首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this cross-sectional study, plasma levels of dehydroepiandrosterone sulfate (DHEA-S), dehydroepiandrosterone (DHEA), delta 4-androstenedione (delta 4) and testosterone (T) were measured by RIA in 232 normal subjects of both sexes, aged 2 weeks to 20 years. The results were analyzed in relation to chronological age, body surface and pubertal stage. High levels of plasma androgens were found in newborn infants of both sexes. After 3 months of age, androgen levels were uniformly low and rose with increasing chronological age and body surface. The first significant increase in mean androgen levels was found for DHEA-S. It occurred after 6 years of age in girls and after 8 years in boys. DHEA and T rose in both sexes after 8 years of age. delta 4 increased steadily with chronological age and body surface in both sexes. When androgen levels were related to body surface, a first significant increase was observed above 1.00 m2 for the four androgens, in both boys and girls. Above 1.20 m2 and 12 years of age, girls had higher mean levels of DHEA-S, DHEA and delta 4, but lower mean T levels than boys of the same body surface and chronological age. Before puberty, a positive correlation was found in both sexes between the plasma androgen levels on the one hand, and both chronological age and body surface on the other. Plasma androgen levels markedly increased at stage P2 in both sexes, and further increased with pubertal development. During puberty, girls had higher plasma delta 4, but lower plasma T levels than boys of the same pubertal stage. Plasma DHEA-S and DHEA levels were similar in both sexes. In contrast to the plasma androgens, plasma cortisol levels did not show any change in relation either to chronological age or to body surface or pubertal development. Body surface appears to be as good a discriminating factor as chronological age, at least in young children. It also appears from this study that DHEA-S is a good guide for the clinical evaluation of adrenal maturation and may be very useful in evaluating patients with growth or pubertal disturbances.  相似文献   

2.
Plasma levels of dehydroepiandrosterone (DHEA), its sulfate (DHEAS), testosterone (T) and follicle stimulating hormone (FSH) were measured by radioimmunoassay in 111 schoolboys and 95 schoolgirls from 7 to 18 years. 68 male and 55 female adults aged from 19 to 25 were also investigated. Results are expressed as the mean +/- SD, DHEA was the first hormone to vary showing a significant mean increase between the 10 and 11 year age groups of both boys and girls. Higher levels were observed in the age 12 group (boys 164.70 +/- 60.74; girls 256.60 +/- 145.40 ng/dl) but were followed by a significant decrease in both 13 year old groups. Similar increases followed by decreases were also noted for DHEAS, although the increase started between 11 and 12 years and reached a maximum at 13. An abrupt increase in FSH levels between 11 and 12 years followed by a plateau through 15-18 years, was observed for boys and girls. As expected, T levels increasing significantly in boys with the initial rise between 11 and 12 and a climb through to the 15-18 age group. Our results suggest a late plasma DHEAS secretion with adult levels attained after age 19. Menarche was also found to be late.  相似文献   

3.
Premature adrenarche is a condition characterized by precocious development of pubic and/or axillary hair, due to early onset of adrenal androgen secretion. Girls with premature adrenarche may later develop menstrual irregularities, hyperandrogenism, and the classic polycystic ovary syndrome. As leptin is thought to modulate the onset of pubertal development, we measured plasma leptin levels in 7 girls with premature adrenarche, and 8 age-matched comparison girls. Because leptin, the hypothalamic-pituitary-adrenal (HPA), the hypothalamic-pituitary-gonadal axes are functionally interrelated, we also determined salivary and plasma cortisol, dehydroepiandrosterone (DHEA), DHEA-sulfate, androstenedione, estradiol, and estrone. Finally, since IGF-I may play a role in adrenocortical function, we determined plasma levels of IGF-1, and IGF-BP1. Plasma was collected by an intravenous catheter at times 0, 20, and 40 min, starting at 1.30 p.m. Girls with premature adrenarche had a higher body mass index (BMI) and an over two-fold elevation of their plasma leptin than comparison girls. This group also had elevated levels of salivary and plasma cortisol, and increased levels of DHEA, DHEA-S, androstenedione, estradiol and estrone. Plasma IGF-1 and the ratio of IGF-1/IGF-BP1 were elevated. We propose that girls with premature adrenarche may represent an overlapping group characterized by both features of increased adiposity and HPA axis activity, which together, and depending on the genetic/constitutional background of the individual, may account for the development of adrenal hyperandrogenism, and, later, the polycystic ovary syndrome.  相似文献   

