首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sea urchin eggs contain a small molecular weight heat-stable factor that confers cyanide-resistant NAD(P)H-O2 oxidoreductase activity on ovoperoxidase (Turner, E., Somers, C. E., and Shapiro, B. M. (1985) J. Biol. Chem. 260, 13163-13171), the enzyme responsible for cross-linking the extracellular protein coat (fertilization membrane) of the egg. Here we report the isolation of the active cofactor and its identification by ultraviolet, NMR, and mass spectroscopy as a new sulfur-containing amino acid derivative, 1-methyl-alpha N,alpha N-dimethyl-4-thiohistidine, or ovothiol. Ovothiol reacts slowly with atmospheric oxygen or rapidly with micromolar concentrations of H2O2 to form ovothiol disulfide, which is inactive as a cofactor for the ovoperoxidase NAD(P)H oxidase. Reduced active ovothiol is regenerated by treatment with disulfide reductants and shows significant differences in its ultraviolet and NMR spectra from oxidized ovothiol. The oxidoreductase activity of the ovoperoxidase/ovothiol system is similar to that previously characterized with crude cofactor preparations; it is greatly enhanced by Mn2+ and is relatively insensitive to CN-, compared to the peroxidase activity of ovoperoxidase. The ovothiol content of eggs is estimated as 1.8 pmol/egg or an intracellular concentration of 6.8 mM. This concentration exceeds the amount of reductant needed for the CN-(-)insensitive oxygen consumption following fertilization and used in the production of H2O2 for fertilization membrane cross-linking. Whether ovothiol is involved in the cross-linking reaction, protects the egg from damage from H2O2, or has another role in development remains unclear.  相似文献   

2.
Ovoperoxidase, an enzyme secreted by the eggs of the sea urchin Stronglycocentrotus purpuratus upon activation, catalyzes the formation of dityrosine residues in the fertilization envelope. This cross-linking reaction requires extracellular H2O2, which is produced by the egg during the cyanide-insensitive "respiratory burst" of fertilization. While investigating the possibility that the sea urchin oxidase might generate O2- as a precursor to H2O2, we discovered that ovoperoxidase possessed O2- degrading activity. Ovoperoxidase catalyzed the breakdown of O2- in a reaction that was sensitive to inhibition by catalase, indicating a requirement for H2O2. High concentrations of either O2- or H2O2 inhibited the O2- degrading activity of ovoperoxidase, as did the peroxidase inhibitors aminotriazole, azide, and phenylhydrazine. When ovoperoxidase was heated at 56 degrees C, it lost O2- degrading activity in parallel with peroxidase activity. In contrast, the copper-chelating agent diethyldithiocarbamate, which completely inactivated CuZn superoxide dismutase, failed to affect ovoperoxidase. The requirement for H2O2 and the inhibition by aminotriazole, azide, and phenylhydrazine support the hypothesis that ovoperoxidase catalyzes the breakdown of O2- by a peroxidative mechanism. Ovoperoxidase may play a role in protecting the developing embryo from oxidants derived from O2-.  相似文献   

3.
Catalase-peroxidases (KatG) produced by Burkholderia pseudomallei, Escherichia coli, and Mycobacterium tuberculosis catalyze the oxidation of NADH to form NAD+ and either H2O2 or superoxide radical depending on pH. The NADH oxidase reaction requires molecular oxygen, does not require hydrogen peroxide, is not inhibited by superoxide dismutase or catalase, and has a pH optimum of 8.75, clearly differentiating it from the peroxidase and catalase reactions with pH optima of 5.5 and 6.5, respectively, and from the NADH peroxidase-oxidase reaction of horseradish peroxidase. B. pseudomallei KatG has a relatively high affinity for NADH (Km=12 microm), but the oxidase reaction is slow (kcat=0.54 min(-1)) compared with the peroxidase and catalase reactions. The catalase-peroxidases also catalyze the hydrazinolysis of isonicotinic acid hydrazide (INH) in an oxygen- and H2O2-independent reaction, and KatG-dependent radical generation from a mixture of NADH and INH is two to three times faster than the combined rates of separate reactions with NADH and INH alone. The major products from the coupled reaction, identified by high pressure liquid chromatography fractionation and mass spectrometry, are NAD+ and isonicotinoyl-NAD, the activated form of isoniazid that inhibits mycolic acid synthesis in M. tuberculosis. Isonicotinoyl-NAD synthesis from a mixture of NAD+ and INH is KatG-dependent and is activated by manganese ion. M. tuberculosis KatG catalyzes isonicotinoyl-NAD formation from NAD+ and INH more efficiently than B. pseudomallei KatG.  相似文献   

