首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Islet transplantation is a promising therapeutic option for type 1 diabetes mellitus, yet the current delivery into the hepatic portal vasculature is limited by poor engraftment. Biomaterials have been used as a means to promote engraftment and function at extrahepatic sites, with strategies being categorized as encapsulation or microporous scaffolds that can either isolate or integrate islets with the host tissue, respectively. Although these approaches are typically studied separately using distinct material platforms, herein, we developed nondegradable polyethylene glycol (PEG)‐based hydrogels for islet encapsulation or as microporous scaffolds for islet seeding to compare the initial engraftment and function of islets in syngeneic diabetic mice. Normoglycemia was restored with transplantation of islets within either encapsulating or microporous hydrogels containing 700 islet equivalents (IEQ), with transplantation on microporous hydrogels producing lower blood glucose levels at earlier times. A glucose challenge test at 1 month after transplant indicated that encapsulated islets had a delay in glucose‐stimulated insulin secretion, whereas microporous hydrogels restored normoglycemia in times consistent with native pancreata. Encapsulated islets remained isolated from the host tissue, whereas the microporous scaffolds allowed for revascularization of the islets after transplant. Finally, we compared the inflammatory response after transplantation for the two systems and noted that microporous hydrogels had a substantially increased presence of neutrophils. Collectively, these findings suggest that both encapsulation and microporous PEG scaffold designs allow for stable engraftment of syngeneic islets and the ability to restore normoglycemia, yet the architecture influences islet function and responsiveness after transplantation.  相似文献   

2.
3.
The aim of encapsulation of pancreatic islets is to transplant in the absence of immunosuppression. It is based on the principle that transplanted tissue is protected from the host immune system by an artificial membrane. Encapsulation allows for application of insulin-secreting cells of animal or other surrogate sources, to overcome human islet shortage. The advantages and pitfalls of the approaches developed so far are discussed and compared, together with some recent progress, in view of applicability in clinical islet transplantation.  相似文献   

4.
When transplanted into type 1a diabetic recipients, islet allografts are subject both to conventional allograft immunity and, presumably, to recurrent autoimmune (islet-specific) pathogenesis. Importantly, CD4 T cells play a central role both in islet allograft rejection and in autoimmune disease recurrence leading to the destruction of syngeneic islet transplants in diabetic NOD mice. However, it is unclear how NOD host MHC class II (I-A(g7))-restricted, autoreactive CD4 T cells may also contribute to the recognition of allogeneic islet grafts that express disparate MHC class II molecules. We hypothesized that islet-specific CD4 T cells can target MHC-mismatched islet allografts for destruction via the "indirect" (host APC-dependent) pathway of Ag recognition. To test this hypothesis, we determined whether NOD-derived, islet-specific CD4 T cells (BDC-2.5 TCR transgenic cells) could damage MHC-mismatched islets in vivo independent of conventional allograft immunity. Results demonstrate that BDC-2.5 CD4 T cells can vigorously destroy MHC class II-disparate islet allografts established in NOD.scid recipients. Tissue injury is tissue-specific in that BDC-2.5 T cells destroy donor-type islet, but not thyroid allografts established in the same NOD.scid recipient. Furthermore, BDC-2.5 CD4 T cells acutely destroy MHC class II-deficient islet allografts in vivo, indicating that autoimmune pathogenesis can be completely independent of donor MHC class II expression. Taken together, these findings indicate that MHC-mismatched islet allografts can be vulnerable to autoimmune pathogenesis triggered by autoreactive CD4 T cells, presumably through indirect autoantigen recognition in vivo.  相似文献   

