. It was inactive toward collagen, elastin, and methemoglobin. This enzyme may have a role in the digestion of collagen that has been previously cleaved by mammalian collagenase.  相似文献   

2.
Summary Gelatin-specific protease activity from hamster lung fibroblasts and their culture media is described. The fibroblasts were derived from hamster lung explant cultures. The gelatin-specific protease activity is latent and seen only after dialysis of either cells or media. The enzyme activity shares many properties of previously reported gelatinases. The activity is inhibited by EDTA, cysteine, and dithioerythritol, whereas it is not inhibited byp-chloromecuribenzoate,N-ethyl maleimide, or phenylmethylsulfonyl fluoride. Of all substrates tested, activity was observed only against gelatin and not against other substrates tested. It was inactive toward collagen, elastin, and methemoglobin. This enzyme may have a role in the digestion of collagen that has been previously cleaved by mammalian collagenase. This research was supported by Program Project Grant HL-19717 from the National Heart, Lung, and Blood Institute, Grant AG 000-38-02 from the National Institute of Aging, and National Institute of Health Grant 5T32HL07035.  相似文献   

3.
1. An activator catalysing specifically conversion of latent forms of human leucocyte collagenase and gelatin-specific protease into the active forms, has been isolated from rheumatoid synovial fluid and purified 55-fold with a yield of 16%. 2. Molecular weight of the activator is about 35 000. 3. The activator is thermolabile, and is irreversibly inactivated at pH below 5.5 or in the presence of low concentrations of trypsin or papain; it is resistant to the action of lysozyme, hyaluronidase, diisopropylfluorophosphate, soybean trypsin inhibitor, p-chloromercuribenzoate, iodoacetamide and dithiothreitol. 4. The activator did not show any activity towards collagen, gelatin, casein, haemoglobin, histones, elastin or p-phenylazobenzyloxycarbonyl-peptide.  相似文献   

4.
Rabbit pulmonary alveolar macrophages produce a collagenase which lyses labeled collagen gels, specifically cleaves collagen types I, II and III, is inhibited by ethylenediaminetetraacetate, cysteine, dithiothreitol and serum but is not inhibited by a serine protease inhibitor. Alveolar macrophage collagenase activity can be enhanced by in vivo BCG activation, in vitro latex, silica or mycobacterium activation and by in vitro uncovering of latent enzymatic activity with trypsin treatment. The production of collagenase by unactivated alveolar macrophages and the presence of “latent” collagenase in culture media of alveolar macrophages are examples of significant differences between alveolar and peritoneal macrophages.  相似文献   

5.
A neutral metal protease has been identified which cleaves native type V collagen under conditions where pepsinized type IV collagen or the interstitial collagens are not significantly degraded. The enzyme is secreted into the media of cultured M50-76 reticulum cell sarcoma (malignant macrophages) and leiomyosarcoma tumor cells. Biosynthetically labeled type V collagen prepared from organ cultures of human amnion membrane is used for a routine assay of type V collagenolytic activity. The partially purified enzyme a) exists in a latent form requiring trypsin activation for maximum activity; b) has a molecular weight estimated by molecular sieve chromatography of approximately 80,000 daltons; c) is inhibited by EDTA but not phenylmethylsulfonyl fluoride; and d) produces specific cleavage products of both A and B collagen chains.  相似文献   

6.
The activity of vertebrate collagenase is increased by approximately 3-fold in the presence of saturating amounts of a macromolecule found in normal human serum. The activities of collagenases from human skin, rat skin, and tadpole tailfin are all markedly enhanced in the presence of this molecule, but activities of bacterial collagenase, trypsin, chymotrypsin, thermolysin, and a gelatin-specific neutral protease from human skin are unchanged. The enhancer itself has no proteolytic activity and does not change the normal cleavage products of human skin collagenase. The collagenase enhancer is an extremely stable molecule. It is resistant to heat, to extremes of pH at physiological temperature, and appears to be protein in nature. Of particular interest is the requirement that the collagen substrate be in fibrillar form in order for the enhancer to be effective.  相似文献   

