首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protein binding of ketoprofen enantiomers was investigated in human plasma at physiological pH and temperature by ultrafiltration. 14C-labelled (RS)-ketoprofen was synthesized and purified by high-performance liquid chromatography and utilized as a means of quantifying the unbound species. In vitro studies were conducted with plasma obtained from six healthy volunteers. The plasma was spiked with (R)-ketoprofen alone, (S)-ketoprofen alone, and (RS)-ketoprofen in the enantiomeric concentration range of 1.0 to 19.0 micrograms/ml. The plasma protein binding of ketoprofen was nonenantioselective. At a racemic drug concentration of 2.0 micrograms/ml the mean (+/- SD) percentage unbound of (R)-ketoprofen was 0.80 (+/- 0.15)%. The corresponding value for (S)-ketoprofen, 0.78 (+/- 0.18)%, was not statistically different (P greater than 0.05). At this racemic drug concentration (2.0 micrograms/ml) the percentage unbound of each enantiomer was unaffected (P greater than 0.05) by the presence of the glucuronoconjugates of ketoprofen (10 micrograms/ml) in plasma. At clinically relevant concentrations, the plasma binding of ketoprofen did not exhibit enantioselectivity or concentration dependence nor was the binding of either enantiomer influenced by its optical antipode (P greater than 0.05).  相似文献   

2.
Anti-platelet effects of fenflumizole, a new cyclo-oxygenase inhibitor, were studied in man ex vivo. Fenflumizole was given to male volunteers at the oral doses of 25, 50 or 100 mg per day, each dose for a period of seven days. The formation of thromboxane B2 (TXB2) during whole blood clotting, platelet aggregation induced by arachidonic acid and ADP, the formation of TXB2 during aggregation as well as serum concentration of fenflumizole were measured repeatedly during drug administration and for a fortnight after drug discontinuation. TXB2 formation during whole blood clotting was decreased dose-dependently by fenflumizole. The degree of inhibition of TXB2 formation was proportional to fenflumizole concentration in serum within each individual. The lag phase of platelet aggregation induced by arachidonic acid was prolonged and the formation of TXB2 during aggregation decreased by fenflumizole. No total inhibition of either TXB2 synthesis or platelet aggregation was caused by the fenflumizole doses used. The results show that the degree of inhibition of platelet thromboxane forming capacity by repeated doses of fenflumizole is closely related to the concentration of the drug in blood. Platelet aggregation however is less sensitive to changes in fenflumizole levels and cannot be assessed solely on the basis of cyclo-oxygenase activity.  相似文献   

3.
Certain epoxyeicosatrienoic acids (EETs) that were not cyclooxygenase substrates were effective cyclooxygenase inhibitors. Both (+/-)-14,15-cis-EET and (+/-)-8,9-cis-EET inhibited purified enzyme at concentrations from 1 to 50 microM; (+/-)-11,12-cis-EET was ineffective at concentrations below 100 microM. For the case of 14,15-cis-EET, only the (14R,15S)-stereoisomer was active. Other isomers including (14S,15R)-cis-EET, (14R,15R)-trans-EET, (14S,15S)-trans-EET, and the erythro and threo vicinal 14,15-diols were inactive. In addition to their effects on isolated enzyme preparations, cyclooxygenase activity in platelet suspensions, reflected by thromboxane B2 formation, was also inhibited by (14R,15S)-cis-EET and (+/-)-8,9-cis-EET but not by the other isomers. Thus potency and stereospecificity requirements were maintained for cyclooxygenase within intact platelets. Unlike the stereospecific inhibition of the cyclooxygenase enzyme, platelet aggregation induced by arachidonic acid was inhibited by all EET isomers at concentrations from 1 to 10 microM with no evident stereospecificity. Inhibition of aggregation was not uniformly associated with inhibition of thromboxane B2 formation; ordinarily, these two parameters correlate closely. This dissociation was not maintained for another biochemical process involved in platelet activation. For instance, there was a uniform correlation between inhibition of phosphorylation of a 40-kDa platelet protein and inhibition of aggregation. Our results suggest that effects of EET may originate from either stereospecific or nonspecific mechanisms. Definition of such mechanisms may be important to appreciate any physiological relevance of these substances.  相似文献   