4.
Serum sex hormone binding globulin (SHBG), testosterone (T), DHEA sulphate (DHEA-S), androstenedione (AD) and delta 5-androstene-3 beta,17 beta-diol sulphate (5-ADIOL-S) levels were measured by specific radioimmunoassay in 16 girls presenting with premature adrenarche (PA) and in 14 normal girls. Mean levels of steroids measured were elevated, and SHBG significantly depressed, in the girls with PA, with values (mean +/- SE) for DHEA-S (1.73 +/- 0.17 vs 0.25 +/- 0.06 mumol/l), 5-ADIOL-S (104 +/- 8 vs 31 +/- 4 nmol/l), AD (0.89 +/- 0.06 vs 0.62 +/- 0.04 nmol/l), and T (0.49 +/- 0.03 vs 0.23 +/- 0.06 nmol/l). SHBG levels were 68 +/- 6 vs 108 +/- 5 nmol/l, and the free androgen index [100 x T (nmol/l) divided by SHBG (nmol/l)] was 0.89 +/- 0.17 vs 0.22 +/- 0.01. These studies show that SHBG is depressed in girls with premature adrenarche; with the increased testosterone levels, this results in a markedly elevated free androgen index, a measure of testosterone which is bioavailable to target tissue. This may be compounded by the elevated levels of 5-ADIOL-S in girls with PA since its role may be as a prohormone for more potent androgens (testosterone, 5 alpha-dihydrotestosterone) in target tissues such as pubic skin.  相似文献   

5.
INTRODUCTION: The aim of this study was to analyze the influence of DHEA therapy on fibrinogen, plasminogen activator inhibitor-1 (PAI-1) and tissue plasminogen activator (tPA) plasma concentrations in men with decreased serum DHEA-S levels and angiographically verified coronary heart disease (CHD). MATERIAL AND METHODS: The study included thirty men aged 41-60 years (mean age 52 +/- 0.90 yr) with serum DHEA-S concentration < 2000 mg/l, who were randomized into a double-blind, placebo-controlled, cross-over trial. Subjects completed the 80 days study of 40 days of 150 mg oral DHEA daily or placebo, and next groups were changed after 30 days of wash-out. Fasting early morning blood samples were obtained at baseline and after each treatment to determine serum hormones levels (testosterone, DHEA-S, LH, FSH and estradiol) and also fibrinogen, plasminogen activator inhibitor-1 (PAI-1) and tissue plasminogen activator (tPA) plasma concentrations. RESULTS: Administration of DHEA was associated with 4.5-fold increase in DHEA-S levels. Estrogen levels significantly increased after DHEA from 22.1 +/- 0.7 pg/ml to 26.4 +/- 1.6 pg/l (mean +/- SEM; p < 0.05), while testosterone levels did not changed. Fibrinogen concentrations significantly decreased in DHEA group from 4.5 +/- 0.3 g/l to 3.83 +/- 0.2 g/l (p < 0.05 vs. placebo). Changes of tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) were not statistical significant (respectively: 8.37 +/- 0.4 ng/ml vs. 8.93 +/- 0.5 ng/ml and 82.3 +/- 6.3 ng/ml vs. 92.7 +/- 9.1 ng/ml (mean +/- SEM; NS vs. placebo). Tolerance of the treatment was good and no adverse effects were observed. CONCLUSIONS: DHEA therapy in dose of 150 mg daily during 40 days in men with DHEAS levels < 2000 mg/l and angiographically verified coronary heart disease (CHD) was connected with significant decreasing of fibrinogen concentration and increasing of estradiol levels, and did not influence on plasminogen activator inhibitor-1 (PAI-1) and tissue plasminogen activator (tPA) plasma concentrations.  相似文献   