7.
A neutral protease has been extracted from the media of cultured metastatic tumor cells and purified approximately 1000 times after sequential ammonium sulfate fractionization, concanavalin A column chromatography, and molecular sieve chromatography. The protease has an apparent molecular weight of 70 000--80 000, is inactive at acid pH, requires trypsin activation, and is inhibited by ethylene-diaminetetraacetic acid but not by phenylmethanesulfonyl fluoride, N-ethylmaleimide, or soybean trypsin inhibitor. The enzyme produces specific cleavage products for both chains of pro type IV collagen isolated without pepsinization and apparently cleaves at one point in a major pepsin-extracted chain of placenta type IV collagen. The partially purified enzyme fails to significantly degrade other collagens or fibronectin under digestion conditions in which specific reaction products are produced for type IV collagen. The existence of this enzyme is significant since previously described animal collagenases fail to degrade type IV collagen. Such a type IV specific collagenase could play a role in tumor invasion and may be secreted by other cells such as endothelial cells, epithelial cells, and immune cells.  相似文献   

8.
1. A latent collagenase, activated only by limited proteolysis, was found in culture media of mouse bone explants. It could be activated by trypsin or, less efficiently, by chymo-trypsin. Skin explants also released latent collagenase. 2. Bone collagenase attacks native collagen at about neutral pH when it is in solution, in reconstituted fibrils or in insoluble fibres, producing two fragments representing 75 and 25% of the molecule. It requires calcium and is inhibited by EDTA, cysteine or serum. 3. Latent collagenase is not activated by trypsin-activated collagenase but by a distinct unidentified thermolabile agent present in a latent trypsin-activatable state in the culture media, or by purified liver lysosomes between pH5.5 and pH7.4. Trypsin activation decreases the molecular weight of latent collagenase from 105000 to 84000 as determined by gel filtration. 5. The latency of collagenase is unlikely to be due to an enzyme-inhibitor complex. Although some culture media contain a collagenase inhibitor, its presence is not constant and its molecular weight (at least 120000) is not compatible with the decrease in molecular weight accompanying activation; also combinations of collagenase with inhibitor are not reactivated by trypsin. Moreover, the latency remains after gel filtration, or treatment by high dilution, exposure to pH values between 2.5 and 10, or high ionic strength, urea or detergent. 6. It is proposed that latent collagenase represents an inactive precursor of the enzyme, a ;procollagenase', and that the extracellular activity of collagenase is controlled by another protease that activates procollagenase by a limited proteolysis of its molecule.  相似文献   

9.
The precursor to the hole-forming toxin aerolysin has been purified in high yield from culture supernatants of a mutant of Aeromonas salmonicida containing the cloned structural gene. The mutant strain was generated by Tn5 mutagenesis. It released little or no protease or other extracellular proteins, including phospholipase, suggesting that it is a regulatory mutant. The absence of protease allowed the isolation of protoxin free from contaminating aerolysin. Typically, more than 50 mg of pure proaerolysin was obtained from 2 L of culture supernatant. The purified protein was completely unable to lyse human erythrocytes without prior activation with trypsin.  相似文献   

10.
Bone explants from foetal and newborn rabbits synthesize and release a collagenase inhibitor into culture media. Inhibitor production in the early days of culture is followed first by latent collagenase and subsequently active collagenase in the culture media. A reciprocal relationship exists between the amounts of free inhibitor and latent collagenase in culture media, suggesting strongly that the inhibitor is a component of the latent form of the enzyme. Over 90% of the inhibitory activity of culture media is associated with a fraction of apparent mol.wt. 30000 when determined by gel filtration on Ultrogel AcA 44. The inhibitor blocks the action of rabbit collagenase on both reconstituted collagen fibrils and collagen in solution. It inhibits the action of either active collagenase or latent collagenase activated by 4-aminophenylmercuric acetate. Latent collagenase activated by trypsin is usually much less susceptible to inhibition. The activity of the inhibitor is destroyed by heat, by incubation with either trypsin or chymotrypsin and by 4-aminophenylmercuric acetate. Collagenase activity can be recovered from complexes of enzyme (activated with 4-aminophenylmercuric acetate) with free inhibitor by incubation with either trypsin or 4-aminophenylmercuric acetate, at concentrations similar to those that activate latent collagenase from culture media. The rabbit bone inhibitor does not affect the activity of bacterial collagenase, but blocks the action of collagenases not only from a variety of rabbit tissues but also from other mammalian species.  相似文献   

11.
A serine endopeptidase with a molecular mass of 25 kDa has been purified from the culture filtrate of Trichoderma viride to electrophoretic homogeneity. The isoelectric point was determined at 7.3. Two carboxyl sites at Arg22 and Lys29 of the oxidized insulin B-chain were cleaved, and peptidyl-p-nitroanilide substrates with Lys or Arg at the P1 position were also hydrolyzed by the enzyme. These results suggest that the specificity of T. viride protease is similar to that of trypsin. However, the hydrolytic activity toward casein of T. viride protease was less than that of porcine trypsin. The amino-terminal sequence of the enzyme protein is similar to that of bovine trypsin. It seems that the trypsin of T. viride is a protease which is promising for the substitution of animal trypsin in the food industry and in medicine at this stage.  相似文献   