4.
5.
The present study evaluated the effects of the calcium-channel blocking agent diltiazem on platelet aggregation and on synthesis of thromboxane B2 (the stable metabolite of thromboxane A2) from platelet-rich plasma (PRP) and whole blood samples. Our results showed that diltiazem inhibits collagen- and thrombin-induced platelet aggregation and TXB2 production from PRP. Since no significant interference with conversion of arachidonate to thromboxane A2 was demonstrated, inhibition of phospholipase A2 activity may be the prevailing mechanism of the diltiazem effect. The drug demonstrated a dose-related inhibitory activity on TXB2 synthesis from whole blood samples during spontaneous clotting or following stimulation with collagen or thrombin. The present results give further evidences for an antiplatelet activity of diltiazem and support the hypothesis that inhibition of platelet function contributes to the therapeutic efficacy of this drug in the treatment of cardiovascular diseases.  相似文献   

6.
The pharmacological activity of rac-ketoprofen and its enantiomers was investigated in vitro using different cellular models. The effect of these compounds on arachidonic acid metabolism was assessed by measuring the inhibition of prostanoid generation under the action of several agonists. Thus, we have evaluated the inhibition of (1) thromboxane B2 synthesis in rabbit platelets and human polymorphonuclear leukocytes (PMNs), (2) prostaglandin E2 synthesis in three cultured cells, namely human umbilical vein endothelial cells (HUVEC), human keratinocytes, and mouse macrophage-like P388D1 cells. The IC50 values found for (+)-(S)-ketoprofen were in the range between 0.1 nM and 0.8 μM, being slightly lower in all models than those found for rac-ketoprofen (0.4 nM–3 μM). On the other hand, (?)-(R)-ketoprofen showed inhibition of cyclooxygenase only at concentrations two or three orders of magnitude higher than those required for the (+)-(S) enantiomer. These results, obtained with cell types of relevance for inflammatory processes and with compounds of high optical purity, demonstrate that the prostanoid biosynthesis inhibition caused by the drug rac-ketoprofen is exclusively due to its dextrorotatory enantiomer. © 1993 Wiley-Liss, Inc.  相似文献   

7.
Lipase from Serratia marcescens ECU1010 was cloned and overexpressed in E. coli. After optimization, the maximum lipase activities reached 5000–6000 U/l and this recombinant lipase could enantioselectively hydrolyze (S)-ketoprofen esters into (S)-ketoprofen. Among six alkyl esters of racemic ketoprofen investigated, this lipase showed the best enantioselectivity for the kinetic resolution of ketoprofen ethyl ester, with an eep (enantiomeric excess of product) of 91.6% and E-value of 63 obtained at 48.2% conversion. Twelve nonionic surfactants were tested for enhancing the enantioselectivity of this lipase in the bioresolution of ketoprofen ethyl ester. A very high E-value of 1084 was achieved, with an optical purity of >99% eep and a yield of 42.6% in the presence of 3% Brij 92V. Further studies showed that the selectivity of the lipase was improved with the increase of Brij 92V concentration. The substrate (ketoprofen ethyl ester) does not inhibit the lipase activity, while the product (S)-ketoprofen inhibits the lipase activity to some extent. These results indicate that the S. marcescens lipase is very useful for biocatalytic production of chiral profens such as (S)-ketoprofen.  相似文献   

8.
We have shown previously that fresh garlic extract is effective in reducing thromboxane formation by platelets both in vivo and in vitro animal models of thrombosis. In the present study, the effect of different concentrations of a single dose of aqueous extracts of garlic and onion were evaluated on serum thromboxane-B(2)synthesis in rabbits. Different concentrations of garlic and onion were administered as single doses in the ear vein of rabbits. Rabbits were bled before and at different intervals after the infusion of garlic or onion extracts. Venous blood was collected and allowed to clot at 37 degrees C for 1 h. Thromboxane-B(2)level was measured in the serum by radioimmunoassay. It was observed that garlic inhibits the thrombin-induced platelet synthesis of TXB(2)in a dose-and time-dependent manner. Maximum inhibition of TXB(2)occurred between 0.5 h and 6 h at 25 and 100 mg kg(-1)garlic. At 24 h post-garlic infusion TXB(2)inhibition was reduced to 15% of the control and TXB(2)levels were comparable to that of the control values at 72 h pots-garlic infusion. Infusion of 100 mg kg(-1)onion extract did not elicit any inhibitory effect on TXB(2)synthesis in the serum of rabbit during the treatment period. The rapid recovery of platelet cyclooxygenase activity after infusion of a single dose of garlic suggests that garlic should be taken more frequently in order to achieve beneficial effects in the prevention of thrombosis.  相似文献   

