首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The insulin receptor (IR) tyrosine kinase is essential for the regulation of different cellular functions by insulin. This may occur by a direct phosphorylation of membrane and/or cytoplasmic proteins by the IR tyrosine kinase. Hence it is important to identify putative physiological substrates for the IR tyrosine kinase. In this study we found that the glycoprotein fraction from rat liver membranes contain a 43 kDa protein (pp43) which, like the -subunit of IR, is phosphorylated in an insulin-dependent manner. A 25-fold enhancement of 32P incorporation into pp43 by insulin was found under optimal conditions. Half-maximal phosphorylation of pp43 and the -subunit of IR were attained at 66 nM and 60 nM insulin, respectively. Mn2+ (Ka = 1.0 mM) was much better than Mg2+ (Ka = 6.3 mM) in supporting pp43 phosphorylation. Insulin-stimulated phosphorylation of pp43 (t1/2 = 3.6 min) proceeded at a much slower rate compared to that of the -subunit of IR (t1/2 = 1.2 min). Phosphoamino acid analysis of pp43 revealed that both tyrosine and serine are phosphorylated in the ratio 4 : 1. Tyrosine, but not serine, phosphorylation was increased 12-fold by insulin. Phosphorylation of pp43 occurred on 4 major tryptic peptides. Comparison to the tryptic phosphopeptides from IR -subunit suggest that pp43 was not derived from IR -subunit by proteolysis. Our results suggest that pp43 may be an endogenous substrate for the IR tyrosine kinase.  相似文献   

2.
An elevated content of membrane glycoprotein PC-1 has been observed in cells and tissues of insulin resistant patients. In addition, in vitro overexpression of PC-1 in cultured cells induces insulin resistance associated with diminished insulin receptor tyrosine kinase activity. We now find that PC-1 overexpression also influences insulin receptor signaling at a step downstream of insulin receptor tyrosine kinase, independent of insulin receptor tyrosine kinase. In the present studies, we employed Chinese hamster ovary cells that overexpress the human insulin receptor (CHO IR cells; ∼106 receptors per cell), and transfected them with human PC-1 c-DNA (CHO IR PC-1). In CHO IR PC-1 cells, insulin receptor tyrosine kinase activity was unchanged, following insulin treatment of cells. However, several biological effects of insulin, including glucose and amino acid uptake, were decreased. In CHO IR PC-1 cells, insulin stimulation of mitogen-activated protein (MAP) kinase activity was normal, suggesting that PC-1 overexpression did not affect insulin receptor activation of Ras, which is upstream of MAP kinase. Also, insulin-stimulated phosphatidylinositol (PI)-3-kinase activity was normal, suggesting that PC-1 overexpression did not interfere with the activation of this enzyme by insulin receptor substrate-1. In these cells, however, insulin stimulation of p70 ribosomal S6 kinase activity was diminished. These studies suggest, therefore, that, in addition to blocking insulin receptor tyrosine kinase activation, PC-1 can also block insulin receptor signaling at a post-receptor site. J. Cell. Biochem. 68:366–377, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
We investigated the effect of phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator on insulin receptors and insulin action in freshly isolated and primary cultures of rat hepatocytes. PMA (1 x 10–7 M) did not alter insulin receptor numbers or affinity either acutely or chronically but within 60 minute inactivated insulin stimulated tyrosine kinase of the insulin receptor. PKC activation inhibitied insulin (1 x 10–7M) stimulation of glycogen and lipid synthesis with a decrease or no change in basal glycogenesis and lipogenesis respectively. However, PKC activation did not alter insulin stimulated or basal amino acid transport even though PCK activation inhibited insulin stimulation of the insulin. receptor tyrosine kinase. Thus, within one tissue, PKC activation has differential effect on insulin action depending on which pathway is examined. Furthermore, insulin stimulation of the insulin receptor tyrosine kinase may not be a necessary step for all insulin signaling pathways.  相似文献   

