首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyrimidine usually has good pharmacokinetic properties as a drug substance and considerable efforts have been devoted to develop pyrimidine derivatives into drug candidates. Arylpiperazine-containing pyrimidine 4-carboxamide derivatives were synthesized and evaluated for binding to serotonin receptors and transporter. Pyrimidine derivatives showed good antidepressant activity in FST (forced swimming test) animal model and also displayed no appreciable inhibitory activity against hERG channel blocking assay. Herein SAR studies of pyrimidine derivatives targeting serotonin receptors and transporter will be disclosed.  相似文献   

2.
Deglycobleomycin binds to and degrades the self-complementary oligonucleotide d(CGCTAGCG)(2) in a sequence selective fashion. A previous modeling study [J. Am. Chem. Soc. 120, (1998), 7450] had shown that, during binding to double stranded DNA, the conformation of the methylvalerate domain of deglycoBLM approximated that of S-proline. In the belief that an analogue of deglycoBLM structurally constrained to mimic the DNA-bound conformation might exhibit facilitated DNA binding and cleavage, an analogue of deglycoBLM was prepared in which the methylvalerate moiety was replaced by S-proline. This deglycoBLM analogue, as well as the related analogue containing R-proline, was synthesized on a TentaGel resin. Both of the analogues were found to be capable of binding Fe(2+) and activating O(2) for transfer to styrene. However, both deglycoBLM analogues exhibited diminished abilities to effect the relaxation of supercoiled plasmid DNA, and neither mediated sequence selective DNA cleavage.  相似文献   

3.
On the basis of our earlier studies with the serotonin receptor ligands in the group of 1,3-dimethyl-3,7-dihydropurine-2,6-dione derivatives, a series of new arylpiperazinylalkyl and tetrahydroisoquinolinylalkyl analogs of 8-alkoxy-1,3-dimethyl-3,7-dihydropurine-2,6-dione (10-25) and 1,3-dimethyl-7,9-dihydro-3H-purine-2,6,8-trione (26-30) were synthesized and their 5-HT(1A), 5-HT(2A), and 5-HT(7) receptor affinities were determined. The new compounds 17, 18, 20, and 21 were found to be highly active 5-HT(1A) receptor ligands (K(i)=11-19nM) with diversified affinity for 5-HT(2A) receptors (K(i)=15-253nM). Compounds 12, 13, 15, and 19 were moderately potent 5-HT(2A) ligands (K(i)=23-57nM), whereas 17, 18, 24, and 25 showed distinct affinity for 5-HT(7) receptors (K(i)=51-83nM). Purine-2,6,8-triones showed weak affinities for 5-HT(1A) and 5-HT(7) receptors; among them, 27 and 29 were classified as 5-HT(2A) receptor ligands. The selected compounds 17 and 21 were pharmacologically evaluated to determine their functional activities at pre-(hypothermia in mice) and post-(lower lip retraction in rats) synaptic 5-HT(1A) receptors. Compound 17 showed features of a potential agonist of pre- and post-synaptic 5-HT(1A) receptors, whereas 21 was classified as a potential, weak partial agonist of postsynaptic sites. Last of all, the most interesting compound 17 tested in behavioral models showed potential anxiolytic and antidepressant activities.  相似文献   

4.
Sjögren B  Svenningsson P 《FEBS letters》2007,581(26):5115-5121
Studies using HeLa cells expressing 5-HT7 receptors showed that detergent resistant membranous lipid rafts purified by sucrose gradient centrifugation contained 5-HT7 receptors and caveolin-1. Caveolin-1 siRNA-mediated knockdown or serotonin (5-HT) treatment caused significant reductions of maximum [3H]5-HT binding to 5-HT7 receptors and total immunoreactivity of membranous 5-HT7 receptors in intact cells. Co-treatment with 5-HT, caveolin-1 siRNA and methyl-beta-cyclodextrin had no additive effects on reducing maximum binding of [3H]5-HT to 5-HT7 receptors. 5-HT-mediated reduction of [3H]5-HT binding to 5-HT7 receptors was counteracted by genistein, but not by sucrose. Caveolin-1, specifically localized in cholesterol-enriched lipid rafts, appears to regulate constitutive and agonist-stimulated cell surface levels of 5-HT7 receptors via a clathrin-independent mechanism.  相似文献   