9.
The (R)-enantiomer of the NSAID ketoprofen was administered orally at 20 mg/kg to a series of 8 animal species. In all species, a highly significant degree of inversion occurred after 1 h which varied from 27% (gerbil) to 73% (dog) and persisted or increased in plasma samples obtained 3 h after drug administration. Although the (R)-enantiomer was inactive as an inhibitor of cyclooxygenase, the analgesic effects of that isomer was almost the same as the (S)-isomer in animal analgesic assays, following oral administration of the drugs to mice and rats. Taken together, the present results suggest that (R)-ketoprofen administered alone functioned primarily as a prodrug for (S)-ketoprofen under the experimental conditions of this study. © 1995 Wiley-Liss, Inc.  相似文献   

10.
The aim of this work is to evaluate the anti-thromboxane activity of two pure enantiomers of (R,S)-BM-591, a nitrobenzene sulfonylurea chemically related to torasemide, a loop diuretic. The drug affinity for thromboxane A2 receptor (TP) of human washed platelets has been determined. In these experiments, (R)-BM-591 (IC50 = 2.4+/-0.1 nM) exhibited a significant higher affinity than (S)-BM-591 (IC50 = 4.2+/-0.15 nM) for human washed platelets TP receptors. Both enantiomers were stronger ligands than SQ-29548 (IC50 = 21.0+/-1.0 nM) and sulotroban (IC50 = 930+/-42 nM), two reference TXA2 receptor antagonists. Pharmacological characterisations of (S)-BM-591 and (R)-BM-591 were compared in several models. Thus, (R)-BM-591 strongly prevented platelet aggregation induced by arachidonic acid (AA) (600 microM) and U-46619 (1 microM) while (S)-BM-591 showed a lower activity. On isolated tissues pre-contracted by U-46619, a stable TXA2 agonist, (S)-BM-591 was more potent in relaxing guinea-pig trachea (EC50 = 0.272+/-0.054 microM) and rat aorta (EC50 = 0.190+/-0.002 microM) than (R)-BM-591 (EC50 of 9.60+/-0.63 microM and 0.390+/-0.052 microM, respectively). Moreover, at 1 microM, (R)-BM-591 totally inhibited TXA2 synthase activity, expressed as TXB2 production from human platelets, while at the same concentration, (S)-BM-591 poorly reduced the TXB2 synthesis (22%). Finally, in rats, both enantiomers lost the diuretic activity of torasemide. In conclusion, (R)-BM-591 exhibits a higher affinity and antagonism on human platelet TP receptors than (S)-BM-591 as well as a better thromboxane synthase inhibitory potency. In contrast, (S)-BM-591 is more active than the (R)-enantiomer in relaxing smooth muscle contraction of rat aorta and trachea guinea pig. Consequently, (R)-BM-591 represents the best candidate for further development in the field of thrombosis disorders.  相似文献   

11.
A simulated moving bed (SMB) chromatography system is a powerful tool for preparative scale separation, which can be applied to the separation of chiral compound. We have designed our own lab-scale SMB chromatography using 5 HPLC pumps, 6 stainless steel columns and 4 multi-position valves, to separate a racemic mixture of ketoprofen in to its enantiomers. Our design has the characteristics of the low cost for assembly for the SMB chromatography and easy repair of the unit, which differs from the designs suggested by other investigators. It is possible for the flow path through each column to be independently changed by computer control, using 4 multi-position rotary valves and 5 HPLC solvent delivery pumps. In order to prove the operability of our SMB system, attempts were made to separate the (S)-ketoprofen enantiomer from a ketoprofen racemic mixture. The operating parameters of the SMB chromatography were calculated for ketoprofen separation from a batch chromatography experiment as well as by the triangle theory. With a feed concentration of 1 mg/mL, (S)-ketoprofen was obtained with a purity of 96% under the calculated operating conditions.  相似文献   

12.
An increased risk of cardiovascular disease has been found in postmenopausal women in comparison to premenopausal women. The aim of this study was to investigate platelet function, blood clotting and plasma lipid levels in 12 women with a condition of hypoestrogenism, similar to the postmenopausal status induced by treatment with the GnRH analogue buserelin for uterine leiomyoma. Platelet aggregation in whole blood and platelet-rich plasma (PRP), serum thromboxane (TX) B2 production, fibrinopeptide A (FPA) plasma levels and plasma lipid pattern were measured before and after 13 weeks of buserelin treatment. No changes of platelet aggregability were found either in whole blood or PRP. Serum TXB2 generation increased significantly after 13 weeks of therapy (p less than 0.001). No signs of increased thrombin generation were found, as indicated by unchanged FPA plasma levels. Total cholesterol plasma levels were found increased after 13 weeks, LDL cholesterol levels showed a tendency to increase although not significantly. HDL cholesterol and triglyceride concentrations were unaffected. The changes of arachidonic acid metabolism and lipid pattern suggest that buserelin treatment may induce a condition of increased thrombotic risk even if the lack of enhanced thrombin generation and increased platelet aggregability indicates that no blood clotting activation occurs.  相似文献   