5.
Pancreatic rat islets are encapsulated by a siliceous layer deposited on the surface of single islets upon reaction with gaseous siliceous precursors. The process preserves original islet dimensions and does not suppress viability or function. The encapsulated material is homogeneously distributed on the islet surface, and layer thickness can be controlled in the 0.1–2.0 μm interval. Dynamic perfusion experiments with glucose stimulation were carried out in both encapsulated and non-encapsulated islets. Results were treated according to a kinetic model presented here for the analysis of perfusion data; the model tested by literature data, was used to substantiate the diffusion features of the siliceous layer, which does not affect mass transfer of insulin but which modifies the texture of the islet surface tissue. The clinical potential of silica encapsulation was demonstrated by in vivo experiments using encapsulated islets transplanted into diabetic rats. Transplantation was carried out in both inbred and outbred rats and indicated prolonged restoration of normal glycaemia levels and protection from immunological attack.  相似文献   

6.
Two major hurdles need to be surmounted for cell therapy for diabetes: (i) allo-immune rejection of grafted pancreatic islets, or stem/precursor cell-derived insulin-secreting cells; and (ii) continuing auto-immunity against the diabetogenic endogenous target antigen. Nanotherapeutics offer a novel approach to overcome these problems and here we ask if creation of “stealth” islets encapsulated within a thin cage of pegylated material of 100–200 nanometers thick provides a viable option for islet transplantation. The aims of this study were to test islet viability and functionality following encapsulation within the pegylated cage, and functional efficacy in vivo in terms of graft-derived control of normoglycemia in diabetic mice. We first demonstrated that pegylation of the islet surface, plus or minus nanoparticles, improved long-term islet viability in vitro compared to non-pegylated (naked) control islets. Moreover, pegylation of the islets with nanoparticles was compatible with glucose-stimulated insulin secretion and insulin biogenesis. We next looked for functionality of the created “stealth” DBA/2 (H-2d) islets in vivo by comparing glycemic profiles across 4 groups of streptozotozin-induced diabetic C57BL/6 (H-2b) recipients of (i) naked islets; (ii) pegylated islets; (iii) pegylated islets with nanoparticles (empty); and (iv) pegylated islets with nanoparticles loaded with a cargo of leukemia inhibitory factor (LIF), a factor both promotes adaptive immune tolerance and regulates pancreatic β cell mass. Without any other treatment, normoglycemia was lost after 17 d (+/−7.5 d) in control group. In striking contrast, recipients in groups (ii), (iii), and (iv) showed long-term (>100 d) normoglycemia involving 30%; 43%, and 57% of the recipients in each respective group. In conclusion, construction of “stealth” islets by pegylation-based nanotherapeutics not only supports islet structure and function, but also effectively isolates the islets from immune-mediated destruction. The added value of nanoparticles to deliver immune modulators plus growth factors such as LIF expands the potential of this novel therapeutic approach to cell therapy for diabetes.  相似文献   

7.
To investigate how CD8+ T cells interact with beta cells and local inflammatory cells in islets, we have isolated CD8+ T cell clones from nonobese diabetic (NOD) spleen that recognize and destroy both islets and the NOD insulinoma cell line NIT-1. The clones destroyed NOD islets with pre-existing inflammation better than islets without signs of inflammation. Islets from NOD-scid mice were destroyed only poorly, but that could be improved by adding IL-7 to the assay. Anti-IFN-gamma Abs inhibited destruction of infiltrated islets. Single islets were effective stimulators of IFN-gamma production by cloned CD8+ T cells, which varied >50-fold depending on the degree of islet infiltration. This effect of the islet mononuclear infiltrate could be mimicked by adding spleen cells to NIT-1 cells, which augmented IFN-gamma production above the level stimulated by NIT-1 cells alone. The enhancing effect of spleen cells could be attributed to their macrophage subpopulation and was not MHC restricted, although recognition of islet Ag by cloned CD8+ T cells and subsequent islet destruction was restricted to islets expressing H-2Db molecules. An inhibitor of inducible NO synthase inhibited destruction of inflamed islets by cloned CD8+ T cells. We propose that macrophages in inflamed islets provide a form of bystander costimulation of beta cell-specific CD8+ T cells. CD8+ T cells respond to Ag and costimulation by producing IFN-gamma that activates macrophages. Activated macrophages facilitate islet destruction by CD8+ T cells through a NO synthesis-dependent pathway.  相似文献   