4.
It has been reported that nonmitochondrial NAD(P)H oxidases make an important contribution to intracellular O2-* in vascular tissues and, thereby, the regulation of vascular function. Topological analyses have suggested that a well-known membrane-associated NAD(P)H oxidase may not release O2-* into the cytosol. It is imperative to clarify the source of intracellular O2-* associated with this enzyme and its physiological significance in vascular cells. The present study hypothesized that an NAD(P)H oxidase on the sarcoplasmic reticulum (SR) in coronary artery smooth muscle (CASM) regulates SR ryanodine receptor (RyR) activity by producing O2-* locally. Western blot analysis was used to detect NAD(P)H oxidase subunits in purified SR from CASM. Fluorescent spectrometric analysis demonstrated that incubation of SR with NADH time dependently produced O2-*, which could be substantially blocked by the specific NAD(P)H oxidase inhibitors diphenylene iodonium and apocynin and by SOD or its mimetic tiron. This SR NAD(P)H oxidase activity was also confirmed by HPLC analysis of conversion of NADH to NAD+. In experiments of lipid bilayer channel reconstitution, addition of NADH to the cis solution significantly increased the activity of RyR/Ca2+ release channels from these SR preparations from CASM, with a maximal increase in channel open probability from 0.0044 +/- 0.0005 to 0.0213 +/- 0.0018; this effect of NADH was markedly blocked in the presence of SOD or tiron or the NAD(P)H oxidase inhibitors diphenylene iodonium, N-vanillylnonanamide, and apocynin. These results suggest that a local NAD(P)H oxidase system on SR from CASM regulates RyR/Ca2+ channel activity and Ca2+ release from SR by producing O2-*.  相似文献   

5.
Radish plasmalemma-enriched fractions show an NAD(P)H-ferricyanide or NAD(P)H-cytochrome c oxidoreductase activity which is not influenced by pH in the 4.5-7.5 range. In addition, at pH 4.5-5.0, NAD(P)H elicits an oxygen consumption (NAD(P)H oxidation) inhibited by catalase or superoxide dismutase (SOD), added either before or after NAD(P)H addition. Ferrous ions stimulate NAD(P)H oxidation, which is again inhibited by SOD and catalase. Hydrogen peroxide does not stimulate NADH oxidation, while it does stimulate Fe2+-induced NADH oxidation. NADH oxidation is unaffected by salicylhydroxamic acid and Mn2+, is stimulated by ferulic acid, and inhibited by KCN, EDTA and ascorbic acid. Moreover, NADH induces the conversion of epinephrine to adrenochrome, indicating that anion superoxide is formed during its oxidation. These results provide evidence that radish plasma membranes contain an NAD(P)H-ferricyanide or cytochrome c oxidoreductase and an NAD(P)H oxidase, active only at pH 4.5-5.0, able to induce the formation of anion superoxide, that is then converted to hydrogen peroxide. Ferrous ions, sparking a Fenton reaction, would stimulate NAD(P)H oxidation.  相似文献   