13.
Summary The resolution of racemic ketoprofen amide by whole cells of Rhodococcus erythropolis MP 50 and Rhodococcus sp. C3II was studied. With both strains racemic ketoprofen amide was converted to S-ketoprofen with an enantiomeric excess > 97 % at a conversion rate up to 40 % of the theoretical value. The specific activity of strain MP 50 for ketoprofen amide was about 0.12 mol min–1 and mg of dry weight and the substrate was converted for several hours at a constant rate.  相似文献   

14.
This study analyses early biochemical events in collagen-induced platelet activation. An early metabolic event occurring during the lag phase was the activation of PtdIns(4,5)P2-specific phospholipase C. Phosphatidic acid (PtdOH) formation, phosphorylation of P43 and P20, thromboxane B2 (TXB2) synthesis and platelet secretion began after the lag phase, and were similarly time-dependent, except for TXB2 synthesis, which was delayed. Collagen induced extensive P43 phosphorylation, whereas P20 phosphorylation was weak and always lower than with thrombin. The dose-response curves of P43 phosphorylation and granule secretion were similar, and both reached a peak at 7.5 micrograms of collagen/ml, a dose which induced half-maximal PtdOH and TXB2 formation. Sphingosine, assumed to inhibit protein kinase C, inhibited P43 phosphorylation and secretion in parallel. However, sphingosine was not specific for protein kinase C, since a 15 microM concentration, which did not inhibit P43 phosphorylation, blocked TXB2 synthesis by 50%. Sphingosine did not affect PtdOH formation at all, even at 100 microM, suggesting that collagen itself induced this PtdOH formation, independently of TXB2 generation. The absence of external Ca2+ allowed the cleavage of polyphosphoinositides and the accumulation of InsP3 to occur, but impaired P43 phosphorylation, PtdOH and TXB2 formation, and secretion; these were only restored by adding 0.11 microM-Ca2+. In conclusion, stimulation of platelet membrane receptors for collagen initiates a PtdInsP2-specific phospholipase C activation, which is independent of external Ca2+, and might be the immediate receptor-linked response. A Ca2+ influx is indispensable to the triggering of subsequent platelet responses. This stimulation predominantly involves the protein kinase C pathway associated with secretion, and appears not to be mediated by TXB2, at least during its initial stage.  相似文献   

15.
A yeast strain CGMCC 0574, identified as Trichosporon brassicae, was selected from 92 strains for its high (S) selectivity in the hydrolysis of ketoprofen ethyl ester. The effective strains of the microorganisms were isolated from soil samples with the ester as the sole carbon source. The ethyl ester proved to be the best substrate for resolution of ketoprofen among several ketoprofen esters examined. The resting cells of CGMCC 0574 could catalyze the hydrolysis of ketoprofen ethyl ester with an enantiomeric ratio of 44.9, giving (S)-ketoprofen an enantiomeric excess of 91.5% at 42% conversion.  相似文献   

16.
Ketoprofen–saccharide conjugates were synthesized by selectively enzymatic hydrolysis and acylation. Firstly, the (S)-ketoprofen vinyl ester was prepared by enzymatic hydrolysis of (R,S)-ketoprofen vinyl ester. Then enzymatic transesterification of (S)-ketoprofen vinyl ester with a series of saccharides were performed by the catalysis of a commercial protease from Bacillus licheniformis (BLP) in organic medium mixture of pyridine and tert-butanol. The ketoprofen was selectively conjugated onto the primary hydroxyl group of saccharides and with high yield after 72 h. Partition coefficient determination showed that all the products have better water solubility than parent ketoprofen. Chemical hydrolysis experiment indicated that 50% ketoprofen could be release from ketoprofen glucoside and maltoside in aqueous buffer (pH 7.4) within 48 h.  相似文献   

17.
The kinetic resolution of racemic ketoprofen was carried out by enantioselective hydrolysis of ketoprofen ethyl ester using intact cells of Trichosporon brassicae CGMCC0574 as a biocatalyst. After the yeast cells were pretreated by 2 vol.% of 2-propanol for 10 h, the esterase activity on the (S)-ketoprofen ester increased dramatically, by a factor of ca. 310% without reducing the enantioselectivity of enzymatic resolution.  相似文献   