8.
Transplantation of encapsulated porcine islets is proposed to treat type 1 diabetes. However, the envelopment of fibrous tissue and the infiltration of immune cells impair islet function and eventually cause implant failure. It is known that hemodialysis using an ethylene vinyl alcohol (EVOH) membrane results in minor tissue responses. Therefore, we hypothesized that using a low‐adhesive EVOH membrane for encapsulation may prevent host cell accumulation and fibrous capsule formation. In this study, rat islets suspended in chitosan gel were encapsulated in bags made from highly porous EVOH membranes, and their in vitro insulin secretion function as well as in vivo performance was evaluated. The results showed that the EVOH bag did not affect islet survival or glucose‐stimulated insulin secretion. Whereas naked islets were dysfunctional after 7 days of culture in vitro, islets within the EVOH bag produced insulin continuously for 30 days. Streptozotocin‐induced diabetic mice were given islets–chitosan gel–EVOH implants intraperitoneally (650–800 islets equivalent) and exhibited lower blood glucose levels and regained body weight during a 4‐week observation period. The transplanted mice had higher levels of serum insulin and C‐peptide, with an improved blood glucose disappearance rate. Retrieved implants had minor tissue adhesion, and histology showed a limited number of mononuclear cells and fibroblasts surrounding the implants. No invasion of host cells into the EVOH bags was noticed, and the encapsulated islets were intact and positive for insulin–glucagon immunostaining. In conclusion, an EVOH bag can protect encapsulated islets, limit fibrous capsule formation, and extend graft function.  相似文献   

9.
Type 1 diabetes (T1D) is characterized by the immune-mediated destruction of beta cells in the pancreas. Little is known about the in vivo dynamic interactions between T cells and beta cells or the kinetic behavior of other immune cell subsets in the pancreatic islets. Utilizing multiphoton microscopy we have designed a technique that allows for the real-time visualization of diabetogenic T cells and dendritic cells in pancreatic islets in a live animal, including their interplay with beta cells and the vasculature. Using a custom designed stage, the pancreas was surgically exposed under live conditions so that imaging of islets under intact blood pressure and oxygen supply became possible. We demonstrate here that this approach allows for the tracking of diabetogenic leukocytes as well as vascularization phenotype of islets and accumulation of dendritic cells in islets during diabetes pathogenesis. This technique should be useful in mapping crucial kinetic events in T1D pathogenesis and in testing the impact of immune based interventions on T cell migration, extravasation and islet destruction.  相似文献   

10.
Roles of cytokines in the pathogenesis and therapy of type 1 diabetes   总被引:2,自引:0,他引:2  
Type 1 diabetes (T1D) results from autoimmune destruction of the insulin-producing β-cells in the pancreatic islets of Langerhans by autoreactive T helper 1 (Th1) cells characterized by their cytokine secretory products, interleukin-2 (IL-2) and interferon γ (IFNγ). Th1-type cytokines (IL-2 and IFNγ) correlate with T1D, whereas Th2 (IL-4 and IL-10), Th3 (transforming growth factor beta [TGFβ]), and T regulatory cell-type cytokines (IL-10 and TGFβ) correlate with protection from T1D. Paradoxically, however, administrations of Th1-type cytokines (IL-2 and IFNγ) and immunotherapies that induce Th1-type cytokine responses actually prevent T1D, at least in animal models. Therefore, immunotherapies that inhibit IL-2 production/action will block Th1 cell/cytokine-driven effector mechanisms of pancreatic islet β-cell destruction; however, anti-IL-2 therapy will not allow immune tolerance to be established. In contrast, immunotherapies that increase IL-2 production/action may correct an immunodeficiency in IL-2 production that appears to underlie the autoimmunity of T1D, thereby restoring immune tolerance to islet β-cells and prevention of T1D.  相似文献   