6.
Obesity in children is accompanied by increased circulating leptin concentrations. Girls have higher leptin concentrations than boys. The aim of our study was to compare serum leptin levels before and after a five-week weight reduction program and to study the relationship of leptin levels, serum total cholesterol, and androgens (testosterone, dehydroepiandrosterone, dehydroepiandrosterone sulphate) in 33 obese boys (age: 12.7+/-1.97 years, BMI: 30.46+/-4.54) and 66 obese girls (age: 12.7+/-2.51 years, BMI: 29.31+/-4.62). We found that serum leptin concentrations in obese children were significantly decreased after a weight reduction program (before 20.79+/-9.61 ng/ml, after 13.50+/-8.65 ng/ml in girls; before 12.25+/-10.09 ng/ml and after 5.18+/-3.56 ng/ml in boys, p<0.0001 in both genders). Leptin levels correlated positively with the body mass index before and after weight reduction. There was a positive association in obese boys and a negative one in obese girls between leptin levels and the WHR (waist to hip circumference ratio). Serum leptin also shows a strong relationship to fat distribution (p=0.02 in boys, p<0.0001 in girls). No significant correlation was found between leptin concentrations and total cholesterol or androgens. We confirmed that leptin is a sensitive parameter of body composition and weight reduction in obese children.  相似文献   

7.
Thirty children with precocious puberty (24 girls aged 6.5 +/- 2.3 years and 6 boys aged 7 +/- 2.9 years) were treated over 5 years with Decapeptyl. In girls, the menses disappeared, breast enlargement regressed, and uterus and ovary sizes returned to prepubertal values. In boys, a significant decrease of testicular size was observed. Plasma levels of estradiol and testosterone, and basal and post-luteinizing hormone (LH)-releasing hormone (LHRH) LH and follicle-stimulating hormone (FSH) remained in the prepubertal range. Growth velocity decreased after 1 year from 9.7 +/- 3.5 to 5.5 +/- 1.3 cm/year, while the height age/bone age ratio was normalized in both sexes after 3 years. In 15 girls, Decapeptyl was interrupted after 2.3 years. During those 2.3 years, bone age increased from 11.6 +/- 0.8 to 12.5 +/- 0.7 years with a growth velocity of 5.3 +/- 1.8 cm/year. During the year following interruption, height increased from 152.2 +/- 4.9 to 157.7 +/- 4.9 cm (growth velocity 5.5 cm/year) and bone age from 12.5 +/- 0.7 to 13.5 +/- 0.6 years. One year after treatment, plasma levels of estradiol were 106.7 +/- 84.7 pg/ml, of LH, 25.5 +/- 17.6 mIU/ml, and of FSH, 10.8 +/- 5.9 mIU/ml. Menses appeared in 13 girls. Moreover, 18 months after interruption, bone age was 13.9 +/- 0.6 years and height 159.5 +/- 5.2 cm, being significantly superior to the final height of a historical control group: 151.5 +/- 4.8 cm (p less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We investigated the effects of the calcium channel blocker amlodipine besilate on serum levels of adrenal androgens and insulin in 20 men with essential hypertension and obesity (age: 51.9+/-4.7 years, body mass index: 27.7+/-1.5 kg/m2). All were treated with amlodipine besilate (Norvasc) for 3 months. Blood pressure, fasting plasma glucose (FPG), HbA1c and serum levels of insulin, dehydroepiandrosterone (DHEA), DHEA sulfate (DHEA-S), and lipids were measured before and after a 3-month period. In 10 patients, 75 g oral glucose tolerance test (75 g-OGTT) was also performed. Amlodipine besilate treatment 1) lowered the fasting serum insulin level and total serum insulin level during 75 g-OGTT and 2) increased serum DHEA and DHEA-S levels. No changes in fasting plasma glucose, HbA1c and serum lipids were observed during treatment. We conclude that amlodipine besilate improves insulin resistance and consequently increases serum DHEA and DHEA-S levels.  相似文献   

