首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A segment of DNA located in the region of the E. coli K12 chromosome previously identified by the Rac phenotype can function as a self-replicating plasmid. Evidence is presented that this plasmid, the oriJ plasmid, contains the origin of replication of a defective prophage postulated to be located in this chromosomal region by Low (1973). The plasmid can only be maintained in strains in which this postulated prophage has been deleted. In strains which possess the prophage selection for plasmid maintenance permits the isolation of clones containing new deletions which we postulate are the result of prophage excision.  相似文献   

2.
Summary We confirm the hypothesis of Low (1973) that many E. coli K 12 strains contain a prophage (the Rac prophage) located a few minutes clockwise of the trp operon on the genetic map. We have used restriction endonucleases and 32P-labelled probes to construct a physical map of this prophage. Some E. coli K 12 strains, including AB1157, have lost the entire prophage, apparently by a specific deletion. This is consistent with prophage excision by site-specific recombination. reverse (rev) phages (Zissler et al., 1971) are recombination proficient derivatives of phage in which the phage recombination functions have been replaced by analogous functions (RecE) derived from the host chromosome (Gottesman et al., 1974; Gillen et al., 1977). Our data support the origin of rev phages by recombination between and the Rac prophage following excision of the Rac prophage from the E. coli chromosome.Important experimental data are included in the Figure legends.  相似文献   

3.
1) Hydroxyurea, a reversible DNA synthesis inhibitor, was used to study the mechanism of prophage λ induction in Escherichia coli K12. Induction of prophage was judged on two criteria: increase of phage-producing cells and loss of colony-forming ability of the cells. 2) Hydroxyurea induced an increase of phage-producing cells only in lysogenic strains known to be inducible with ultraviolet irradiation for prophage development and not in strains such as E. coli K12 (λind) or E. coli K12 recA (λ+). 3) When protein synthesis was inhibited, hydroxyurea did not increase phage-producing cells of lysogenic strains; it showed a bacteriocidal effect on lysogenic recA+ strains, but not on nonlysogenic strains. 4) The sensitivity of E. coli K12 recA to hydroxyurea was independent of whether or not the cells were lysogenic. 5) From the results it is suggested that certain steps leading to loss of colony-forming ability (i.e. prophage induction) do not require de novo protein synthesis but require the presence of the host recA+ gene.  相似文献   

4.
    
Summary rev is a hybrid lambdoid phage formed by recombination between and a defective lambdoid prophage (Rac) present in most E. coli K12 derivatives. We show here that three independently derived Rac- E. coli K12 strains are specifically deleted for the entire Rac prophage consistent with loss of Rac by excisive recombination between hybrid attachment sites that flank the prophage (c.f. excision of a prophage). rev, in which int and PP of have been replaced by integrative recombination genes and an attachment site derived from Rac (Gottesman et al. 1974), integrates site-specifically and in the correct orientation at the preferential attachment site generated by Rac excision.  相似文献   

5.
Summary In certain HfrxF recB crosses recombinant progeny were examined for their SbcA and Rac phenotypes. Recombinants which inherited either his + or trp + from the donor in an Hfr recB21 sbcA8xF recB21 RacSbcA+ cross acquired the RecB+ phenotype in most instances (presumably by inheriting the sbcA8 allele). Several independent Rec+ (sbcA8) recombinants from this cross were converted back to the Rec (sbcA +) phenotype by mating with a Rac+ SbcA+ Hfr. Ten out of 14 of these Rec recombinants retained the Rac phenotype of the original parent. It was concluded that these results were inconsistent with the hypothesis that sbcA is a gene carried by a Rac prophage.  相似文献   