6.
The NADPH oxidase activity of polymorphonuclear leukocyte granules has not previously been attributed to myeloperoxidase because of its relative insensitivity to cyanide and its activation by aminotriazole. However it has been found that the NAD(P)H oxidase activity of myeloperoxidase or horseradish peroxidase was little affected by 2.0 mM cyanide although the peroxidase activity was nearly completely inhibited by 0.1 mM cyanide. Furthermore, the NAD(P)H oxidase activity of myeloperoxidase was considerably enhanced by aminotriazole although the peroxidase activity was inhibited.  相似文献   

7.
Cytochemical localization of hydrogen peroxide production in the rat uterus   总被引:1,自引:0,他引:1  
A reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H)-dependent H2O2-generating activity of the rat uterus was investigated both electron cytochemically and biochemically. We tried to cytochemically demonstrate H2O2 generation from the oxidation of reduced NADH or NADPH using the cerium method. NADPH oxidation resulted in electron-dense deposits on the apical plasma membrane covering the microvilli of the surface epithelium of the lightly fixed endometrium. In control specimens incubated in a medium from which substrate was omitted, no such deposits were observed. The reduction of ferricytochrome c due to NADH oxidation was spectrophotometrically detected in the lightly fixed uterus. Absorption at 550 nm increased with the addition of NADH, but not with that of NAD. The reaction was weakened by preheating and adversely affected by the addition of superoxide dismutase, but it was not inhibited by adding 50 mM sodium azide. These results suggest that a kind of NAD(P)H oxidase, generating H2O2 via superoxide formation, may possibly be present on the apical plasma membrane of the rat endometrial epithelium.  相似文献   

8.
Guo T  Kong J  Zhang L  Zhang C  Hu S 《PloS one》2012,7(4):e36296
Lactococcus lactis is a well-studied bacterium widely used in dairy fermentation and capable of producing metabolites with organoleptic and nutritional characteristics. For fine tuning of the distribution of glycolytic flux at the pyruvate branch from lactate to diacetyl and balancing the production of the two metabolites under aerobic conditions, a constitutive promoter library was constructed by randomizing the promoter sequence of the H(2)O-forming NADH oxidase gene in L. lactis. The library consisted of 30 promoters covering a wide range of activities from 7,000 to 380,000 relative fluorescence units using a green fluorescent protein as reporter. Eleven typical promoters of the library were selected for the constitutive expression of the H(2)O-forming NADH oxidase gene in L. lactis, and the NADH oxidase activity increased from 9.43 to 58.17-fold of the wild-type strain in small steps of activity change under aerobic conditions. Meanwhile, the lactate yield decreased from 21.15 ± 0.08 mM to 9.94 ± 0.07 mM, and the corresponding diacetyl production increased from 1.07 ± 0.03 mM to 4.16 ± 0.06 mM with the intracellular NADH/NAD(+) ratios varying from 0.711 ± 0.005 to 0.383 ± 0.003. The results indicated that the reduced pyruvate to lactate flux was rerouted to the diacetyl with an almost linear flux variation via altered NADH/NAD(+) ratios. Therefore, we provided a novel strategy to precisely control the pyruvate distribution for fine tuning of the lactate and diacetyl production through promoter engineering in L. lactis. Interestingly, the increased H(2)O-forming NADH oxidase activity led to 76.95% lower H(2)O(2) concentration in the recombinant strain than that of the wild-type strain after 24 h of aerated cultivation. The viable cells were significantly elevated by four orders of magnitude within 28 days of storage at 4°C, suggesting that the increased enzyme activity could eliminate H(2)O(2) accumulation and prolong cell survival.  相似文献   