4.
A number of vanadium compounds (vanadate, vanadyl sulfate, metavanadate) have insulin-mimicking actions bothin vitro andin vivo. They have multiple biological effects in cultured cells and interact directly with various enzymes. The inhibitory action on phosphoprotein tyrosine phosphatases (PTPs) and enhancement of cellular tyrosine phosphorylation appear to be the most relevant to explain the ability to mimic insulin. We demonstrated that in rat adipocytes both acute insulin effects, e.g. stimulation of IGF-II and transferrin binding and a chronic effect, insulin receptor downregulation, were stimulated by vanadate. Vanadate also enhanced insulin binding, particularly at very low insulin concentrations, associated with increased receptor affinity. This resulted in increased adipocyte insulin sensitivity. Finally vanadate augmented the extent of activation of the insulin receptor kinase by submaximal insulin concentrations. This was associated with a prolongation of the insulin biological response, lipogenesis, after removal of hormone.In conclusion: in rat adipocytes vanadate promotes insulin action by three mechanisms, 1) a direct insulin-mimetic action, 2) an enhancement of insulin sensitivity and 3) a prolongation of insulin biological response. These data suggest that PTP inhibitors have potential as useful therapeutic agents in insulin-resistant and relatively insulin-deficient forms of diabetes mellitus.  相似文献   

5.
Phosphorylation of the insulin receptor by casein kinase I   总被引:1,自引:0,他引:1  
Insulin receptor was examined as a substrate for the multipotential protein kinase casein kinase I. Casein kinase I phosphorylated partially purified insulin receptor from human placenta as shown by immunoprecipitation of the complex with antiserum to the insulin receptor. Analysis of the phosphorylated complex by polyacrylamide gel electrophoresis under nonreducing conditions showed a major phosphorylated band at the position of the alpha 2 beta 2 complex. When the phosphorylated receptor was analyzed on polyacrylamide gels under reducing conditions, two phosphorylated bands, Mr 95,000 and Mr 135,000, were observed which corresponded to the alpha and beta subunits. The majority of the phosphate was associated with the beta subunit with minor phosphorylation of the alpha subunit. Phosphoamino acid analysis revealed that casein kinase I phosphorylated only seryl residues. The autophosphorylated alpha 2 beta 2 receptor purified by affinity chromatography on immobilized O-phosphotyrosyl binding antibody was also a substrate for casein kinase I. Reduction of the phosphorylated alpha 2 beta 2 receptor indicated that casein kinase I incorporated phosphate into seryl residues only in the beta subunit.  相似文献   

6.
Among several metals, vanadium has emerged as an extremely potent agent with insulin-like properties. These insulin-like properties have been demonstrated in isolated cells, tissues different animal models of type I and type II diabetes as well as a limited number of human subjects. Vanadium treatment has been found to improve abnormalities of carbohydrate and lipid metabolism and of gene expression in rodent models of diabetes. In isolated cells, it enhances glucose transport, glycogen and lipid synthesis, and inhibits gluconeogenesis and lipolysis. The molecular mechanism responsible for the insulin-like effects of vanadium compounds have been shown to involve the activation of several key components of insulin-signaling pathways that include the mitogen-activated-protein kinases (MAPKs) extracellular signal-regulated kinase 1/2 (ERK1/2) and p38MAPK, and phosphatidylinositol 3-kinase (PI3-K)/protein kinase B (PKB). It is interesting that the vanadium effect on these signaling systems is independent of insulin receptor protein tyrosine kinase activity, but it is associated with enhanced tyrosine phosphorylation of insulin receptor substrate-1. These actions seem to be secondary to vanadium-induced inhibition of protein tyrosine phosphatases. Because MAPK and PI3-K/PKB pathways are implicated in mediating the mitogenic and metabolic effects of insulin, respectively, it is plausible that mimicry of these pathways by vanadium serves as a mechanism for its insulin-like responses.  相似文献   