12.
The nature of the trypsin-activatable plasminogen activator produced by kidney cell cultures (Bernik, M.B. (1973), J. Clin. Invest. 52, 823–834) was investigated using human embryonic kidney (HEK) cell cultures in serum-free medium. Plaminogen activator activity ratios (trypsin-activated/ untreated controls) in HEK cell-conditioned media were maximal (up to 3) during the first week of culture and remained nearly constant at approximately 2 for the next 3–5 weeks, while the total plasminogen activator titer increased in a nearly linear manner. Therefore, coincident with progressive cell dengeration and death, the ratios decreased to near unity due to “spontaneous” activation of the enzyme, which was inhibited in cell-free conditioned media by the pancreatic trypsin inhibitor Kunitz and benzamidine. Since the activator is not inhibited by the trypsin inhibitor, it is concluded that a protease other than the plasminogen activator is responsible for the activation. Increases in the plasminogen activator titers (about 2-fold) were similarly obtained by culturing the cells in medium containing low concentrations (0.05–0.10 μg/ml) of trypsin for up to about 6 weeks. The presence of the trypsin inhibitor in HEK cell cultures decreased the rate of activation, resulting in higher activity ratios (up to 6), and the total plasminogen activator activity was reduced only minimally (<20%), if at all, by the highest concentration of the trypsin inhibitor (100 μg/ml) tested.Affinity chromatography of conditioned media with activity ratios of 1.6–2 separated the plasminogen activator into an active fraction and a fraction which was activated a minimum of 200-fold by trypsin and contained no measurable activity prior to activation. Gel filtration of crude conditioned media or partially purified activator separated the plasminogen activator activity into two peaks; both were trypsin-activatable, and their relative proportions varied with the isolation conditions. The results indicate the occurrence of a proenzyme form of the plasminogen activator in the culture media.  相似文献   

13.
A second collagenolytic serine protease has been isolated from the hepatopancreas of the fiddler crab, Uca pugilator. This enzyme cleaves the native triple helix of collagen under physiological conditions of pH, temperature, and ionic strength. In addition to its collagenolytic activity, the enzyme exhibits endopeptidase activity toward other polypeptides and small molecular weight synthetic substrates. The polypeptide bond specificity of this enzyme is similar to that of bovine trypsin as is its interaction with specific protease inhibitors. The amino-terminal sequence of this enzyme displays significant homology with other serine proteases, most notably with that of crayfish trypsin, and demonstrates that this enzyme is a member of the trypsin family of serine endopeptidases. The relatively unique action of this protease with regard to both collagenous and noncollagenous substrates has important implications concerning the specificity and mechanism of collagen degradation.  相似文献   

14.
1. A latent neutral proteinase was found in culture media of mouse bone explants. Its accumulation during the cultures is closely parallel to that of procollagenase; both require the presence of heparin in the media. 2. Latent neutral proteinase was activated by several treatments of the media known to activate procollagenase, such as limited proteolysis by trypsin, chymotrypsin, plasmin or kallikrein, dialysis against 3 M-NaSCN at 4 degrees C and prolonged preincubation at 25 degrees C. Its activation often followed that of the procollagenase present in the same media. 3. Activation of neutral proteinase (as does that of procollagenase) by trypsin or plasmin involved two successive steps: the activation of a latent endogenous activator present in the media followed by the activation of neutral proteinase itself by that activator. 4. The proteinase degrades cartilage proteoglycans, denatured collagen (Azocoll) and casein at neutral pH; it is inhibited by EDTA, cysteine or serum. Collagenase is not inhibited by casein or Azocoll and is less resistant to heat or to trypsin than is the proteinase. Partial separation of the two enzymes was achieved by gel filtration of the media but not by fractional (NH4)2SO4 precipitation, by ion exchange or by affinity chromatography on Sepharose-collagen. These fractionations did not activate latent enzymes. 5. Trypsin activation decreases the molecular weight of both latent enzymes (60 000-70 000) by 20 000-30 000, as determined by gel filtration of media after removal of heparin. 6. The latency of both enzymes could be due either to a zymogen or to an enzyme-inhibitor complex. A thermostable inhibitor of both enzymes was found in some media. However, combinations of either enzyme with that inhibitor were not reactivated by trypsin, indicating that this inhibitor is unlikely to be the cause of the latency.  相似文献   