9.
Biochemically adrenarche is characterized by increased production of 5-ene steroids, in particular Dehydroepiandrosterone (DHA) and its sulphate (DHA-S). It is still not clear if ACTH is responsible for this adrenal steroid production. The aim of the present study was to evaluate the effect of acute and chronic ACTH administration, without dexamethasone pretreatment, on hormonal patterns in 20 patients (5 males aged between 6 8/12 and 7 10/12 years and 15 females aged between 5 9/12 and 7 6/12 years) with idiopathic premature adrenarche. Pregnenolone (5P), DHA, DHA-S, 17-hydroxyprogesterone (17-OHP), androstenedione (A), 11-deoxycortisol (S) and cortisol (F) have been determined by Radioimmunoassay. The results of the hormonal evaluation (means +/- standard error) showed high plasma levels of DHA [329.2 +/- 41.7 ng/100 ml (dl)] and DHA-S (169.1 +/- 54 micrograms/dl) and slightly increased levels of 5P (74.4 +/- 7.1 ng/dl), of A (45.4 +/- 4.6 ng/dl) and 17-OHP (69.3 +/- 11.3 ng/dl) in comparison to those of controls, thus indicating a decrease in 3 beta-hydroxysteroid dehydrogenase activity and an increase in 17-20-lyase and 17-hydroxylase activities, characteristic for adrenarche. Acute and chronic ACTH stimulation did not amplify the characteristic basal hormonal pattern, but they induced a shift of adrenal steroid metabolism to 4-ene pathway, suggesting that the basal hormonal pattern in premature adrenarche may be independent or, at least, not exclusively dependent on ACTH control.  相似文献   

10.
INTRODUCTION: The metabolic syndrome characterized by central obesity, insulin and lipid dysregulation, and hypertension, is a precursor state for atherosclerotic process and, in consequence, cardiovascular disease. Decline of both testicular and adrenal function with aging causes a decrease in androgen concentration in men. It has been postulated that low levels of total testosterone and dehydroepiandrosterone sulfate (DHEA-S) are associated with unfavorable levels of several strong cardiovascular disease risk factors, such as lipids and blood pleasure, which are components of the metabolic syndrome, and insulin levels. Both testosterone and DHEA-S deficiency are risk factors of obesity and insulin resistance, but it is not clear, whether this possible influence is independent. The aim of this study was to determined whether lower androgens (testosterone and DHEA-S) levels are associated with the development of metabolic syndrome in non-obese elderly men as well as analysis, whether these sex hormones influents on measured parameters separately. MATERIAL AND METHODS: Together 85 men age from 60 to 70 years (mean 66.3 +/- 1.5 years; mean +/- SEM) were analyzed. Testosterone levels < 4 ng/ml or DHEA levels < 2000 ng/ml and BMI < 30 kg/m(2) were including criteria. Patients were divided into three groups: 52 with testosterone deficiency (L-T), 32 with DHEA deficiency (L-DHEA-S) and 67 with deficiency of both sex hormones (L-T/DHEA-S). The influence of sex hormones deficiency in these groups on blood pressure, lipids, visceral obesity and fasting glucose were measured (according to metabolic syndrome definition NCEP III/IDF). RESULTS: Testosterone levels in L-T, L-DHEA and L-T/DHEA-S groups were respectively 3.19 +/- 0.23 ng/ml, 4.89 +/- 0.45 ng/ml and 3.25 +/- 0.34 g/ml (p < 0.002). While DHEA-S levels were respectively 2498 +/- 98 ng/ml, 1435 +/- 1010 ng/ml and 1501 +/- +/- 89 ng/ml). BMI values do not differ between groups. Waist circumference was significantly higher in L-T/DHEA-S group than in L-T i L-DHEA-S groups (respectively: 99.9 +/- 6,1 cm, 97.1 +/- 7.1 cm i 96.2 +/- 6.4 cm; mean +/- SD, p < 0.05 vs. L-T and L-DHEA-S groups). Mean triglycerides concentration in L-T/DHEA-S group was significantly higher than in L-T and L-DHEA-S groups (respectively: 188.2 +/- 13.3 mg/dl, 161.7 +/- 14.7 mg/dl and 152.2 +/- 12.8 mg/dl (mean +/- SD; p < 0.02 vs. L-T and L-DHEA-S groups). Analysis of prevalence of risk factors showed, that in L-T/DHEA-S group they were more frequent than in other groups. The most significant percentage difference was observed for triglycerides: concentration > or = 150 mg/dl was measured in 31% men in L-T group, 28% men in L-DHEA-S group and 42% men in L-T/DHEA-S group. According metabolic syndrome definition NCEP III/IDF prevalence of this syndrome was: 71% patients in L-T/DHEA-S group, 67% patients in L-T group and 64% patients in L-DHEA-S group. CONCLUSIONS: The DHEA-S and testosterone deficiency was a significant and independent risk factor of the metabolic syndrome in non-obese elderly men. It seems, that triglycerides concentration and waist circumference are more sensitive then others parameters to reflect the influence of sex hormones deficiency on risk of the metabolic syndrome in elderly men.  相似文献   