6.
Summary Cellular activities normally inducible by DNA damage (SOS functions) are expressed, without DNA damage, in recA441 (formerly tif-1) mutants of Escherichia coli at 42° C but not at 30° C. We describe a strain (SC30) that expresses SOS functions (including mutator activity, prophage induction and copious synthesis of recA protein) constitutively at both temperatures. SC30 is one of four stable subclones (SC strains) derived from an unstable recombinant obtained in a conjugation between a recA441 K12 donor and a recA + B/r-derived recipient. SC30 does not owe its SOS-constitutive phenotype to a mutation in the lexA gene (which codes the repressor of recA and other DNA damage-inducible genes), since it is lexA +. Each of the SC strains expresses SOS functions in a distinctively anomalous way. We show that the genetic basis for the differences in SOS expression among the SC strains is located at or very near the recA locus. We propose that resolution of genetic instability in this region, in the original recombinant, has altered the pattern of expression of SOS functions in the SC strains.  相似文献   

7.
Summary A derivative of the IncP1 plasmid RP4, carrying the thermoinducible prophage Mucts62, was obtained in Escherichia coli K 12 J53 (RP4). It was impossible to maintain the hybrid plasmid RP4: Mucts62 in Rhizobium meliloti GR4. Thus, it was used as a vehicle for introducing the ampicillinresistant transposon Tn1 introducing the ampicillinresistant transposon Tn1 into the R. meliloti genome.Transposition of Tn1 did not generate auxotrophic strains, suggesting that the insertion of Tn1 into the R. meliloti genome was relatively specific. Two chromosomal hot spots for Tn1 insertion were identified by cotransductional analysis, after general transduction by phage DF2. Plasmid-curing experiments, carried out by heat treatment, revealed that symbiotic plasmid(s) also contain at least one site for Tn1 insertion.  相似文献   

8.
9.
Restriction of glucosyl-free HMC-DNA mediated by RglB is alleviated inrecBC sbcA strains ofEscherichia coli K12. Mutation in the unlinkedrra gene reverses thisrecBC sbcA-mediated alleviation. The map position ofrra is 90.16 min on the standard map, and therra + gene product counteracts Rgl restriction. The activation of therra gene is controlled by thesbcA gene, and this regulation does not seem to require the involvement of other gene functions.  相似文献   

10.
A new mutation inEscherichia coli K12,isfA, is described, which causes inhibition of SOS functions. The mutation, discovered in a ΔpolA + mutant, is responsible for inhibition of several phenomena related to the SOS response inpolA + strains: UV- and methyl methanesulfonate-induced mutagenesis, resumption of DNA replication in UV-irradiated cells, cell filamentation, prophage induction and increase in UV sensitivity. TheisfA mutation also significantly reduces UV-induced expression of β-galactosidase fromrecA::lacZ andumuC′::lacZ fusions. The results suggest that theisfA gene product may affect RecA* coprotease activity and may be involved in the regulation of the termination of the SOS response after completion of DNA repair. TheisfA mutation was localized at 85 min on theE. coli chromosome, and preliminary experiments suggest that it may be dominant to the wild-type allele.  相似文献   

11.

Background  

Many sequenced bacterial genomes harbor phage-like elements or cryptic prophages. These elements have been implicated in pathogenesis, serotype conversion and phage immunity. The e14 element is a defective lambdoid prophage element present at 25 min in the E. coli K-12 genome. This prophage encodes important functional genes such as lit (T4 exclusion), mcrA (modified cytosine restriction activity) and pin (recombinase).  相似文献   

12.
Summary Plasmidic recombination in E. coli K12 has been previously demonstrated to be dependent on the host rec genotype. The construction of plasmids that carry a duplication within an antibiotic-resistance gene is described. Recombination between the direct repeats recreates an active antibiotic-resistance gene, allowing quantitative analysis of recombination frequencies in a closely related set of E. coli K12 strains carrying various rec mutations. Using this system, intraplasmidic recombination of a duplication within the pBR322 tetracycline-resistance gene is shown to be rec-dependent while recombination of a similar duplication within the kanamycin-resistance gene of Tn903 is shown to be independent of recA, recB, recC, recE, recF and sbcB.  相似文献   