9.
The ultrastructural localization of NADH oxidase, a possible enzyme in the increased oxidative activity of polymorphonuclear leukocytes (PMN) during phagocytosis, was studied. A new cytochemical technique for the localization of H2O2, a product of NADH oxidase activity, was developed. Cerous ions, in the presence of peroxide, form an electron-dense precipitate. Resting and phagocytically stimulated PMN were exposed to cerous ions at pH 7.5 to demonstrate sites of NADH-dependent, cyanide-insensitive H2O2 production. Resting PMN exhibites slight activity on the plasma membrane; phagocytizing PMN had extensive deposits of reaction product localized within the phagosome and on the plasma membrane. Peroxide involvement was demonstrated by the inhibitory effect of catalase on cerium precipitation; the surface localization of the enzyme responsible was confirmed by using nonpenetrating inhibitors of enzymatic activity. A correlative study was performed with an NADH-dependent, tetrazolium-reduction system. As with cerium, formazan deposition on the surface of the cell was NADH dependent, cyanide insensitive, and stimulated by phagocytosis. Superoxide dismutase did not inhibit tetrazolium reduction, as observed cytochemically, indicating direct enzymatic dye reduction without superoxide interposition. These findings, combined with oxygen consumption studies on resting and stimulated PMN in the presence or absence of NADH, indicate that NADH oxidase is a surface enzyme in human PMN. It is internalized during phagocytosis and retains its peroxide-generating capacity within the phagocytic vacuole.  相似文献   

10.
NAD+ had a biphasic effect on the NADH oxidase activity in electron transport particles from Mycobacterium phlei. The oxidase was inhibited competitively by NAD+ at concentrations above 0.05 mM. NAD+ in concentrations from 0.02 to 0.05 mM resulted in maximum stimulation of both NADH oxidation and oxygen uptake with concentrations of substrate both above and below the apparent K-M. Oxygen uptake and cyanide sensitivity indicated that the NAD+ stimulatory effect was linked to the terminal respiratory chain. The stimulatory effect was specific for NAD+. NAD+ was also specific in protecting the oxidase during heating at 50 degrees and against inactivation during storage at 0 degrees. NAD+ glycohydrolase did not affect stimulation nor heat protection of the NADH oxidase activity if the particles were previously preincubated with NAD+. Binding studies revealed that the particles bound approximately 3.6 pmol of [14C1NAD+ per mg of electron transport particle protein. Although bound NAD+ represented only a small fraction of the total added NAD+ necessary for maximal stimulation, removal of the apparently unbound NAD+ by Sephadex chromatography revealed that particles retained the stimulated state for at least 48 hours. Further addition of NAD+ to stimulated washed particles resulted in competitive inhibition of oxidase activity. Desensitization of the oxidase to the stimulatory effect of NAD+ was achieved by heating the particles at 50 degrees for 2 min without appreciable loss of enzymatic activity. Kinetic studies indicated that addition of NADH to electron transport particles prior to preincubation with NAD+ inhibited stimulation. In addition, NADH inhibited binding of [14C]NAD+. The utilization of artificial electron acceptors, which act as a shunt of the respiratory chain at or near the flavoprotein component, indicated that NAD+ acts as at the level of the NADH dehydrogenase at a site other than the catalytic one resulting in a conformational change which causes restoration as well as protection of oxidase activity.  相似文献   

11.
An NAD(P)H oxidase activity stimulated by phenolic compounds has been investigated in purified plasma membranes (pm) and in an intracellular membrane (icm) fraction depleted in plasma membranes, both obtained from a microsomal fraction from cauliflower inflorescences ( Brassica oleracea L.). The phenolic compounds salicylhydroxamic acid (SHAM), ferulic acid, coniferyl alcohol, n -propyl gallate, naringenin, kaempferol and caffeic acid all strongly stimulated the activity. Peroxidase (EC 1.11.1.7), or a peroxidase-like enzyme, was responsible for the NAD(P)H oxidase activity, which proceeded through a free-radical chain reaction and was inhibited by catalase (EC 1.11.1.6), superoxide dismutase (EC 1.15.1.1) and KCN. Most of the total activity was soluble; however, the membrane-bound activity was highly enriched in the pm compared to the icm. The catalase activity was 6 times higher in the icm-fraction than in the pm-fraction, but this was not the reason for the much lower phenol-stimulated NADH oxidase activity in the icm. Peroxidase activity measured with o -dianisidine and H2O2 had about the same specific activities in the pm-and icm-fractions.
Neither the phenol-stimulated NADH oxidase nor the peroxidase activity could be washed away from the pm even by 0.7 M NaCl, indicating that these activities are truly membrane-bound. SHAM as well as the other phenolic compounds capable of stimulating the NADH oxidase reaction were potent inhibitors of blue light-induced cytochrome b -reduction in the pm fraction.  相似文献   