11.
INTRODUCTION: Sex hormones deficiency--hypotestosteronemia (20-30% of men) and dehydroepian-drosterone sulfate deficiency (60-70% of men) are often observed in elderly men. In these men also changes of body composition (visceral obesity, increasing of fat mass), and metabolic disturbances (hypercholesterolemia, hyperinsulinism and insulin resistance) are common disorders. Visceral obesity and insulin resistance may be either reasons or effects of testosterone deficiency. Probably also DHEA-S deficiency is the risk factor of visceral obesity and insulin resistance, but it is not clear, whether this possible influence is independent from testosterone deficiency. OBJECTIVES: The aim of this study was to analyze the association between testosterone and DHEA deficiency and waist/hip ratio (WHR), levels of glucose and insulin resistance (HOMA and FG/FI) in elderly men as well as analysis, whether these sex hormones influent on measured parameters separately. MATERIAL AND METHODS: Together 85 men with age from 60 to 70 years men (mean 66.3+/-1.5 years; mean+/-SEM) was analyzed. Testosterone levels<4 ng/ml or DHEA levels<2000 ng/ml and BMI<30 kg/m2 were including criteria. Patients were divided into three groups: 52 with testosterone deficiency (L-T), 32 with DHEA deficiency (L-DHEA-S) and 67 with deficiency of both sex hormones (L-T/DHEA-S). Statistical analysis was made using Student-t, Kruskal-Wallis, and Mann-Whitney tests. RESULTS: Testosterone levels in L-T, L-DHEA and L-T/DHEA groups were respectively 3.19+/-0.23 ng/ml, 4.89+/-0.45 ng/ml and 3.25+/-0.34 g/ml (p<0.002). While DHEA-S levels were respectively 2498+/-98 ng/ml, 1435+/-1010 ng/ml and 1501+/-89 ng/ml). BMI values do not differ between groups. WHR ratio values were the highest in L-T/DHEA-S group (p<0.05 vs. L-T) group, significant lower in L-T group (p<0.005 vs. L-DHEA-S) and the lowest in L-DHEA-S group. Insulin fasting levels were lowest in L-DHEA-S group, higher in L-T group (p<0.01) and the highest in L-T/DHEA-S group (p<0.001 vs, L-T group). FG/FI values were the highest in L-DHEA-S group, lower in L-T group (NS) and lowest in L-T/DHEA group (p<0.002 vs. L-T group). HOMA ratio values similarly did not change significantly between L-T (6.6+/-3.21) and L-DHEA-S group (5.5+/-2.92), although tendency to higher values in L-T group was noticed, while WHR ratio values were significantly higher in L-T/DHEA group (7.3+/-2.45; p<0.002 vs. L-T group). CONCLUSIONS: DHEA-S and testosterone deficiency were independently associated with higher insulin resistance and obesity. WHR ratio seems to be more sensitive then BMI ratio to reflect the androgen deficiency on obesity and body composition in elderly men.  相似文献   