7.
Protein-tyrosine phosphatases (PTPases) have been implicated in the physiological regulation of the insulin signalling pathway. In cellular and molecular studies, the transmembrane, receptor-type PTPase LAR and the intracellular, non-receptor enzyme PTP1B have been shown to have a direct impact on insulin action in intact cell models. Since insulin signalling can be enhanced by reducing the abundance or activity of specific PTPases, pharmaceutical agents directed at blocking the interaction between individual PTPases and the insulin receptor may have potential clinical relevance to the treatment of insulin-resistant states such as obesity and Type II diabetes mellitus.  相似文献   

8.
The effects of extracellular Mg2+ on both dynamic changes of [Ca2+]i and apoptosis rate were analysed. The consequences of spatial and temporal dynamic changes of intracellular Ca2+ on apoptosis, in thapsigargin- and the calcium-ionophore 4BrA23187-treated MCF7 cells were first determined. Both 4BrA23187 and thapsigargin induced an instant increase of intracellular Ca2+ concentrations ([Ca2+]i) which remained quite elevated (> 150 nM) and lasted for several hours. [Ca2+]i increases were equivalent in the cytosol and the nucleus. The treatments that induced apoptosis in MCF7 cells were systematically associated with high and sustained [Ca2+]i (150 nM) for several hours. The initial [Ca2+]i increase was not determinant in the events triggering apoptosis. Thapsigargin-mediated apoptosis and [Ca2+]i rise were abrogated when cells were pretreated with the calcium chelator BAPTA. The role of the extracellular Mg2+ concentration has been studied in thapsigargin treated cells. High (10 mM) extracellular Mg2+, caused an increase in basal [Mg2+]i from 0.8 ± 0.3 to 1.6 ± 0.5 mM. As compared to 1.4 mM extracellular Mg2+, 1 M thapsigargin induces, in 10 mM Mg2+, a reduced percentage from 22 to 11% of fragmented nuclei, a lower sustained [Ca2+]i and a lower Ca2+ influx through the plasma membrane. In conclusion, the cell death induced by thapsigargin was dependent on high and sustained [Ca2+]i which was inhibited by high extracellular and intracellular Mg2+.  相似文献   

9.
Insulin modulates N-methyl-d-aspartate (NMDA) receptors in the CNS and potentiates currents of recombinant NMDA receptors in a subunit-specific manner in Xenopus oocytes. Previously we identified two sites in the NR2B C-terminus as targets for direct phosphorylation by C-type protein kinases (PKCs). Mutating these sites reduced insulin potentiation of currents by one half, reflecting the PKC-mediated portion of the NR2B insulin effect. The PKC-proline rich tyrosine kinase (Pyk2)-Src family kinase pathway may also mediate insulin potentiation. A dominant negative Pyk2 mutant significantly reduced insulin potentiation when co-expressed with NR2B-containing receptors, suggesting that Pyk2 and downstream Src-family tyrosine kinases are involved, along with PKCs, in insulin potentiation of NR2B. The NR2A C-terminus contains two residues homologous to the NR2B PKC targets. Mutating both these sites eliminated insulin potentiation of NR2A-containing receptors, while co-expression of dominant negative Pyk2 had no effect. Together, these data indicate that PKCs alone mediate the NR2A insulin effect. When tested individually for importance in insulin potentiation, the two PKC sites showed an additive effect in potentiation of NR2A-containing receptors. Insulin modulation of NR2A-containing receptors is mediated solely by PKCs, whereas insulin modulation of NR2B-containing receptors is mediated by PKCs and tyrosine kinases (PTKs).  相似文献   

10.
就胰岛素与其受体结合后, 信号传递的过程及参与信号传递的细胞内信号分子进行了综述.胰岛素作为一种重要激素,参与机体的新陈代谢, 调节细胞的生长分化.其发挥生理功能的第一步是与靶细胞膜上的受体相结合, 激活胰岛素受体的酪氨酸激酶活性, 随之磷酸化细胞内的信号分子, 从而使胰岛素的刺激信号转化为细胞反应.  相似文献   