18.
Aspirin may reduce the risk of colorectal neoplasia at doses similar to those recommended for the prevention of cardiovascular disease. Thus, we aimed to address whether enhanced platelet activation, as assessed by the measurement of the urinary excretion of 11-dehydro-TXB(2) (a major enzymatic metabolite of TXB(2)), occurs in patients with colorectal cancer. In 10 patients with colorectal cancer, the urinary excretion of 11-dehydro-TXB(2) was significantly higher than in 10 controls, matched for sex, age and cardiovascular risk factors [1001(205-5571) versus 409(113-984) pg/mg creatinine, respectively, median (range), P<0.05]. The administration of aspirin 50 mg daily for 5 consecutive days to colorectal cancer patients caused a cumulative inhibition of platelet cyclooxygenase (COX)-1 activity either ex vivo, as assessed by the measurement of serum TXB(2) levels, or in vivo, as assessed by urinary 11-dehydro-TXB(2) excretion. In conclusion, enhanced platelet activation occurs in colorectal cancer patients. Permanent inactivation of platelet COX-1 by low-dose aspirin might restore anti-tumor reactivity.  相似文献   

19.
The concentration-dependent effects of clonidine, isomers of epinephrine, norepinephrine (NE), isoproterenol, cobefrin and alpha-methyldopamine, and related desoxy analogs (epinine, dopamine, N-isopropyldopamine) were examined on human platelets. The rank order of aggregatory potency (pD2 values) was R(-)-epinephrine (6.3) greater than R(-)-NE (5.9) greater than (+/-)-erythro-cobefrin (5.3) greater than S(+)-epinephrine (4.7) = S(+)-NE (4.7) = clonidine (4.7) = dopamine (4.6) greater than epinine (4.4) greater than S(+)-alpha-methyldopamine (4.3) = R(-)-alpha-methyldopamine (4.3) greater than (+/-)-threo-cobefrin (3.7). The isoproterenol isomers and N-isopropyl-dopamine were inactive as agonists. In 9 of 16 platelet-rich plasma preparations, R(-)-epinephrine, R(-)-NE, and (+/-)erythro-cobefrin were agonists and the remaining analogs blocked R(-)-NE-induced aggregation with a rank order of inhibitory potencies (pKB values) of clonidine (6.2) greater than S(+)-alpha-methyldopamine (5.0) greater than dopamine (4.6) = R(-)-alpha-methyldopamine (4.4) greater than or equal to S(+)-NE (4.3) greater than N-isopropyldopamine (4.1) greater than S(+)-isoproterenol (3.7) = R(-)-isoproterenol (3.5). Each compound was also able to reverse prostaglandin E1 (PGE1) (0.1 microM)-induced blockade of the maximal aggregation response to ADP. At high concentrations, R(-)-isoproterenol was more potent than either the S(+)-isomer or desoxy analog, N-isopropyldopamine, in the reversal of PGE1 inhibition of ADP aggregation. Phentolamine blocked these alpha 2-adrenoceptor-mediated actions against PGE1 on ADP aggregation. The rank order of potency for the reversal of PGE1-mediated inhibition of ADP aggregation by these catecholamines was similar to that observed for platelet aggregation. Our results indicate that (i) the stereochemical requirements for the interaction of catecholamines with platelet alpha 2-adrenoceptors are in agreement with the Easson-Stedman hypothesis and other alpha-adrenoceptor tissues; (ii) catecholamines lacking a benzylic hydroxyl group in the R-configuration and/or possessing an N-isopropyl group were alpha 2-adrenoceptor antagonists; (iii) clonidine gave quantitatively different responses compared with catecholamines for interaction with alpha 2-adrenoceptors; and (iv) inhibition of platelet adenylate cyclase is correlated to the inhibition of epinephrine-induced aggregation response for this series of compounds.  相似文献   

20.
Equilibrium dialysis was used to study in vitro the enantioselective binding of R, S, and racemic ketoprofen at physiological pH and temperature in human serum albumin (HSA) (1, 20, and 40 g/liter) and in plasma. The binding of enantiomers in a racemic mixture was studied to see the effect of each isomer on the other's interaction with the protein. The free fractions were determined by high-performance liquid chromatography. The binding of ketoprofen enantiomers to albumin was enantioselective, depending on both drug and protein concentrations. Enantioselectivity was observed in plasma too but was the opposite of that in HSA at 40 g/liter. The percentage of each isomer unbound was higher in the racemic mixture than with the isomer alone. The displacement of probes specific for HSA sites I and II, studied by spectrofluorimetry, suggests that all three preparations of ketoprofen are bound mainly to site I and secondarily to site II. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号