首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although p38 MAPK activation is essential for myogenesis, the upstream signaling mechanism that activates p38 during myogenesis remains undefined. We recently reported that p38 activation, myogenesis, and regeneration in cardiotoxin-injured soleus muscle are impaired in TNF- receptor double-knockout (p55–/–p75–/–) mice. To fully evaluate the role of TNF- in myogenic activation of p38, we tried to determine whether p38 activation in differentiating myoblasts requires autocrine TNF-, and whether forced activation of p38 rescues impaired myogenesis and regeneration in the p55–/–p75–/– soleus. We observed an increase of TNF- release from C2C12 or mouse primary myoblasts placed in low-serum differentiation medium. A TNF--neutralizing antibody added to differentiation medium blocked p38 activation and suppressed differentiation markers myocyte enhancer factor (MEF)-2C, myogenin, p21, and myosin heavy chain in C2C12 myoblasts. Conversely, recombinant TNF- added to differentiation medium stimulated myogenesis at 0.05 ng/ml while inhibited it at 0.5 and 5 ng/ml. In addition, differentiation medium-induced p38 activation and myogenesis were compromised in primary myoblasts prepared from p55–/–p75–/– mice. Increased TNF- release was also seen in cardiotoxin-injured soleus over the course of regeneration. Forced activation of p38 via the constitutive activator of p38, MKK6bE, rescued impaired myogenesis and regeneration in the cardiotoxin-injured p55–/–p75–/– soleus. These results indicate that TNF- regulates myogenesis and muscle regeneration as a key activator of p38. myocyte enhancer factor-2C; myogenin; p21; myosin heavy chain; Akt; tumor necrosis factor-; mitogen-activated protein kinase  相似文献   

2.
3.
p38 mitogen-activated protein kinase regulates human T cell IL-5 synthesis.   总被引:4,自引:0,他引:4  
Involvement of p38 mitogen-activated protein (MAP) kinase in human T cell cytokine synthesis was investigated. p38 MAP kinase was clearly induced in human Th cells activated through the TCR. SB203580, a highly selective inhibitor of p38 MAP kinase, inhibited the induction of p38 MAP kinase in human Th cells. Major T cell cytokines, IL-2, IL-4, IL-5, and IFN-gamma, were produced by Der f 2-specific Th clones upon stimulation through the TCR. IL-5 synthesis alone was significantly inhibited by SB203580 in a dose-dependent manner, whereas the production of IL-2, IL-4, and IFN-gamma was not affected. The proliferation of activated T cells was not affected. IL-5 synthesis of human Th clones induced upon stimulation with rIL-2, phorbol ester plus anti-CD28 mAb, and immobilized anti-CD3 mAb plus soluble anti-CD28 mAb was also suppressed by SB203580 in the same concentration response relationship. The results clearly indicated that IL-5 synthesis by human Th cells is dependent on p38 MAP kinase activity, and is regulated distinctly from IL-2, IL-4, and IFN-gamma synthesis. Selective control of IL-5 synthesis will provide a novel treatment devoid of generalized immune suppression for bronchial asthma and atopic dermatitis that are characterized by eosinophilic inflammation.  相似文献   