11.
To determine the role of the insulin receptor overexpression in breast epithelial cell transformation, the 184B5 human breast epithelial cell line was transfected with human insulin receptor cDNA. In two cell lines transfected with and overexpressing human insulin receptors (IR) (223.8 and 184.5 ng IR/106 cells), but not in untransfected cells, insulin binding and tyrosine kinase activity were elevated, and insulin induced a dose-dependent increase in colony formation in soft agar.  相似文献   

12.
Inhibitor 2 is a heat-stable protein that complexes with the catalytic subunit of type-1 protein phosphatase. The reversible phosphorylation of Thr 72 of the inhibitor in this complex has been shown to regulate phosphatase activity. Here we show that inhibitor 2 can also be phosphorylated on tyrosine residues. Inhibitor 2 was 32P-labeled by the insulin receptor kinase in vitro, in the presence of polylysine. Phosphorylation of inhibitor 2 was accompanied by decreased electrophoretic mobility. Dephosphorylation of inhibitor 2 by tyrosine phosphatase 1B, restored normal electrophoretic mobility. Phosphotyrosine in inhibitor 2 was detected by immunoblotting with antiphosphotyrosine antibodies and phosphoamino acid analysis. In addition, following tryptic digestion, one predominant phosphopeptide was recovered at the anode. The ability of inhibitor 2 to inhibit type-1 phosphatase activity was diminished with increasing phosphorylation up to a stoichiometry of 1 mole phosphate incorporated/mole of inhibitor 2, where inhibitory activity was completely lost. These data demonstrate that inhibitor 2 can be phosphorylated on tyrosine residues by the insulin receptor kinase, resulting in a molecule with decreased ability to inhibit type-1 phosphatase activity.  相似文献   

13.
We have tested the hypothesis that activation of the insulin receptor tyrosine kinase is due to autophosphorylation of tyrosines 1146, 1150 and 1151 within a putative autoinhibitory domain. A synthetic peptide corresponding to residues 1134–1162, with tyrosines substituted by alanine or phenylalanine, of the insulin receptor subunit was tested for its inhibitory potency and specificity towards the tyrosine kinase activity. This synthetic peptide gave inhibition of the insulin receptor tyrosine kinase autophosphorylation and phosphorylation of the exogenous substrate poly(Glu, Tyr) with an approximate IC50 of 100 M. Inhibition appeared to be independent of the concentrations of insulin or the substrate poly(Glu, Tyr) but was decreased by increasing concentrations of ATP. This same peptide also inhibited the EGF receptor tyrosine kinase but not a serine/threonine protein kinase. These results are consistent with the hypothesis that this autophosphorylation domain contains an autoinhibitory sequence. (Mol Cell Biochem120: 103–110, 1993)Abbreviations IR Insulin Receptor - SDS/PAGE Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis - CaM Calmodulin - HEPES 4-(2-Hydroxyethyl)-Piperazineethane-Sulfonic Acid - DMEM Dulbecco's Modified Eagle' Medium - PMSF Phenylmethyl-Sulfonyl Fluoride - HPLC High Performance Liquid Chromatography - PKC Protein Kinase C - PKI Inhibitory Peptide for cAMP-Kinase - CaMK II Ca2+/Calmodulin-Dependent Protein Kinase II - CaN A A Subunit of Calcineurin  相似文献   

14.
Summary The action of insulin and sodium vanadate on the phosphorylation of uridine by skeletal muscle was studied in vitro. Insulin significantly increased the incorporation of 3H-uridine into uracil nucleotides by pieces of rat diaphragm incubated for 15 min in a phosphate-buffered medium. This action of the hormone was exceptionally consistent when MgATP was added to the incubation medium. In experiments in which pieces of psoas muscle were incubated in TRIS buffer in the presence and absence of insulin, the hormone caused a significant activation of uridine kinase measured in cytosolic extracts of the incubated tissue. In experiments with rat diaphragm similar to those with insulin, the vanadate ion caused a significant increase in phosphorylation of uridine. The results of these experiments provide preliminary support for the proposal that uracil nucleotide metabolism is regulated by insulin and that insulin activates uridine kinase, the limiting enzyme in the synthesis of uracil nucleotides from uridine by the salvage pathway.  相似文献   