13.
Summary The response pattern for ultraviolet light, nitrogen mustard, and ethyl methane sulphonate of Hcr+ and Hcr- strains ofStreptococcus pyogenes K 56 is similar to that observed for analogous strains ofE. coli, whereas repair-apt streptococcal strains are much more sensitive to nitrosoguanidine and mitomycin C thanE. coli. Theuvr gene(s) appear(s) to be without effect upon survival, prophage induction, and mutation to streptomycin resistance caused by nitrosoguanidine and only of little influence on repair of mitomycin C damage.  相似文献   

14.
Summary Random Tn5 mutagenesis was used to isolate two independent Azorhizobium sesbaniae ORS571 mutants disturbed in ammonium assimilation (Asm-). Both Asm- mutant strains were shown to lack NADPH-glutamate synthase (NADPH-GOGAT) activity and to carry Tn5 insertions ca. 1.5 kb apart in the ORS571 chromosome. The Tn5-containing region of one of the GOGAT- mutant strains was cloned in pACYC184 and used to identify the wild-type glt (GOGAT) locus in a phage clone bank of ORS571. The cloned region was shown to have DNA homology with the Escherichia coli glt locus and to complement the Asm- phenotype of E. coli and ORS571 GOGAT- strains. The ORS571 GOGAT- mutations were found to interfere with free-living as well as symbiotic nitrogen fixation. Expression of ORS571 NADPH-GOGAT activity was shown to be independent of the nitrogen regulation (ntr) system.  相似文献   

15.
Escherichia coli K1 causes disease in humans and birds. Its polysialic acid capsule can be O‐acetylated via phase‐variable expression of the acetyltransferase NeuO encoded by prophage CUS‐3. The role of capsule O‐acetylation in ecological adaptation or pathogenic invasion of E. coli K1 is largely unclear. A population genetics approach was performed to study the distribution of neuO among E. coli K1 isolates from human and avian sources. Multilocus sequence typing revealed 39 different sequence types (STs) among 183 E. coli K1 strains. The proportion of the ST95 complex (STC95) was 44%. NeuO was found in 98% of the STC95 strains, but only in 24% of other STs. Grouping of STs and prophage genotypes revealed a segregation of prophage types according to STs, suggesting coevolution of CUS‐3 and the E. coli K1 host. Within the STC95, which is known to harbour both human and avian pathogenic isolates, CUS‐3 genotypes were shared irrespective of the host species. Functional analysis of a variety of strain pairs revealed that NeuO‐mediated K1 capsule O‐acetylation enhanced desiccation resistance. In contrast, NeuO expression led to a reduced biofilm formation in biofilm positive E. coli K1 isolates. These findings suggest a delicate ecological balance of neuO‘on’/‘off’ switching.  相似文献   

16.
Summary The recombination proficiency of three recipient strains of Escherichia coli K 12 carrying different plasmids was investigated by conjugal mating with Hfr Cavalli. Some plasmids (e.g. R1drd 19, R6K) caused a marked reduction in the yield of recombinants formed in crosses with Hfr but did not reduce the ability of host strains to accept plasmid F104. The effect of plasmids on recombination was host-dependent. In Hfr crosses with AB1157 (R1-19) used as a recipient the linkage between selected and unselected proximal markers of the donor was sharply decreased. Plasmid R1-19 also decreased the yield of recombinants formed by recF, recL, and recB recC sbcA mutants, showed no effect on the recombination proficiency of recB recC sbcB mutant, and increased the recombination proficiency of recB, recB recC sbcB recF, and recB recC sbcB recL mutants. An ATP-dependent exonuclease activity was found in all tested recB recC mutants carrying plasmid R1-19, while this plasmid did not affect the activity of exonuclease I in strain AB1157 and its rec derivatives. The same plasmid was also found to protect different rec derivatives of the strain AB1157 against the lethal action of UV light. We suppose that a new ATP-dependent exonuclease determined by R1-19 plays a role in both repair and recombination of the host through the substitution of or competition with the exoV coded for by the genes recB and recC.  相似文献   