5.
In severe hypoxia or ischemia, normal eupneic breathing fails and is replaced by gasping. Gasping serves as part of a process of autoresuscitation by which eupnea is reestablished. Medullary neurons, having a burster, pacemaker discharge, underlie gasping. Conductance through persistent sodium channels is essential for the burster discharge. This conductance is modulated by norepinephrine, acting on alpha 1-adrenergic receptors, and serotonin, acting on 5-HT2 receptors. We hypothesized that blockers of 5-HT2 receptors and alpha 1-adrenergic receptors would alter autoresuscitation. The in situ perfused preparation of the juvenile rat was used. Integrated phrenic discharge was switched from an incrementing pattern, akin to eupnea, to the decrementing pattern comparable to gasping in hypoxic hypercapnia. With a restoration of hyperoxic normocapnia, rhythmic, incrementing phrenic discharge returned within 10 s in most preparations. Following addition of blockers of alpha 1-adrenergic receptors (WB-4101, 0.0625-0.500 microM) and/or blockers of 5-HT2 (ketanserin, 1.25-10 microM) or multiple 5-HT receptors (methysergide, 3.0-10 microM) to the perfusate, incrementing phrenic discharge continued. Fictive gasping was still induced, although it ceased after significantly fewer decrementing bursts than in preparations than received no blockers. Moreover, the time for recovery of rhythmic activity was significantly prolonged. This prolongation was in excess of 100 s in all preparations that received both WB-4101 (above 0.125 microM) and methysergide (above 2.5 microM). We conclude that activation of adrenergic and 5-HT2 receptors is important to sustain gasping and to restore rhythmic respiratory activity after hypoxia-induced depression.  相似文献   

6.
Mohanan VV  Khan R  Paulose CS 《Life sciences》2006,78(14):1603-1609
5-HT receptors are predominantly located in the brain and are involved in pancreatic function and cell proliferation through sympathetic nervous system. The objective of this study was to investigate the role of hypothalamic 5-HT, 5-HT1A and 5-HT2C receptor binding and gene expression in rat model of pancreatic regeneration using 60% pancreatectomy. The pancreatic regeneration was evaluated by 5-HT content, 5-HT1A and 5-HT2C receptor gene expression in the hypothalamus of sham operated, 72 h and 7 days pancreatectomised rats. 5-HT content was quantified by HPLC. 5-HT1A receptor assay was done by using specific agonist [3H]8-OH DPAT. 5-HT2C receptor assay was done by using specific antagonist [3H]mesulergine. The expression of 5-HT1A and 5-HT2C receptor gene was analyzed by RT-PCR. 5-HT content was higher in the hypothalamus of 72 h pancreatectomised rats. 5-HT1A and 5-HT2C receptors were down-regulated in the hypothalamus. RT-PCR analysis revealed decreased 5-HT1A and 5-HT2C receptor mRNA expression. The 5-HT1A and 5-HT2C receptors gene expression in the 7 days pancreatectomised rats reversed to near sham level. This study is the first to identify 5-HT1A and 5-HT2C receptor gene expression in the hypothalamus during pancreatic regeneration in rats. Our results suggest the hypothalamic serotonergic receptor functional regulation during pancreatic regeneration.  相似文献   

7.
Novel, flexible arylpiperazine gepirone analogs (1a-3a) with a mixed 5-HT1A/5-HT2A receptor profile, low D2 receptor affinity, and agonistic (2a) or partial agonistic (1a, 3a) activity toward 5-HT1A receptor sites were synthesized. Their conformationally restricted counterparts (1b-3b) were selective 5-HT1A ligands (over 5-HT2A and D2 receptors), which turned out to be agonists (2b, 3b), or partial agonist (1b) of 5-HT1A receptors.  相似文献   