15.
We have investigated the role of PI 3-kinase and mTOR in the degradation of IRS-1 induced by insulin. Inhibition of mTOR with rapamycin resulted in approximately 50% inhibition of the insulin-induced degradation of IRS-1. In contrast, inhibition of PI-3 kinase, an upstream activator of mTOR, leads to a complete block of the insulin-induced degradation. Inhibition of either PI-3 kinase or mTOR prevented the mobility shift in IRS-1 in response to insulin, a shift that is caused by Ser/Thr phosphorylation. These results indicate that insulin stimulates PI 3-kinase-mediated degradation of IRS-1 via both mTOR-dependent and -independent pathways. Platelet-derived growth factor (PDGF) stimulation leads to a lower level of degradation, but significant phosphorylation of IRS-1. Both the degradation and phosphorylation of IRS-1 in response to PDGF are completely inhibited by rapamycin, suggesting that PDGF stimulates IRS-1 degradation principally via the mTOR-dependent pathway. Inhibition of the serine/threonine phosphatase PP2A with okadaic acid also induced the phosphorylation and degradation of IRS-1. IRS-1 phosphorylation and degradation in response to okadaic acid were not inhibited by rapamycin, suggesting that the action of mTOR in the degradation of IRS-1 results from inhibition of PP2A. Consistent with this, treatment of cells with rapamycin stimulated PP2A activity. While the role of mTOR in the phosphorylation of IRS-1 appears to proceed primarily through the regulation of PP2A, we also provide evidence that the regulation of p70S6 kinase phosphorylation requires the direct activity of mTOR.  相似文献   

16.
Effects of vanadate administration on the insulin receptor status in liver were examined in streptozotocin-induced diabetic rats. Diabetic rats were characterized by hyperglycemia (4-fold increase), hypoinsulinemia (81% decrease) and a significant (P<0.01) increase in hepatic insulin receptor numbers. Autophosphorylation of the subunit of insulin receptor and its tyrosine kinase activity towards the synthetic peptide (poly glut4tyr1) decreased by approximately 60% as a result of diabetes. After chronic treatment of these rats with sodium orthovanadate, the plasma glucose levels were normalized to near control values with the hypoinsulinemia remaining unaltered. The insulin-stimulated phosphorylation of the subunit increased significantly (P<0.001) in diabetic rats after treatment with vanadate. However, the improvement in the tyrosine kinase activity was marginal.In vitro, vanadate prevented the dephosphorylation of the phosphorylated insulin receptor and increased its tyrosine kinase activity in the absence as well as presence of insulin. The findings of this study further support the view that insulin receptor is one of the sites involved in the insulin-mimetic actions of vanadate.  相似文献   

17.
18.
We previously reported that adenosine monophosphate-activated protein kinase (AMPK) activity is lower in adipose tissue of morbidly obese individuals who are insulin resistant than in comparably obese people who are insulin sensitive. However, the number of patients and parameters studied were small. Here, we compared abdominal subcutaneous, epiploic, and omental fat from 16 morbidly obese individuals classified as insulin sensitive or insulin resistant based on the homeostatic model assessment of insulin resistance. We confirmed that AMPK activity is diminished in the insulin resistant group. A custom PCR array revealed increases in mRNA levels of a wide variety of genes associated with inflammation and decreases in PGC-1α and Nampt in omental fat of the insulin resistant group. In contrast, subcutaneous abdominal fat of the same patients showed increases in PTP-1b, VEGFa, IFNγ, PAI-1, and NOS-2 not observed in omental fat. Only angiotensinogen and CD4(+) mRNA levels were increased in both depots. Surprisingly, TNFα was only increased in epiploic fat, which otherwise showed very few changes. Protein carbonyl levels, a measure of oxidative stress, were increased in all depots. Thus, adipose tissues of markedly obese insulin resistant individuals uniformly show decreased AMPK activity and increased oxidative stress compared with insulin sensitive patients. However, most changes in gene expression appear to be depot-specific.  相似文献   