15.
A protein capable of inhibiting trypsin and other pancreatic proteases has been purified to homogeneity from Escherichia coli by conventional procedures and affinity chromatography. It is stable for at least 30 min at 100 degrees C and pH 1.0, but it is inactivated by digestion with pepsin. The inhibitor has an apparent molecular weight of 38,000 as determined by gel filtration and must be a homodimer since it contains a single 18,000-dalton subunit upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The inhibitor has an isoelectric point of 6.1. One dimeric molecule of the inhibitor can bind two trypsin molecules to form a mixed tetrameric complex, in which trypsin molecules are completely inhibited. The inhibitor is not digested by the trypsin. When N-benzoyl-DL-arginine-p-nitroanilide was used as a trypsin substrate, half-maximal inhibition was observed at 22 nM. This protein also inhibits chymotrypsin, pancreatic elastase, rat mast cell chymase, and human serosal urokinase, but it does not inhibit human pulmonary tryptase, kallikrein, papain, pepsin, Staphylococcus aureus V8 protease, subtilisin, and thermolysin. Surprisingly, it did not inhibit any of the eight soluble endoproteases recently isolated from E. coli (i.e. proteases Do, Re, Mi, Fa, So, La, Ci, and Pi) nor the chymotrypsin-like (protease I) and trypsin-like (protease II) esterases in E. coli. The inhibitor is localized to the periplasmic space and its level did not change with different growth media or stages of cell growth. The physiological function of this E. coli trypsin inhibitor is unknown. We suggest that E. coli trypsin inhibitor be named "Ecotin."  相似文献   

16.
A comparison has been made of the synthesis of glycosaminoglycans by human skin fibroblasts cultured on plastic or collagen gel substrata. Confluent cultures were incubated with [3H]glucosamine and Na235SO4 for 48h. Radiolabelled glycosaminoglycans were then analysed in the spent media and trypsin extracts from cells on plastic and in the medium, trypsin and collagenase extracts from cells on collagen gels. All enzyme extracts and spent media contained hyaluronic acid, heparan sulphate and dermatan sulphate. Hyaluronic acid was the main 3H-labelled component in media and enzyme extracts from cells on both substrata, although it was distributed mainly to the media fractions. Heparan sulphate was the major [35S]sulphated glycosaminoglycan in trypsin extracts of cells on plastic, and dermatan sulphate was the minor component. In contrast, dermatan sulphate was the principal [35S]sulphated glycosaminoglycan in trypsin and collagenase extracts of cells on collagen gels. The culture substratum also influenced the amounts of [35S]sulphated glycosaminoglycans in media and enzyme extracts. With cells on plastic, the medium contained most of the heparan sulphate (75%) and dermatan sulphate (> 90%), whereas the collagenase extract was the main source of heparan sulphate (60%) and dermatan sulphate (80%) from cells on collagen gels; when cells were grown on collagen, the medium contained only 5-20% of the total [35S]sulphated glycosaminoglycans. Depletion of the medium pool was probably caused by binding of [35S]sulphated glycosaminoglycans to the network of native collagen fibres that formed the insoluble fraction of the collagen gel. Furthermore, cells on collagen showed a 3-fold increase in dermatan sulphate synthesis, which could be due to a positive-feedback mechanism activated by the accumulation of dermatan sulphate in the microenvironment of the cultured cells. For comparative structural analyses of glycosaminoglycans synthesized on different substrata labelling experiments were carried out by incubating cells on plastic with [3H]glucosamine, and cells on collagen gels with [14C]glucosamine. Co-chromatography on DEAE-cellulose of mixed media and enzyme extracts showed that heparan sulphate from cells on collagen gels eluted at a lower salt concentration than did heparan sulphate from cells on plastic, whereas with dermatan sulphate the opposite result was obtained, with dermatan sulphate from cells on collagen eluting at a higher salt concentration than dermatan sulphate from cells on plastic. These differences did not correspond to changes in the molecular size of the glycosaminoglycan chains, but they may be caused by alterations in polymer sulphation.  相似文献   