12.
To clarify the significance of catalase in peroxisomes, we have examined the effect of aminotriazole treatment of rats on the activity of beta-hydroxybutyryl-CoA dehydrogenase in liver peroxisomes. When the effect of H2O2 on the dehydrogenase activity was examined using an extract of liver peroxisomes from aminotriazole-treated rats, the acetoacetyl-CoA-dependent oxidation of NADH was found to increase considerably on the addition of dilute H2O2. Such an effect of H2O2 was not seen on the beta-hydroxybutyryl-CoA-dependent reduction of NAD nor with extracts from untreated animals. We then noticed that similar NADH oxidation was caused non-enzymatically by a mixture of acetoacetyl-CoA and H2O2. The oxidation was dependent on both acetoacetyl-CoA and H2O2, and was blocked by scavengers of oxyradicals such as ascorbate and ethanol. Degradation products formed during the reaction of acetoacetyl-CoA with H2O2 had no NADH oxidizing activity, indicating that effective oxidant(s) were generated during the reaction of H2O2 with acetoacetyl-CoA. No other fatty acyl-CoA so far examined nor acetoacetate could replace acetoacetyl-CoA in this reaction. Therefore, if H2O2 were to be accumulated in peroxisomes, it would decrease both NADH and acetoacetyl-CoA, thus affecting the fatty acyl-CoA beta-oxidation system. These results, together with our previous finding that peroxisomal thiolase was significantly inactivated by H2O2 [Hashimoto, F. & Hayashi, H. (1987) Biochim. Biophys. Acta 921, 142-150] suggest that the role of catalase in peroxisomes is at least in part to protect the fatty acyl-CoA beta-oxidation system from the deleterious action of H2O2.  相似文献   

13.
The bacterium Klebsiella pneumoniae synthesizes three different types of catalase: a catalase-peroxidase, a typical catalase and an atypical catalase, designated KpCP, KpT and KpA, respectively (Goldberg, I. and Hochman, A. (1989) Arch. Biochem. Biophys. 268, 124-128). KpCP, but not the other two enzymes, in addition to the catalatic activity, catalyzes peroxidatic activities with artificial electron donors, as well as with NADH and NADPH. Both KpCP and KpT are tetramers, with heme IX as a prosthetic group, and they show a typical high-spin absorption spectrum which is converted to low-spin when a cyanide complex is formed. The addition of dithionite to KpCP causes a shift in the absorption maxima typical of ferrous heme IX. KpCP has a pH optimum of 6.3 for the catalatic activity and 5.2-5.7 for the peroxidatic activity, and relatively low 'Km' values: 6.5 mM and 0.65 H2O2 for the catalatic and peroxidatic activities, respectively. The activity of the catalase-peroxidase is inhibited by azide and cyanide, but not by 3-amino-1,2,4-triazole. KpT has wide pH optimum: 5-10.5 and a 'Km' of 50 mM H2O2, it is inhibited by incubation with 3-amino-1,2,4-triazole and by the acidic forms of cyanide and azide. A significant distinction between the typical catalase and the catalase-peroxidase is the stability of their proteins: KpT is more stable than KpCP to H2O2, temperature, pH and urea.  相似文献   