11.
Insulin-dependent diabetes mellitus is an autoimmune disease that causes a progressive destruction of the pancreatic beta cells. As a result, the patient requires exogenous insulin to maintain normal blood glucose levels. Both the pancreas and the islets of Langerhans have been transplanted successfully in humans and in animal models, resulting in full normalization of glucose homeostasis. However, insulin independence, transient or persistent, was documented in only a small fraction of cases until recently. The chronic immunosuppression required to avoid immunological rejection appears to be toxic to the islets and adds the risk of lymphoproliferative disease reported earlier. For islet transplantation to become the method of choice, it is essential first to identify islet-friendly immunosuppressive regimens and/or to develop methods that induce donor-specific tolerance and improve islet isolation and transplantation protocols. Indeed, researchers have already successfully allografted islets in the presence of nonsteroidal immunosuppression in a process known as the Edmonton protocol. An alternative method, gene therapy, could replace these other methods and better meet the insulin requirement of an individual without requiring pancreatic or islet transplantation. This alternative, however, requires animal models to develop and test clinical protocols and to demonstrate the feasibility of preclinical trials. Nonhuman primates are ideally suited to achieve these goals. The efforts toward developing a nonhuman primate diabetic model with demonstrable insulin dependence are discussed and include pancreatic and islet transplant trials to reverse the diabetic state and achieve insulin independence. Also described are the various protocols that have been tested in primates to circumvent immunosuppression by using tolerance induction strategies in lieu of immunosuppression, thus exploring the field of donor-specific tolerance that extends beyond islet transplantation.  相似文献   

12.
Xenotransplantation of pancreatic islets offers a promising alternative to overcome the shortage of allogeneic donors. Despite significant advances, either immune rejection or oxygen supply in immune protected encapsulated islets remains major bottlenecks for clinical application. To decrease xenogeneic immune responses, we generated tissue engineered swine leucocyte antigen (SLA)‐silenced islet cell clusters (ICC). Single‐cell suspensions from pancreatic islets were generated by enzymatic digestion of porcine ICCs. Cells were silenced for SLA class I and class II by lentiviral vectors encoding for short hairpin RNAs targeting beta2‐microglobulin or class II transactivator, respectively. SLA‐silenced ICCs‐derived cells were then used to form new ICCs in stirred bioreactors in the presence of collagen VI. SLA class I silencing was designed to reach a level of up to 89% and class II by up to 81% on ICCs‐derived cells. Xenogeneic T cell immune responses, NK cell and antibody‐mediated cellular‐dependent immune responses were significantly decreased in SLA‐silenced cells. In stirred bioreactors, tissue engineered islets showed the typical 3D structure and insulin production. These data show the feasibility to generate low immunogenic porcine ICCs after single‐cell engineering and post‐transduction islet reassembling that might serve as an alternative to allogeneic pancreatic islet cell transplantation.  相似文献   

13.
Type 1 diabetes (T1D) is caused by a T cell-mediated autoimmune response that leads to the loss of insulin-producing β cells. The optimal preclinical testing of promising therapies would be aided by a humanized immune-mediated T1D model. We develop this model in NOD-scid IL2rγnull mice. The selective destruction of pancreatic islet β cells was mediated by human T lymphocytes after an initial trigger was supplied by the injection of irradiated spleen mononuclear cells (SMC) from diabetic nonobese diabetic (NOD) mice. This resulted in severe insulitis, a marked loss of total β-cell mass, and other related phenotypes of T1D. The migration of human T cells to pancreatic islets was controlled by the β cell-produced highly conserved chemokine stromal cell-derived factor 1 (SDF-1) and its receptor C-X-C chemokine receptor (CXCR) 4, as demonstrated by in vivo blocking experiments using antibody to CXCR4. The specificity of humanized T cell-mediated immune responses against islet β cells was generated by the local inflammatory microenvironment in pancreatic islets including human CD4+ T cell infiltration and clonal expansion, and the mouse islet β-cell-derived CD1d-mediated human iNKT activation. The selective destruction of mouse islet β cells by a human T cell-mediated immune response in this humanized T1D model can mimic those observed in T1D patients. This model can provide a valuable tool for translational research into T1D.  相似文献   