8.
5-Hydroxytryptamine 2A (5-HT2A) receptors, a major site of action of clozapine and other atypical antipsychotic medications, are, paradoxically, internalized in vitro and in vivo by antagonists and agonists. The mechanisms responsible for this paradoxical regulation of 5-HT2A receptors are unknown. In this study, the arrestin and dynamin dependences of agonist- and antagonist-mediated internalization were investigated in live cells using green fluorescent protein (GFP)-tagged 5-HT2A receptors (SR2-GFP). Preliminary experiments indicated that GFP tagging of 5-HT2A receptors had no effect on either the binding affinities of several ligands or agonist efficacy. Likewise, both the native receptor and SR2-GFP were internalized via endosomes in vitro. Experiments with a dynamin dominant-negative mutant (dynamin K44A) demonstrated that both agonist- and antagonist-induced internalization were dynamin-dependent. By contrast, both the agonist- and antagonist-induced internalization of SR2-GFP were insensitive to three different arrestin (Arr) dominant-negative mutants (Arr-2 V53D, Arr-2-(319-418), and Arr-3-(284-409)). Interestingly, 5-HT2A receptor activation by agonists, but not antagonists, induced greater Arr-3 than Arr-2 translocation to the plasma membrane. Importantly, the agonist-induced internalization of 5-HT2A receptors was accompanied by differential sorting of Arr-2, Arr-3, and 5-HT2A receptors into distinct plasma membrane and intracellular compartments. The agonist-induced redistribution of Arr-2 and Arr-3 into intracellular vesicles and plasma membrane compartments distinct from those involved in 5-HT2A receptor internalization implies novel roles for Arr-2 and Arr-3 independent of 5-HT2A receptor internalization and desensitization.  相似文献   

9.
N Nishino  C Tanaka 《Life sciences》1985,37(12):1167-1174
Freeze-dried crude synaptic membranes prepared from bovine cerebral cortex and striatum were exposed to high energy gamma ray from the source of 60Co. The size of serotonin 5-HT1 receptors labeled by [3H]serotonin and that of 5-HT2 receptors labeled by [3H]spiperone or [3H]ketanserin was determined by target size analyses. The values were 57,000 daltons, 145,000 daltons and 152,000 daltons for the cerebral cortex and 56,000 daltons, 141,000 daltons and 150,000 daltons for the striatum, respectively. The estimated sizes were deduced by reference to enzyme standards with known molecular masses and which were irradiated in parallel. Our results demonstrate that the molecular entities in situ for 5-HT1 receptors are distinct from those for 5-HT2 receptors, thus supporting data on the existence of two distinct populations of serotonin receptors, hitherto evidenced physiopharmacologically.  相似文献   

10.
The mRNA expression of serotonin receptors 5-HT1A and 5-HT2A was investigated by the quantitative method RT-PCR in rats adapted to cold (5 weeks at +4 -(+6) degrees C) and in control (5 weeks at +20-22 degrees C). Four brain regions were examined: frontal cortex, hypothalamus, hippocampus, and midbrain. The influence of cold adaptation on the mRNA expression of 5-HT15 receptor was not found to be absent. The mRNA expression of 5-HT2A receptor changed under long-term cold exposure. These changes in different brain regions were various: in hypothalamus, there was an increase of the 5-HT2A receptor mRNA expression; in the cortex, a decrease; in the hippocampus and midbrain, significant changes of the mRNA expression were absent. The findings appear bo te adaptive and, according to their localization in the central nervous system, regulatory. They also suggest involvement of brain serotoninergic system in mechanism of adaptive reorganization of temperature regulation.  相似文献   

11.
Receptor tyrosine kinases activate mitogen-activated protein (MAP) kinases through Ras, Raf-1, and MEK. Receptor tyrosine kinases can be transactivated by G protein-coupled receptors coupling to G(i) and G(q). The human G protein-coupled serotonin receptors 5-HT(4(b)) and 5-HT(7(a)) couple to G(s) and elevate intracellular cAMP. Certain G(s)-coupled receptors have been shown to activate MAP kinases through a protein kinase A- and Rap1-dependent pathway. We report the activation of the extracellular signal-regulated kinases (ERKs) 1 and 2 (p44 and p42 MAP kinase) through the human serotonin receptors 5-HT(4(b)) and 5-HT(7(a)) in COS-7 and human embryonic kidney HEK293 cells. In transfected HEK293 cells, 5-HT-induced activation of ERK1/2 is sensitive to H89, which indicates a role for protein kinase A. The observed activation of ERK1/2 does not require transactivation of epidermal growth factor receptors. Furthermore, 5-HT induced activation of both Ras and Rap1. Whereas the presence of Rap1GAP1 did not influence the 5-HT-mediated activation of ERK1/2, the activation of ERK1/2 was abolished in the presence of dominant negative Ras (RasN17). ERK1/2 activation was reduced in the presence of "dominant negative" Raf1 (RafS621A) and slightly reduced by dominant negative B-Raf, indicating the involvement of one or more Raf isoforms. These findings suggest that activation of ERK1/2 through the human G(s)-coupled serotonin receptors 5-HT(4(b)) and 5-HT(7(a)) in HEK293 cells is dependent on Ras, but independent of Rap1.  相似文献   