12.
Recent data suggest that adolescent individuals with growth hormone (GH) deficiency have subnormal levels of adrenal androgens (AA). In order to determine the developmental pattern of AA in GH deficiency and to assess whether AA levels can help identify children with GH deficiency, we measured plasma concentrations of dehydroepiandrosterone (DHEA), DHEA sulfate (DHEA-S), delta 4-androstenedione (delta 4A), and cortisol in the basal state and during prolonged adrenocorticotropin (ACTH) infusion (8 h) in a group of 34 individuals, 26 males and 8 females, with short stature. Their chronological ages (CA) ranged from 1.75 to 17.5 years (median 10.35 years). The subjects were grouped into two categories according to the results of pituitary testing: group 1 = short, non-GH-deficient (n = 16), and group 2 = GH-deficient, ACTH-sufficient (n = 18). Patients in groups 1 and 2 had similar bone ages (BA: 7.2 +/- 0.7 vs. 7.5 +/- 1.0 years) and Z scores for height (-3.0 +/- 0.2 vs. -3.2 +/- 0.3 units) and height velocity (-2.5 +/- 0.4 vs. -2.6 +/- 0.2 units). For both groups there were significant increases from basal to peak levels for DHEA, DHEA-S, delta 4A and cortisol following prolonged ACTH infusion. Although both basal and peak levels of DHEA-S overlapped in groups 1 and 2 for all CA and BA, levels in group 2 tended to be lower, especially for BA greater than 10 years.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
There are very few data available on the relationship between sporting activities, endocrine levels and changes in anthropometric measurements during growth. In order to study these relationships, we have made measurements of growth, changes in physical conformation and the plasma levels of several hormones [cortisol, dehydroepiandrosterone sulphate (DHEA-S), testosterone, growth hormone, somatomedin C, insulin, glycaemia and haemoglobin A1C] in 175 boys, aged 10-16 years, who have played football at a competitive level and in 224 boys, severing as controls, who have never performed sporting activities regularly. The football players were divided into prepubertal and pubertal subjects (10-11.99 years, 12-13.99 years and 14-16 years, chronological and bone age groups). Our results showed no significant differences in the growth indices between prepubertal athletes and controls, but the plasma level of DHEA-S was significantly higher (P less than 0.05) in the athletes. Pubertal football players, however, were significantly taller than the control subjects, particularly at 14-16 years chronological age. There were no such significant differences when bone age was considered. The pubertal football players were also more advanced in all biological indices of maturity, i.e. pubic hair, testicular volume and bone age. The increase in DHEA-S in pubertal football players, already seen in prepubertals, was also combined with a significant increase in testosterone, growth hormone and cortisol levels. Thus, in football players the DHEA-S level is already higher during prepuberty. This increase thus precedes all other indices of growth and maturation associated with puberty. We hypothesize that, while not excluding the possible influence of selection, as ours is a cross-sectional study, adrenal hyperactivity may be mainly responsible for the earlier onset of pubertal growth and maturity in exercising males.  相似文献   

14.
Oral dehydroepiandrosterone (DHEA) replacement therapy may have a multitude of potential beneficial effects and exerts its action mainly via peripheral bioconversion to androgens (and estrogens). A daily dose of 50-mg DHEA has been shown by us and others to restore low endogenous serum DHEA concentrations to normal youthful levels followed by an increase in circulating androgens and estrogens. As the hepatic first-pass effect may lead to a non physiological metabolism of DHEA after oral ingestion we studied the influence of two single DHEA doses (50 and 100 mg) on the excretion of steroid metabolites in 14 elderly males [age 58.8+/-5.1 years (mean +/- SEM)] with endogenous DHEAS levels <1500 ng/ml and in 9 healthy females (age 23.3+/-4.1 years) with transient suppression of endogenous DHEA secretion induced by dexamethasone (dex) pretreatment (4x0.5 mg/day/4 days). Urinary steroid profiles in the elderly males were compared to the steroid patterns found in 15 healthy young men (age 28.9+/-5.1 years). In the females the results were compared to their individual baseline excretion without dex pretreatment. Urinary steroid determinations were carried out by semiautomatic capillary gas-liquid chromatography. In both genders DHEA administration induced significant increases in urinary DHEA (females: baseline vs. 50 mg vs. 100 mg: 361+/-131 vs. 510+/-264 vs. 1541+/-587 microg/day; males: placebo vs. 50 mg vs. 100 mg: 434+/-154 vs. 1174+/-309 vs. 4751+/-1059 microg/day) as well as in the major DHEA metabolites androsterone (A) and etiocholanolone (Et). Fifty mg DHEA led to an excretion of DHEA and its metabolites only slightly above baseline levels found in young females and in young men, respectively, whereas 100 mg induced clearly supraphysiological values. After 50 mg DHEA the ratios of urinary DHEA metabolites (A/DHEA, Et/DHEA) were not significantly different between elderly males vs. young male volunteers and young healthy females versus their individual baseline levels. In conclusion, an oral dose of 30 to 50 mg DHEA restores a physiological urinary steroid profile in subjects with DHEA deficiency without evidence for a relevant hepatic first-pass effect on urinary metabolites.  相似文献   