19.
The control of glucose uptake and glycogen metabolism by insulin in target organs is in part mediated through the regulation of protein-serine/ threonine kinases. In this study, the expression and phosphotransferase activity levels of some of these kinases in rat heart ventricle were measured to investigate whether they might mediate the shift in the energy dependency of the developing heart from glycogen to fatty acids. Following tail-vein injection of overnight fasted adult rats with 2 U of insulin per kg body weight, protein kinase B (PKB), the 70-kDa ribosomal S6 kinase (S6K), and casein kinase 2 (CK2) were activated (30–600%), whereas the MAP/ extracellular regulated kinases (ERK)1 and ERK2 were not stimulated under these conditions. When the expression levels of the insulin-activated kinases were probed with specific antibodies in ventricular extracts from 1-, 10-, 20-, 50-, and 365-day-old rats, phosphatidylinositol 3-kinase (PI3K), PKB, S6K, and CK2 were downregulated (40–60%) with age. By contrast, ventricular glycogen synthase kinase-3β (GSK3β) protein levels were maintained during postnatal development. Similar findings were obtained when the expression of these kinases was investigated in freshly isolated ventricular myocytes, where they were detected predominantly in the cytosolic fraction of the myocytes. Compared to other adult rat tissues such as brain and liver, the levels of PI3K, PKB, S6K, and GSK3β were relatively low in the heart. Even though CK2 protein and activity levels were reduced by ∼60% in 365 day as compared to 1-day-old rats, expression of CK2 in the adult heart was as high as detected in any of the other rat tissues. The high basal activities of CK2 in early neonatal heart may be associated with the proliferating state of myocytes. J. Cell. Biochem. 71:328–339, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
Objectives : Serum‐ and glucocorticoid‐inducible kinase 1 (SGK1) inhibits the ubiquitin ligase neuronal cell expressed developmentally downregulated 4‐2 (Nedd4‐2), which retards the retrieval of the epithelial Na+ channel ENaC. Accordingly, SGK1 enhances ENaC abundance in the cell membrane. The significance of this effect is shown by an association of an E8CC/CT;I6CC polymorphism in the SGK1 gene with increased blood pressure. However, strong expression of SGK1 in enterocytes not expressing ENaC points to further functions of SGK1. This study was performed to test for regulation of Na+‐coupled glucose transporter 1 (SGLT1) by Nedd4‐2, SGK1, and/or the related kinases SGK3 and PKB. Additional studies searched for an association of the SGK1 gene with BMI. Research Methods and Procedures : mRNA encoding SGLT1, wild‐type Nedd4‐2, inactive C938SNedd4‐2, wild type SGK1, constitutively active S422DSGK1 or inactive K127NSGK1, wild‐type SGK3, and constitutively active T308DS473DPKB or inactive T308AS473APKB were injected into Xenopus oocytes, and glucose transport was quantified from glucose‐induced current (Iglc). BMI was determined in individuals with or without the E8CC/CT;I6CC polymorphism. Results: Iglc was significantly decreased by coexpression of Nedd4‐2 but not of C938SNedd4‐2. Coexpression of SGK1, S422DSGK1, SGK3, or T308DS473DPKB, but not of K127NSGK1 or T308AS473APKB, enhanced Iglc and reversed the effect of Nedd4‐2. SGK1 and SGK3 phosphorylated Nedd4‐2. Deletion of the SGK/PKB phosphorylation sites in Nedd4‐2 blunted the kinase effects. BMI was significantly (p < 0.008) greater in individuals with the E8CC/CT;I6CC polymorphism than in individuals without. Discussion : Overactivity of SGK1 may lead not only to excessive ENaC activity and hypertension but also to enhanced SGLT1 activity and obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号