12.
The 5-hydroxytryptamine type 2A (5-HT(2A)) receptor and the 5-HT(2C) receptor are closely related members of the G-protein-coupled receptors activated by serotonin that share very similar pharmacological profiles and cellular signaling pathways. These receptors express a canonical class I PDZ ligand (SXV) at their C-terminal extremity. Here, we have identified proteins that interact with the PDZ ligand of the 5-HT(2A) and 5-HT(2C) receptors by a proteomic approach associating affinity chromatography using immobilized synthetic peptides encompassing the PDZ ligand and mass spectrometry. We report that both receptor C termini interact with specific sets of PDZ proteins in vitro. The 5-HT(2C) receptor but not the 5-HT(2A) receptor binds to the Veli-3.CASK.Mint1 ternary complex and to SAP102. In addition, the 5-HT(2C) receptor binds more strongly to PSD-95 and MPP-3 than the 5-HT(2A) receptor. In contrast, a robust interaction between the 5-HT(2A) receptor and the channel-interacting PDZ protein CIPP was found, whereas CIPP did not significantly associate with the 5-HT(2C) receptor. We also show that residues located at the -1 position and upstream the PDZ ligand in the C terminus of the 5-HT(2A) and 5-HT(2C) receptors are major determinants in their interaction with specific PDZ proteins. Immunofluorescence and electron microscopy studies strongly suggested that these specific interactions also take place in living cells and that the 5-HT(2) receptor-PDZ protein complexes occur in intracellular compartments. The interaction of the 5-HT(2A) and the 5-HT(2C) receptor with specific sets of PDZ proteins may contribute to their different signal transduction properties.  相似文献   

13.
A series of N,N-disubstituted piperazines were prepared and evaluated for binding to alpha4beta2(*) and alpha7(*) neuronal nicotinic acetylcholine receptors using rat striatum and whole brain membrane preparations, respectively. This series of compounds exhibited selectivity for alpha4beta2(*) nAChRs and did not interact with the alpha7(*) nAChRs subtype. The most potent analogues were compounds 8b and 8f (K(i)=32 microM). Thus, linking together a pyridine pi-system and a cyclic amine moiety via a piperazine ring affords compounds with low affinity, but good selectivity for alpha4beta2(*) nicotinic receptors.  相似文献   

14.
A new group of serotoninergic 5-HT1A or 5-HT7 receptor ligands was identified. These compounds were designed and synthesized on a benzimidazolone scaffold and they enrich the well-known arylpiperazine class of 5-HT ligands. Diverse pharmacomodulations induced a shift in the affinity and selectivity profile with final identification of new potent hits.  相似文献   

15.
A series of novel long-chain arylpiperazines bearing a coumarin fragment was synthesized and the compounds were evaluated for their affinity at alpha(1), D(2 )and 5-HT(2A) receptors. Most of the new compounds showed high affinity for the three types of receptors alpha(1A), D(2) and 5-HT(2A) which depends, fundamentally, on the substitution of the N(4) of the piperazine ring. From the series emerged compound 6, which had an haloperidol-like profile at D(2) and 5HT(2A) receptors (pK(i) values of 7.93 and 6.76 respectively). The higher alpha(1A) receptor affinity (pA(2)=9.07) of this compound could contribute to a more atypical antipsychotic profile than the haloperidol.  相似文献   

16.
The aim of the present studies was to determine the effects of reduced or absent serotonin (5-HT) transporters (5-HTTs) on 5-HT2A and 5-HT2C receptors. The density of 5-HT2C receptors was significantly increased in the amygdala and choroid plexus of 5-HTT knockout mice. On the other hand, the density of 5-HT2A receptors was significantly increased in the hypothalamus and septum, but reduced in the striatum, of 5-HTT knockout mice. However, 5-HT2A mRNA was not changed in any brain region measured. 5-HT2C mRNA was significantly reduced in the choroid plexus and lateral habenula nucleus of these mice. The function of 5-HT2A receptors was evaluated by hormonal responses to (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI). Oxytocin, but not adrenocorticotrophic hormone or corticosterone, responses to DOI were significantly greater in 5-HTT knockout mice. In addition, Gq and G11 proteins were not significantly changed in any brain region measured. The present results suggest that the constitutive alteration in the function of 5-HTTs changes the density of 5-HT2A and 5-HT2C receptors in a brain region-specific manner. These changes may not be mediated by alterations in their gene expression or in the level of Gq/11 proteins. The alterations in these receptors may be related to the altered behaviors of 5-HTT knockout mice.  相似文献   