14.
Effective therapies that prevent chronic inflammation from developing into type 1 diabetes remain elusive. In this study, we show that expression of TGF-β for just 1 wk in inflamed islets of NOD mice significantly delays diabetes development. Time course studies demonstrated that the brief TGF-β pulse protects only if administered when extensive β cell destruction has occurred. Surprisingly, TGF-β-mediated protection is not linked to enhanced Foxp3(+) regulatory T cell activity or to decreased intrapancreatic presentation of islet Ags. Instead, TGF-β disables the transition of primed autoreactive CD8(+) T cells to cytotoxic effectors and decreases generation, or maintenance, of CD8(+) memory T cells within the pancreas, significantly impairing their diabetogenic capacity.  相似文献   

15.
Immune rejection and scarcity of donor tissues are the restrictions of islets transplantation. In this study, the cytoprotection of chitosan hydrogels in xenogeneic islet transplantation was demonstrated. Wistar rat islets encapsulated in chitosan hydrogels were performed glucose challenge test and live/dead cell staining in vitro. Islets/chitosan hydrogels were transplanted into the renal subcapsular space of diabetic C57BL/6 mice. Non-fasting blood glucose level (NFBG), body weight, intraperitoneal glucose tolerance test (IPGTT), and glucose disappearance rate were determined perioperatively. The serum insulin level was analyzed, and the kidney transplanted with islets/chitosan hydrogels were retrieved for histological examination after sacrifice. The present results showed that islets encapsulated in chitosan hydrogels secreted insulin in response to the glucose stimulation as naked islets with higher cell survival. The NFBG of diabetic mice transplanted with islets/chitosan hydrogels decreased from 487 ± 46 to 148 ± 32 at one day postoperation and maintained in the range of 201 ± 36 mg/dl for four weeks with an increase in body weight. IPGTT showed the glucose disappearance rate of mice transplanted with islets/chitosan hydrogels was significant faster than that of mice transplanted with naked islets; the serum insulin level increased from 0.29 ± 0.06 to 1.69 ± 0.65 μg/dl postoperatively. Histological examination revealed that the islets successfully engrafted at renal subcapsular space with positive insulin staining. The immunostain was negative for neither the T-cell lineages nor the monocyte/macrophages. This study indicates that the chitosan hydrogels deliver and protect encapsulated islets successfully in xenotransplantation.  相似文献   

16.
17.
Longterm efficiency of encapsulated pancreatic islet transplantation is limited by macrophagic reaction at the surface of biocompatible membrane. The aim of this work was to investigate the influence of soluble factors released by free and encapsulated islets on macrophage chemotaxis. The culture mediums conditioned for 6 days by free and encapsulated rat islets were incubated with peritoneal murine, rat allo and syngenic macrophages to study their migration. Culture supernatants of rat fibroblasts and acinar cells, glucose-stimulated free rat islets and supernatants of free rat islets treated by heat and proteinase K were also tested for their chemotactic activity. Islets encapsulation decreased the chemotactic activity of culture medium conditioned for 6 days by free rat islets on murine (1.66 +/- 0.20 vs. 3.10 +/- 0.23; p < 0.001, n = 5) and rat allogenic macrophages (1.63 +/- 0.21 vs. 4.70 +/- 0.36; p < 0.001, n = 9). There was no migration of rat macrophages towards syngenic islets. Fibroblasts exhibited a very strong chemotactic effect as compared to acinar cells. Insulin was not involved in macrophage migration. Proteinase K treatment of culture supernatant of free rat islets totally inhibited the chemotactic activity. After heating at 56 degrees C and 100 degrees C, this activity was reduced to 41 +/- 7% and 32 +/- 5% of the initial activity, respectively. In conclusion, pancreatic islet stimulated macrophage migration by release of immunological specific proteins partly retained by macroencapsulation.  相似文献   