15.
Plasma levels of dehydroepiandrosterone-sulfate (DHEA-S), dehydroepiandrosterone (DHEA), delta 4-androstenedione (delta 4), testosterone and 17 alpha-OH-progesterone (17-OH-P) were studied in 58 samples collected in 18 patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency, during long-term ambulatory treatment with hydrocortisone. At each visit the patients were classified as being either in good control (GC) or in poor control (PC), based on well-defined clinical, auxological and biochemical criteria. The results were analyzed in relation to the degree of control and to chronological age (CA), bone age (BA), body surface (BS) and pubertal development. The most clear distinction between the children with GC and those with PC is found for DHEA-S (p less than 0.001 for BA). The majority of the DHEA-S values in the children with GC are closely grouped and significantly below the normal limits for CA, BA, BS and pubertal stage (p less than 0.001). In contrast, the PC children have wide-spread values, most of them being within or above the normal limits. The difference between GC and PC is also significant for testosterone (p less than 0.01) and delta 4 (p less than 0.05), but not for DHEA. Of the five steroids studied, DHEA-S is the most specific, whereas testosterone is the most sensitive and especially useful in girls and in prepubertal boys. delta 4 and 17-OH-P are almost as sensitive as DHEA-S, but they are less specific. DHEA is the less valid criterium.  相似文献   

16.
Growth hormone (GH) secretion can presently be investigated by several methods: pharmacological provocative tests, study of 24-h GH secretion, measurement of somatomedin-C (Sm-C)/insulin-like growth factor (IGF) I, and the growth hormone-releasing hormone (GHRH) test. In order to compare the results obtained, these methods were used in 257 children with growth retardation (169 boys, 88 girls). Their height SD was -2.7 +/- 0.2, chronological age 11 3/12 +/- 1 6/12 years, and bone age 8 4/12 +/- 1 4/12 years. Mean growth velocity was 4.5 +/- 1.5 cm/year. One hundred and thirty-eight boys and 80 girls were prepubertal, and 31 boys and 8 girls were pubertal (B2 G2). All children underwent the study of 24-h GH secretion (n = 257) and pharmacological provocative tests (two tests, n = 213; one test n = 44). Sm-C/IGF I was measured in prepubertal children (n = 131), and a GHRH test was carried out (n = 153). In addition, the mean integrated concentration of growth hormone secretion (IC-GH) was assessed in a control group of 23 children and was found to be 5.4 +/- 1.2 ng/ml/min. The IC-GH in the group as a whole was 2.6 ng/ml/min. The mean maximum peak during pharmacological tests varied considerably according to the test used, ranging from 7.8 ng/ml for the arginine test to 17.1 ng/ml for the glucagon and betaxolol test. The maximum peak and the 24-h IC-GH were not significantly correlated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The concentrations of dehydroepiandrosterone (DHEA), its sulfate (DHEAS), androstenedione (A-dione), testosterone (T) and dihydrotestosterone (DHT) have been measured before and after castration in men and two animal models, namely the rat and the guinea pig. In adult men, the pre-castration levels of plasma DHEAS and DHEA were measured at 1839 +/- 320 and 2.4 +/- 0.5 ng/ml, respectively, while in both animal models, the concentrations of these two steroids were below 0.3 ng/ml. Orchiectomy in men reduced plasma T and DHT levels from 2.9 +/- 0.1 and 0.60 +/- 0.10 to 0.42 +/- 0.21 and 0.05 +/- 0.01 ng/ml (P less than 0.01), respectively, while there was no significant effect observed on DHEAS, DHEA and A-dione levels. By contrast, castration in the rat reduced the low levels of circulating DHEA and A-dione below the detection of the radioimmunoassay (RIA) used. In castrated guinea pig, a small quantity of plasma A-dione (0.07 +/- 0.02 ng/ml) was measured while DHEA was undetectable. Moreover, in the rat and guinea pig, plasma T and DHT levels became undetectable. Following administration of the antiandrogen Flutamide for two weeks in the castrated rat and guinea pig, prostate weight was not further reduced, thus indicating that there is no significant androgenic activity left following castration of these two species. In fact, castration in the rat and guinea pig caused a decrease in prostatic levels of DHT from 4.24 +/- 0.351 and 9.42 +/- 1.43 ng/g, respectively, to undetectable levels. In men, on the other hand, the prostatic DHT levels were only inhibited from 5.24 +/- 0.59 to 2.70 +/- 1.50 ng/g, respectively. As expected, when Flutamide was administered to the rat and the guinea pig, the levels of prostatic steroids remained undetectable while, in men, the DHT content in the prostate was further reduced to undetectable values. In summary, the plasma levels of DHEAS, DHEA, delta 4-dione are markedly different between men and both animal models used and furthermore, measurements of prostatic levels of androgens suggest that the high plasma levels of these steroids are likely responsible for the presence of important amounts of DHT in human prostate after castration.  相似文献   