4.
The present study attempts to investigate the effect of H(2)S on lipopolysaccharide (LPS)-induced inflammation in both primary cultured microglia and immortalized murine BV-2 microglial cells. We found that exogenous application of sodium hydrosulfide (NaHS) (a H(2)S donor, 10-300 micro mol/L) attenuated LPS-stimulated nitric oxide (NO) in a concentration-dependent manner. Stimulating endogenous H(2)S production decreased LPS-stimulated NO production, whereas lowering endogenous H(2)S level increased basal NO production. Western blot analysis showed that both exogenous and endogenous H(2)S significantly attenuated the stimulatory effect of LPS on inducible nitric oxide synthase expression, which is mimicked by SB 203580, a specific p38 mitogen-activated protein kinase (MAPK) inhibitor. Exogenously applied NaHS significantly attenuated LPS-induced p38 MAPK phosphorylation in BV-2 microglial cells. Moreover, both NaHS (300 micro mol/L) and SB 203580 (1 micro mol/L) significantly attenuated LPS-induced tumor necrosis factor-alpha secretion, another inflammatory indicator. In addition, NaHS (10-300 micro mol/L) dose-dependently decreased LPS-stimulated NO production in primary cultured astrocytes, suggesting that the anti-neuroinflammatory effect of H(2)S is not specific to microglial cells alone. Taken together, H(2)S produced an anti-inflammatory effect in LPS-stimulated microglia and astrocytes, which may be due to inhibition of inducible nitric oxide synthase and p38 MAPK signaling pathways. These findings may have important implications in the treatment of neuroinflammation-related diseases.  相似文献   

5.
Airway epithelial cells which are the initial site of influenza virus (IV) infection are suggested to participate in airway inflammatory response by expressing various cytokines including RANTES; however, the intracellular signal that regulates RANTES expression has not been determined. In the present study, we examined the role of p38 mitogen-activated protein (MAP) kinase, extracellular signal-regulated kinase (Erk), and c-Jun-NH2-terminal kinase (JNK) in RANTES production by IV-infected human bronchial epithelial cells. The results showed that IV infection induced increases in p38 MAP kinase, and Erk and JNK phosphorylation and activity. SB 203580, PD 98059, and CEP-1347 attenuated IV-infection induced p38 MAP kinase activity, Erk activity, and JNK activity, respectively. SB 203580 and CEP-1347 attenuated RANTES production by 45.3% and 45.2%, respectively, but a combination of these inhibitors additively attenuated by 69.1%. In contrast, PD 98059 did not attenuate. Anti-IL-1alpha mAb, anti-IL-1beta mAb, anti-TNF-alpha mAb, anti-IL-8 mAb, anti-IFN-beta mAb, anti-RANTES mAb, and a combination of these mAbs did not affect IV infection-induced increases in p38 MAP kinase, Erk, and JNK phosphorylation, indicating that each cytokine neutralized by corresponding Ab was not involved in IV infection-induced phosphorylation of MAP kinases. N-acetylcysteine (NAC) did not affect IV infection-induced increases in MAP kinase phosphorylation, whereas NAC attenuated RANTES production by 18.2%, indicating that reactive oxygen species may act as a second messenger leading to RANTES production via p38 MAP kinase- and JNK-independent pathway. These results indicate that p38 MAP kinase and JNK, at least in part, regulate RANTES production by bronchial epithelial cells.  相似文献   

6.
Shen J  Sakaida I  Uchida K  Terai S  Okita K 《Life sciences》2005,77(13):1502-1515
Leptin is now recognized as a proinflammatory cytokine and thought to be a progressive factor for non-alcoholic steatohepatitis (NASH). Here we showed the effects of leptin on the production of TNF-alpha (tumor necrosis factor-alpha) by Kupffer cells (KCs) with signal transduction. Leptin enhanced TNF-alpha production accompanied by a dose-dependent increase of MAPK activity in lipopolysaccharide (LPS)-stimulated KCs. SB203580 and JNK inhibitor I, specific inhibitors of P38 and JNK, inhibited TNF-alpha production in KCs but PD98059, an inhibitor of the ERK pathway, did not affect TNF-alpha production by KCs. Recombinant constitutively active adenovirus (Ad)-MKK6 and-MKK7 increased TNF-alpha production in KCs with activation of P38 and JNK without any change by Ad-MEK1 delivery. On the other hand, KCs isolated from the Zucker rat (fa/fa), a leptin receptor-deficient rat, showed reduced production of TNF-alpha on stimulation with LPS. The delivery of Ad-MKK6 and-MKK7, but not Ad-MEK1, increased TNF-alpha production in KCs of Zucker rats with activation of P38 and JNK. Addition of leptin to normal rats increased LPS-induced hepatic TNF-alpha production in vivo and leptin receptor-deficient Zucker rats showed reduced hepatic TNF-alpha production on addition of LPS in vivo. These findings indicate that P38 and JNK pathways are involved in the signal transduction of leptin enhancement of LPS-induced TNF-alpha production.  相似文献   