18.
Encapsulation of pancreatic islets before transplantation enables survival and function in an immunocompetent recipient without immunosuppression. However, the insufficient availability of allogenic islet tissue is a major problem. One concept to overcome these shortcomings is the cryopreservation of microencapsulated allogenic islets, to allow their unlimited collection and use on demand. Therefore, this report outlines the development of a cryopreservation protocol for CD rat islets encapsulated in an alginate-based microcapsule-system. We determined RPMI-medium plus 10% FCS as freezing medium, equilibration at 0°C for 15 min with the cryoprotectant dimethyl sulfoxide (DMSO; final concentration 2.0M), and a stepwise removal of DMSO by sucrose dilution after thawing, as best protocol for cryopreservation of encapsulated islets. Importantly, the cryopreserved encapsulated islets showed post thawing in vitro an insulin increase upon a glucose challenge comparable to that of non-cryopreserved encapsulated islets. Moreover, a stable graft function without the need of immunosuppression was detected after transplantation of 2500 cryopreserved encapsulated CD rat islets in streptozotocin-diabetic Wistar rats. Finally, the glucose clearance rate during an IPGTT 4 weeks after transplantation was comparable to that of rats transplanted with non-cryopreserved encapsulated islets. In conclusion, our study demonstrates for the first time that cryopreservation of encapsulated rat islets is possible without substantial losses on graft function. Future studies will now have to carry on this approach to human islets, aiming to apply such a bioartificial pancreas consisting of cryopreserved encapsulated islets in humans.  相似文献   

19.
Type 1 (insulin-dependent) diabetes mellitus, like other organ specific autoimmune diseases, results from a disorder of immunoregulation. T cells specific for pancreatic islet ß cell constituents (autoantigens) exist normally but are restrained by regulatory mechanisms (self-tolerant state). When regulation fails, ß cell-specific autoreactive T cells become activated and expand clonally. Current evidence indicates that islet ß cell-specific autoreactive T cells belong to a T helper 1 (Th1) subset, and these Th1 cells and their characteristic cytokine products, IFNγ and IL-2, are believed to cause islet inflammation (insulitis) and ß cell destruction. Immune-mediated destruction of ß cells precedes hyperglycemia and clinical symptoms by many years because these become apparent only when most of the insulin-secreting ß cells have been destroyed. Therefore, several approaches are being tested or are under consideration for clinical trials to prevent or arrest complete autoimmune destruction of islet ß cells and insulin-dependent diabetes. Approaches that attempt to correct underlying immunoregulatory defects in autoimmune diabetes include interventions aimed at i) deleting ß cell autoreactive Th1 cells and cytokines (IFNγ and IL-2) and/or ii) increasing regulatory Th2 cells and/or Th3 cells and their cytokine products (IL-4, IL-10 and TGFßI).  相似文献   

20.
We have dissected the helper requirements for converting a tolerogenic CD8 T cell response into one capable of causing destruction of the pancreatic islets. Injection of naive OVA-specific CD8 T cells into transgenic mice expressing OVA in the pancreas only resulted in islet destruction when activated CD4 Th cells were coinjected. This requirement for activated CD4 T cell help for induction of primary CD8 T cell-mediated immunity to tissue Ags contrasts recent reports suggesting that help is only important for CTL memory. Our findings show that signaling of CD40 on the dendritic cell presenting to CD8 T cells is important, but not sufficient, for induction of diabetes. Furthermore, once helpers are activated, they need not recognize Ag on the dendritic cells they license. This provides insight into the helper requirements for adoptive transfer immunotherapy of tumors and suggests key points for inhibition of CTL-mediated autoimmunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号