18.
BACKGROUND/OBJECTIVES: The responses of metaphyseal bone tissue to physiological variations of endogenous adrenal steroid hormones during childhood are unclear. Therefore, we studied potential hormonal influences in children before the appearance of pubic hair (onset of pubarche). METHODS: Excretions of major glucocorticoid metabolites (C21), cortisol, sum of adrenarchal dehydroepiandrosterone and its immediate 16-hydroxylated metabolites (DHEA&M), and 5-androstene-3beta,17beta-diol (hermaphrodiol) were analyzed in a cross-sectional study in 24-hour urine samples of 109 healthy boys and girls, aged 6-13 years, using steroid profiling by gas chromatography-mass spectrometry. Total and trabecular volumetric bone mineral densities, bone mineral content (BMC) and bone strength strain index were determined with peripheral quantitative computed tomography at the distal forearm. RESULTS: In multiple regression analyses significant associations with the metaphyseal radius were seen for grip force, age, or BMI depending on gender and bone variable analyzed. DHEA&M did not contribute to the explanation of the variance of any bone variable. However, hermaphrodiol positively explained a significant part of variation of bone mineral densities, and BMC (p < 0.01) in girls. Significantly negative associations with all bone variables were seen in boys for cortisol. CONCLUSIONS: The steroid hormones, cortisol and hermaphrodiol, in their physiological ranges, but not the adrenarche marker DHEA&M, appear to associate with metaphyseal bone in a sex-dependent manner during childhood.  相似文献   

19.
The effect of prolactin on the secretions of dehydroepiandrosterone (DHEA) and its sulfate (DHEA-S) as well as that of cortisol were studied in vitro in order to investigate the possible regulatory role of prolactin on steroidogenesis of the human fetal adrenal at mid-gestational age. The addition of 0.5 microgram/ml of human prolactin to the incubation medium produced a significant (P less than 0.05) increase in DHEA, DHEA-S, and cortisol secretion. These results indicate that prolactin has a regulatory role in steroidogenesis in the human fetal adrenal at mid-gestation.  相似文献   

20.
Plasma total testosterone (T), apparently free T and testosterone binding globulin (TeBG) capacity determined in 14 normal men aged 30-40 years were 461 +/- 100 ng/100 ml, 9.4 +/- 3.0 ng/100 ml and 5.7 +/- 1.9 X 10(-8) M, respectively, whereas in 16 hypogonadal men the corresponding values were 38.6 +/- 27.2 ng/100 ml, 0.47 +/- 0.41 ng/100 ml and 10.4 +/- 3.4 X 10(-8) M showing the TeBG capacity significantly higher (p less than 0.001) in hypogonadal than in normal men. Treatment of 5 hypogonadal subjects with 250 mg testosterone enanthate plus 50 mg testosterone propionate decreased (p less than 0.001) the TeBG level from 14.7 +/- 2.5 X 10(-8YM to 8.3 +/- 1.4 X 10(-8) M on day 8 after a single injection. According to this difference in TeBG, the free T fraction in plasma rose from 0.94% to 1.9% of the total T concentration. These results suggest that alteration of total plasma T affected the TeBG capacity. Decreased T levels raised and increased T concentrations suppressed TeBG, but with a delayed response to the changed T concentrations. The initial mean values in 12 patients with prostatic cancer aged 60-74 years were 397 +/- 165 ng/100 ml, 4.05 +/- 1.8 ng/100 ml and 11.9 +/- 3.3 X 10(-8) M, respectively. The TeBG capacity in these patients was significantly higher and the free T concentration significantly lower (p less than 0.001) than those of the younger normal males. After treatment with 12 g diethylstilbestrol diphosphate and orchidectomy, the TeBG increased to 33.3 +/- 13.1 X 10(-8) M and the plasma free T concentration decreased to the minimal value of 0.053 +/- 0.04 ng/100 ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号