7.
We examined how pigment epithelium derived factor (PEDF), an effective endogenous antiangiogenic protein, decreases survival of primary cultures of human umbilical vein endothelial cells (HUVECs) in a low serum environment supplemented with the endothelial cell growth factor (VEGF). We provide evidence that induction of apoptosis by PEDF is associated with activation of p38 followed by cleavage of caspases 3, 8, and 9 by treatment with PEDF, and PEDF's actions are caspase dependent. A key mediator in the executioner effects of PEDF is p38 since the inhibition of p38 activity blocked apoptosis and prevented cleavage of caspases 3, 8, and 9. Although PEDF-induced phosphorylation of JNK1, the inhibition of JNK1 had no effect on apoptosis, even though it prevented phosphorylation of JNK1 by PEDF. Based on these findings, we propose that the antiangiogenic action of PEDF is dependent on activation of p38 MAPkinase which regulates cleavage of multiple caspases cascades.  相似文献   

8.
Frey MR  Dise RS  Edelblum KL  Polk DB 《The EMBO journal》2006,25(24):5683-5692
Internalization and proteolytic degradation of epidermal growth factor (EGF) receptor (R) following ligand binding is an important mechanism for regulating EGF-stimulated signals. Using pharmacological and RNA interference inhibition of p38 mitogen-activated protein kinase, we show that p38 is required for efficient EGF-induced EGFR destruction but not internalization. In the absence of p38 activity, EGF fails to stimulate the ubiquitin ligase Cbl or ubiquitinylation of EGFR, and internalized EGFR accumulates in intracellular vesicles containing caveolin-1. These effects are accompanied by loss of EGFR phosphorylation on Y1045, a phosphorylation site required for Cbl activation. Furthermore, similar to cells treated with p38 inhibitors, intestinal epithelial cells expressing Y1045F EGFR mutants show increased proliferation but not migration in response to EGF, thus uncoupling these biological responses. Together these data position p38 as a modulator of ligand-stimulated EGFR processing and demonstrate that this processing has a profound impact on the cellular outcome of EGFR signaling.  相似文献   

9.
Morphine analgesic properties and side effects such as tolerance are mediated by the mu opioid receptor (MOR) whose endocytosis is considered of primary importance for opioid pharmacological effects. Here, we show that p38 mitogen-activated protein kinase (MAPK) activation is required for MOR endocytosis and sufficient to trigger its constitutive internalization in the absence of agonist. Further studies established a functional link between p38 MAPK and the small GTPase Rab5, a key regulator of endocytosis. Expression of an activated mutant of Rab5 stimulated endocytosis of MOR ligand-independently in wild-type but not in p38alpha-/- cells. We found that p38alpha can phosphorylate the Rab5 effectors EEA1 and Rabenosyn-5 on Thr-1392 and Ser-215, respectively, and these phosphorylation events regulate the recruitment of EEA1 and Rabenosyn-5 to membranes. Moreover, phosphomimetic mutation of Thr-1392 in EEA1 can bypass the requirement for p38alpha in MOR endocytosis. Our results highlight a novel mechanism whereby p38 MAPK regulates receptor endocytosis under physiological conditions via phosphorylation of Rab5 effectors.  相似文献   