17.
Rothman RB  Vu N  Wang X  Xu H 《Peptides》2003,24(3):413-417
  相似文献   

18.
Mechanisms of agonist and inverse agonist action at the serotonin 5-HT1A receptor have been studied using the modulation of guanosine 5'-O-(3-[35S]thiotriphosphate) ([35S]GTPgammaS) binding in membranes of Chinese hamster ovary (CHO) cells expressing the receptor (CHO-5-HTA1A cells). A range of agonists increased [35S]GTPgammaS binding with different potencies and to different maximal extents, whereas two compounds, methiothepin and spiperone, inhibited both agonist-stimulated and basal [5S]GTPgammaS binding, thus exhibiting inverse agonism. Potencies of agonists to stimulate [35S]GTPgammaS binding in membranes from CHO-5-HT1A cells were reduced by adding increasing concentrations of GDP to assays, whereas changes in sodium ion concentration did not affect agonist potency. The maximal effect of the agonists was increased by increasing sodium ion concentrations. The affinities of agonists in ligand binding assays were unaffected by changes in sodium ion concentration. Increasing GDP in the assays of the inverse agonists increased potency for spiperone to inhibit [35S]GTPgammaS binding and had no effect for methiothepin, in agreement with the sensitivity of these compounds to guanine nucleotides in ligand binding assays. Potencies for these inverse agonists were unaffected by changes in sodium ion concentration. These data were simulated using the extended ternary complex model. These simulations showed that the data obtained with agonists were consistent with these compounds achieving agonism by stabilising the ternary complex. For inverse agonists, the simulations showed that the mechanism for spiperone may be to stabilise forms of the receptor uncoupled from G proteins. Methiothepin, however, probably does not alter the equilibrium distribution of different receptor species; rather, this inverse agonist may stabilise an inactive form of the receptor that can still couple to G protein.  相似文献   

19.
The effects of serotonin (5-HT)1A drugs on the development and expression of sensitization to the locomotor effect of amphetamine (AMPH) were studied in mice. 8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a 5-HT1A agonist, dose-dependently reduced the expression of AMPH (2.5 mg/kg)-induced sensitization. The latter inhibitory effect of 8-OH-DPAT was reversed by (S)-N-tert-butyl-3-(4-(2-methoxyphenyl)piperazin-1-yl)-2-phenyl propamine (WAY 100135), a 5-HT1A antagonist. WAY 100135 given alone did not affect expression of AMPH sensitization. Combined injections of 8-OH-DPAT, but not WAY 100135, with AMPH (2.5 mg/kg) during the development of sensitization, protected against the expression of sensitization to a challenge dose of AMPH (2.5 mg/kg) 3 days after withdrawal. The above inhibitory effect of 8-OH-DPAT on the development of AMPH sensitization was blocked by pretreatment with WAY 100135. The AMPH-induced conditioned locomotion was unaffected by pretreatment with 8-OH-DPAT. These results indicate that 5-HT1A receptors are not involved in AMPH-induced sensitization per-se, whereas their pharmacological activation leads to the inhibition of both the development and the expression of AMPH-induced sensitization.  相似文献   

20.
We here report on the synthesis and binding properties at 5-HT(7) and 5-HT(1A) receptors of ligands 3-12, that were designed according to the 'bivalent ligand' approach. Two moieties of the 5-HT(7)/5-HT(1A) ligand 4-[2-(3-methoxyphenyl)ethyl]-1-(2-methoxyphenyl)piperazine (1) were linked through their 3-methoxy substituent by polymethylene chains of variable length, with the aim to increase the affinity for 5-HT(7) receptor and the selectivity over 5-HT(1A) receptors. In the best cases, the dimers showed affinities for 5-HT(7) receptors as high as the monomer with no improvement in selectivity. Some dimers displayed 5-HT(1A) receptor affinities slightly higher than monomer 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号