17.
Summary Bacteria mutant in the dam (DNA adenine methylation) gene and in either recA or recB or recC genes are inviable (Virm- phenotype). From crosses between dam-3 bacteria and recA1 or recB21 recC22 strains, Vrm+ recombinants were recovered. Among these recombinants, Dam+ revertants were present which did not show the phenotypes normally associated with dam-3 bacteria. Three classes of indirectly suppressed strains (dam-3 genotype) were also recovered which showed alterations in the secondary phenotypes normally associated with dam-3 bacteria. These strains contained a second unlinked mutation in either mutL or mutS or sin. In addition, mutation in either sbcA or sbcB suppresses the Vrm- phenotype of dam-3 recB21 recC22 strains.  相似文献   

18.
Evidence of abortive recombination in ruv mutants of Escherichia coli K12   总被引:5,自引:0,他引:5  
Summary Genetic recombination in Escherichia coli was investigated by measuring the effect of mutations in ruv and rec genes on F-prime transfer and mobilization of nonconjugative plasmids. Mutation of ruv was found to reduce the recovery of F-prime transconjugants in crosses with recB recC sbcA strains by about 30-fold and with recB recC sbcB sbcC strains by more than 300-fold. Conjugative plasmids lacking any significant homology with the chromosome were transferred normally to these ruv mutants. Mobilization of the plasmid cloning vectors pHSG415, pBR322, pACYC184 and pUC18 were reduced by 20- to 100-fold in crosses with ruv rec + sbc + strains, depending on the plasmid used. Recombinant plasmids carrying ruv + were transferred efficiently. With both F-prime transfer and F-prime cointegrate mobilization, the effect of ruv was suppressed by inactivating recA. It is proposed that the failure to recover transconjugants in ruv recA +strains is due to abortive recombination and that the ruv genes define activities which function late in recombination to help convert recombination intermediates into viable products.  相似文献   

19.
Thymineless Death in Escherichia coli: Strain Specificity   总被引:10,自引:7,他引:3       下载免费PDF全文
Thymineless death of various ultraviolet (UV)-sensitive strains of Escherichia coli B and K-12 was investigated. It was found that E. coli B, Bs−12, K-12 rec-21, and possibly K-12 Lon, all sensitive to UV, were also sensitive to thymine starvation. However, other UV-sensitive strains of E. coli were found to display the typical resistant-type kinetics of thymineless death. The correlation of these results with various other cellular processes suggested that the filament-forming ability of the bacteria might be involved in the mechanism of thymineless death. It was apparent from the present results that capacity for host-cell reactivation, recombination ability, thymine dimer excision, and probably induction of a defective prophage had little to do with determining sensitivity to thymine deprivation.  相似文献   

20.
Summary A recombinant cosmid carrying the sucrase gene (sacA) was obtained from a colony bank ofE. coli harboring recombinant cosmids representative of theB. subtilis genome. It was shown that thesacA gene is located in a 2 kbEcoRI fragment and that the cloned sequence is homologous to the corresponding chromosomal DNA fragment. A fragment of 2 kb containing the gene was subcloned in both orientations in the bifunctional vector pHV33 and expression was further looked for inB. subtilis andE. coli. Complementation of asacA mutation was observed in Rec+ and Rec- strains ofB. subtilis. Expression of sucrase was also demonstrated inE.coli, which is normally devoid of this activity, by SDS-polyacrylamide gel electrophoresis, specific immunoprecipitation and assay of the enzyme in crude extracts. The specific activity of the enzyme depended on the orientation of the inserted fragment. The saccharolytic activity was found to be cryptic inE. coli since the presence of the recombinant plasmids did not allow the transport of [U14C] sucrose and the growth of the cells.It was shown also that the recombinant cosmid contained part of the neighboring locus (sacP) which corresponds to a component of the PEP-dependent phosphotransferase system of sucrose transport ofB. subtilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号