10.
The p38alpha MAPK participates in a variety of biological processes. Activation of p38alpha is mediated by phosphorylation on specific regulatory tyrosine and threonine sites, and the three dual kinases, MAPK kinase 3 (MKK3), MKK4, and MKK6, are known to be the upstream activators of p38alpha. In addition to activation by upstream kinases, p38alpha can autoactivate when interacting with transforming growth factor-beta-activated protein kinase 1-binding protein 1 (TAB1). Here we used MKK3 and MKK6 double knock-out (MKK3/6 DKO) and MKK4/7 DKO mouse embryonic fibroblast (MEF) cells to examine activation mechanisms of p38alpha. We confirmed that the MKK3/6 pathway is a primary mechanism for p38alpha phosphorylation in MEF cells, and we also showed the presence of other p38alpha activation pathways. We show that TAB1-mediated p38alpha phosphorylation in MEF cells did not need MKK3/4/6, and it accounted for a small portion of the total p38alpha phosphorylation that was induced by hyperosmolarity and anisomycin. We observed that a portion of peroxynitrite-induced phospho-p38alpha is associated with an approximately 85-kDa disulfide complex in wild-type MEF cells. Peroxynitrite-induced phosphorylation of p38alpha in the approximately 85-kDa complex is independent from MKK3/6 because only phospho-p38alpha not associated with the disulfide complex was diminished in MKK3/6 DKO cells. In addition, our data suggest interference among different pathways because TAB1 had an inhibitory effect on p38alpha phosphorylation in the peroxynitrite-induced approximately 85-kDa complex. Mutagenesis analysis of the cysteines in p38alpha revealed that no disulfide bond forms between p38alpha and other proteins in the approximately 85-kDa complex, suggesting it is a p38alpha binding partner(s) that forms disulfide bonds, which enable it to bind to p38alpha. Therefore, multiple mechanisms of p38alpha activation exist that can influence each other, be simultaneously activated by a given stimulus, and/or be selectively used by different stimuli in a cell type-specific manner.  相似文献   

11.
We previously reported that p70 S6 kinase takes part in bone morphogenetic protein-4 (BMP-4)-stimulated vascular endothelial growth factor (VEGF) synthesis in osteoblast-like MC3T3-E1 cells. Recently, we showed that BMP-4-induced osteocalcin synthesis is regulated by p44/p42 MAP kinase and p38 MAP kinase in these cells. In the present study, we investigated whether the MAP kinases are involved in the BMP-4-stimulated synthesis of VEGF in MC3T3-E1 cells. PD-98059 and U-0126, inhibitors of the upstream kinase of p44/p42 MAP kinase, failed to affect BMP-4-stimulated VEGF synthesis. SB-203580 and PD-169316, inhibitors of p38 MAP kinase, significantly reduced VEGF synthesis, whereas SB-202474, a negative control for p38 MAP kinase inhibitor, had little effect on VEGF synthesis. The BMP-4-stimulated phosphorylation of p38 MAP kinase was not affected by rapamycin, an inhibitor of p70 S6 kinase. On the contrary, SB-203580 and PD-169316 reduced the BMP-4-stimulated phosphorylation of p70 S6 kinase. In addition, anisomycin, an activator of p38 MAP kinase, phosphorylates p70 S6 kinase, and the phosphorylation was suppressed by SB-203580. LY-294002, an inhibitor of phosphatidylinositol 3-kinase, failed to suppress the phosphorylation of p38 MAP kinase induced by BMP-4. Not BMP-4 but anisomycin weakly induced the phosphorylation of phosphoinositide-dependent kinase-1. However, anisomycin had little effect on phosphorylation of either Akt or the mammalian target of rapamycin. Taken together, our results suggest that p38 MAP kinase functions in BMP-4-stimulated VEGF synthesis as a positive regulator at a point upstream from p70 S6 kinase in osteoblasts.  相似文献   