17.
The validity of the enzymatic assay of procollagenase within crude biological media containing also the collagenase inhibitor TIMP (tissue inhibitor of metalloproteinases) as well as other (pro)metalloproteinases and sometimes, metalloproteinase-TIMP complexes, has been reevaluated. To be enzymatically assayed, procollagenase has to be activated. The standard activation procedures by either trypsin or 4-aminophenylmercuric acetate (APMA) both allow an optimal recovery of collagenase from procollagenase when the media do not contain free TIMP. However, they do not destroy TIMP nor do they reactivate the collagenase present in enzyme-inhibitor complexes. Therefore, the collagenase formed by the activation of procollagenase in the presence of free TIMP is immediately inactivated by binding to the inhibitor. As a result, both the bound collagenase and TIMP can no longer be assayed by enzymatic methods. An optimal recovery of collagenase can, however, be obtained if free TIMP is neutralized by the binding of other tissue metalloproteinases (such as those present in culture media of rabbit bone marrow-derived macrophages) prior to the activation and assay of procollagenase. Similarly, it is possible to recover under an active free form a large part of the TIMP present in collagenase- (or other metalloproteinase-)TIMP complexes by heating the complexes at acid pH under conditions which inactivate the collagenase.  相似文献   

18.
Ehrlich ascites tumour cells contain a granule-derived zymogen which on trypsin activation yields a collegenolytic neutral protease. The preparation of the granule fraction by subcellular fractionation procedure results in the preparation of a second fraction referred to as the post-granule supernatant fraction. The post-granule supernatant fraction contains a latent form of the granule-derived neutral protease and an excess of cytoplasmic inhibitor for this enzyme. The inhibitor of neutral protease is also capable of inhibiting trypsin and in each case the chemical mechanism of enzyme.inhibitor complex formation has been shown to be a reversible thiol-disulphide exchange. The post-granule supernatant fraction exhibited complex kinetic data when the interactions between the inhibitor, the latent enzymes and trypsin were examined simultaneously by incremental analysis. The data were interpreted and quantitatively analysed by computer analysis. It was demonstrated that the conventional types of analysis could not have provided meaningful interpretations of the experimental data provided by these complex-interacting systems.  相似文献   

19.
A trypsin-like protease which is responsible for activation of Sendai virus was found in the chorioallantoic fluid (CAF) of embryonated chicken eggs. Treatment of the inactive form of Sendai virus, grown in LLC-MK2 cells, with CAF enhanced both hemolytic activity and infectivity for the cells. Soybean trypsin inhibitor restrained the enhancing activity of CAF. These results indicate that CAF contains a trypsin-like protease which activates the inactive form of Sendai virus. The activation was strongly inhibited by phenylmethylsulfonylfluoride, ethylenediaminetetraacetate, antipain, and leupeptin but not by tosyllysylchloromethylketone, suggesting that the activating enzyme in CAF is a protease similar to but not identical with trypsin. The inactive form of the virion was produced in ovo when the seed virus was inoculated along with antipain or leupeptin. In deembryonated chicken eggs in which CAF was substituted for a culture medium, multiple cycle growth occurred, but not when soybean trypsin inhibitor was present. These observations indicate that some activating enzyme, possibly the same one as found in CAF, was secreted from the chorioallantoic membrane.  相似文献   

20.
A highly unusual collagen was secreted by fibroblasts cultured from 150- and 270-d-old fetal calf nuchal ligaments. Purification revealed that this protein (which may be synthesized in a higher molecular weight form) was precipitated at unusually high concentrations of ammonium sulfate and was also eluted from DEAE-cellulose at greater salt concentrations than were types I and III procollagens. On SDS PAGE, the collagenous protein exhibited an Mr of approximately 12,750 that was not altered in the presence of reducing agent. The low molecular weight collagen (FCL-1) was sensitive to bacterial collagenase and had a [3H]glycine content comparable to that found in type I procollagen, although the [3H]Hyp to [3H]Pro ratio was 0.43. FCL-1 was not cleaved by human skin collagenase, mast cell protease, trypsin, Staphylococcal V8 protease, or proteinase K at 37 degrees C. The collagen was susceptible to trypsin, but not to V8 protease, only after heating at 80 degrees C for 30 min. Preliminary structural studies indicate that FCL-1 was resistant to cleavage by CNBr but exhibited limited proteolysis with pepsin. Both 150- and 270-d-old fibroblasts produced comparable levels of interstitial (types I and III) procollagens, which comprised approximately 70% of the total protein secreted into the culture medium. However, 270-d-old (term) fibroblasts secreted approximately 50% more FCL-1, as percent of total culture medium protein, in comparison to the cells from the earlier gestational stage. This collagen may therefore play a role in the development of the nuchal ligament.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号