12.
13.
Dehydroepiandrosterone-sulfate, the sulfated form of dehydroepiandrosterone, is the most abundant steroid in young adults, but gradually declines with aging. In humans, the clinical application of dehydroepiandrosterone targeting some collagen diseases, such as systemic lupus erythematosus, as an adjunctive treatment has been applied in clinical trial. Here, we report that dehydroepiandrosterone may negatively regulate the mitogen-activated protein kinase pathway in humans via a novel dual specificity protein phosphatase, DDSP (dehydroepiandrosterone-enhanced dual specificity protein phosphatase). DDSP is highly homologous to LCPTP/HePTP, a tissue-specific protein tyrosine phosphatase (PTP) which negatively regulates both ERK and p38-mitogen-activated protein kinase, and is transcribed from the PTPN7 locus by alternative splicing. Although previous reports have shown that the mRNA expression of the LCPTP/HePTP gene was inducible by extracellular signals such as T-cell antigen receptor stimulation, reverse transcribed (RT)-PCR experiments using specific sets of primers suggested that the expression of LCPTP/HePTP was constitutive while the actual inducible sequence was that of DDSP. Furthermore DDSP was widely distributed among different types of human tissues and specifically interacted with p38-mitogen-activated protein kinase. This inducible negative regulation of the p38-mitogen-activated protein kinase-dependent pathway may help to clarify the broad range of dehydroepiandrosterone actions, thereby aiding the development of new preventive or adjunctive applications for human diseases.  相似文献   

14.
15.
Abstract

Context: Previously we showed that angiotensin (Ang) II and Ang III induced phosphorylation of ERK1/2 and JNK mitogen-activated protein (MAP) kinases in rat astrocytes. Objectives: To determine whether these peptides induce p38 MAP kinase in astrocytes. Materials and methods: We used brainstem astrocytes as a model system to determine whether Ang II and Ang III induce p38 MAP kinase protein phosphorylation. Results: Treatment of astrocytes with increasing concentrations of both peptides caused a dose-dependent increase in p38 MAP kinase phosphorylation. The effect of Ang II and Ang III was maximal at 10?nM and 100?nM concentrations, respectively. The effects of the peptides were rapid occurring within minutes of treatment. There was a significant difference in the ability of the peptides to induce p38 MAP kinase phosphorylation. The ability of Ang II to induce p38 MAP kinase was almost twice than that of Ang III, suggesting that Ang II was more potent than Ang III in this effect. Ang AT1 receptor mediated the actions of the peptides since pretreatment with losartan prevented p38 MAP kinase phosphorylation by Ang II and Ang III. In addition, blockade of Ang II metabolism to Ang III with the aminopeptidase A inhibitor glutamate phosphonate was ineffective in ameliorating Ang II phosphorylation of p38 MAP kinase, suggesting that Ang II directly stimulated p38 MAP kinase phosphorylation. Conclusion: These findings provide insight into the molecular nature of the actions of these peptides and offer a possible mechanism by which these Ang peptides physiological and possibly pathological actions occur in astrocytes.  相似文献   

16.
Calcitriol, the hormonal form of Vitamin D, potentiates the activity of some agents of the anti-cancer immune system including tumor necrosis factor-alpha (TNF-alpha). Different signaling pathways activated by TNF-alpha may be targets for calcitriol action. Activation of p38 MAP kinase was shown to have both pro- and anti-apoptotic actions in TNF-alpha-induced programmed cell death depending on cell context. Treatment of MCF-7 breast cancer cells with TNF-alpha resulted in activation of p38 MAP kinase that persisted for at least 24h. Whereas calcitriol had no effect on the earlier phase of p38 MAP kinase activation (up to 1h), it inhibited the activation of this pathway between one and 24h after exposure to TNF-alpha. Both calcitriol and the p38 MAP kinase inhibitor SB203580 enhanced TNF-alpha-induced cytotoxicity and drop in mitochondrial membrane potential, but their combined effect was sub-additive. Taken together, these findings suggest that p38 MAP kinase plays an anti-apoptotic role in TNF-alpha-induced cytotoxicity in MCF-7 cells and that the synergistic interaction between TNF-alpha and calcitriol, leading to mitochondrial damage and subsequent cell death, is partially due to modulation of this signaling pathway.  相似文献   

17.
Inflammatory bowel diseases (IBD)--Crohn's disease and ulcerative colitis--are relapsing chronic inflammatory disorders which involve genetic, immunological, and environmental factors. The regulation of TNF-alpha, a key mediator in the inflammatory process in IBD, is interconnected with mitogen-activated protein kinase pathways. The aim of this study was to characterize the activity and expression of the four p38 subtypes (p38alpha-delta), c-Jun N-terminal kinases (JNKs), and the extracellular signal-regulated kinases (ERK)1/2 in the inflamed intestinal mucosa. Western blot analysis revealed that p38alpha, JNKs, and ERK1/2 were significantly activated in IBD, with p38alpha showing the most pronounced increase in kinase activity. Protein expression of p38 and JNK was only moderately altered in IBD patients compared with normal controls, whereas ERK1/2 protein was significantly down-regulated. Immunohistochemical analysis of inflamed mucosal biopsies localized the main expression of p38alpha to lamina propria macrophages and neutrophils. ELISA screening of the supernatants of Crohn's disease mucosal biopsy cultures showed that incubation with the p38 inhibitor SB 203580 significantly reduced secretion of TNF-alpha. In vivo inhibition of TNF-alpha by a single infusion of anti-TNF-alpha Ab (infliximab) resulted in a highly significant transient increase of p38alpha activity during the first 48 h after infusion. A significant infliximab-dependent p38alpha activation was also observed in THP-1 myelomonocytic cells. In human monocytes, infliximab enhanced TNF-alpha gene expression, which could be inhibited by SB 203580. In conclusion, p38alpha signaling is involved in the pathophysiology of IBD.  相似文献   

18.
Mast cells play a central role in both inflammation and immediate allergic reactions. We have previously shown that Substance P (SP) stimulates TNF-alpha mRNA and protein expression in rat peritoneal mast cells (PMC). In the present paper, we investigated whether the induction of TNF-alpha production by the mast cells agonist involves MAPKs signalling pathways. We found that as early as 5 min after PMC exposure to SP, phosphorylation of p38 MAPK and JNK was induced. On the contrary, phosphorylation of p42/44 MAPK occurred only after a 30 min exposure to SP and did not correlate with SP-induced TNF-alpha production. The highly specific p38 MAPK inhibitor SB203580 and the blocker of PI-3K wortmannin, abolished SP-induced increase in TNF-alpha mRNA and protein levels and showed to reduce the SP-mediated histamine secretion. In addition, wortmannin reduced SP-mediated JNK phosphorylation. The results reveal that the induction of TNF-alpha expression and histamine exocytosis by exposure of rat PMC to substance P requires the activation of p38 and JNK MAPKs pathways. Moreover, they suggest PI-3K as a possible upstream component of JNK pathway in SP-induced inflammatory reactions.  相似文献   

19.
Eosinophils constitutively produce and store matrix metalloproteinase-9 (MMP-9), a protease implicated in tissue remodeling observed in asthma. In this study, we examined the rapid release of stored MMP-9 from eosinophils following stimulation with either tumor necrosis factor-alpha (TNF-alpha or the bacterial product fMLP. TNF-alpha induced rapid and robust pro-MMP-9 release from eosinophils. MMP-9 could be detected in the cell-free supernatant as early as 15min after stimulation. Rapid MMP-9 release was similarly induced by fMLP. TNF-alpha stimulation activated the mitogen-activated protein (MAP) kinases p38 MAP kinase and extracellular signal-regulated kinase-2 (Erk-2) at times and concentrations similar to that observed for MMP-9 release. Using pharmacological inhibitors, we found that TNF-alpha-stimulated MMP-9 release was mediated by p38 MAP kinase, but not Erk-1/2. Signaling through p38 MAP kinase may represent a universal mechanism for MMP-9 release from eosinophils, as fMLP-induced MMP-9 release was also regulated by p38 MAP kinase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号