14.
Formation of reduced nicotinamide adenine dinucleotide peroxide   总被引:1,自引:0,他引:1  
Incubation of NADH at neutral and slightly alkaline pH leads to the gradual absorption of 1 mol of H+. This uptake of acid requires oxygen and mainly yields anomerized NAD+ (NAD+), with only minimal formation od acid-modified NADH. The overall stoichiometry of the reaction is: NADH + H+ + 1/2O2 leads to H2O + NAD+, with NADH peroxide (HO2-NADH+) serving as the intermediate that anomerizes and breaks down to give NAD+ and H2O2. The final reaction reaction mixture contains less than 0.1% of the generated H2O2, which is nonenzymically reduced by NADH. The latter reaction is inhibited by catalase, leading to a decrease in the overall rate of acid absorption, and stimulated by peroxidase, leading to an increase in the overall rate of acid absorption. Although oxygen can attack NADH at either N-1 or C-5 of the dihydropyridine ring, the attack appears to occur primarily at N-1. This assignment is based on the inability of the C-5 peroxide to anomerize, whereas the N-1 peroxide, being a quaternary pyridinium compound, can anomerize via reversible dissociation of H2O2. The peroxidase-catalyzed oxidation of NADH by H2O2 does not lead to anomerization, indicating that anomerization occurs prior to the release of H2O2. Chromatography of reaction mixtures on Dowex 1 formate shows the presence of two major and several minor neutral and cationic degradation products. One of the major products is nicotinamide, which possibly arises from breakdown of nicotinamide-1-peroxide. The other products have not been identified, but may be derived from other isomeric nicotinamide peroxides.  相似文献   

15.
The interaction of heme nonapeptide (a proteolytic product of cytochrome c) with purified NADH:cytochrome b5 (EC 1.6.2.2) and NADPH:cytochrome P-450 (EC 1.6.2.4) reductases was investigated. In the presence of heme nonapeptide, NADH or NADPH were enzymatically oxidized to NAD+ and NADP+, respectively. NAD(P)H consumption was coupled to oxygen uptake in both enzyme reactions. In the presence of carbon monoxide the spectrum of a carboxyheme complex was observed during NAD(P)H oxidation, indicating the existence of a transient ferroheme peptide. NAD(P)H oxidation could be partially inhibited by cyanide, superoxide dismutase and catalase. Superoxide and peroxide ions (generated by enzymic xanthine oxidation) only oxidized NAD(P)H in the presence of heme nonapeptide. Oxidation of NAD(P)H was more rapid with O2- than O2-2. We suggest that a ferroheme-O2 and various heme-oxy radical complexes (mainly ferroheme-O-2 complex) play a crucial role in NAD(P)H oxidation.  相似文献   

16.
Previously, we showed the presence in radish (Raphanus sativus L.) plasmalemma vesicles of an NAD(P)H oxidase, active at pH 4.5-5.0, which elicits the formation of anion superoxide (Vianello and Macrí (1989) Biochim. Biophys. Acta 980, 202-208). In this work, we studied the role of hydrogen peroxide and iron ions upon this oxidase activity. NADH oxidation was stimulated by ferrous ions and, to a lesser extent, by ferric ions. Salicylate and benzoate, two known hydroxyl radical scavengers, inhibited both basal and iron-stimulated NADH oxidase activity. The iron chelators EDTA (ethylenediaminetetraacetic acid) and DFA (deferoxamine melysate) at high concentrations (2 mM) inhibited the NADH oxidation, whereas they were ineffective at lower concentrations (80 microM); the subsequent addition of ferrous ions caused a rapid and limited increase of oxygen consumption which later ceased. Hydrogen peroxide was not detected during NADH oxidation but, in the presence of salicylate, its formation was found in significant amounts. NADH oxidase activity was also associated to a Fe2+ oxidation which was only partially inhibited by salicylate. Ferrous ion oxidation was partially inhibited by catalase and prevented by superoxide dismutase, while ferric ion reduction was abolished by catalase and unaffected by superoxide dismutase. These results show that during NADH oxidation iron ions undergo oxidoreduction and that hydrogen peroxide is produced and rapidly consumed. As previously suggested, this oxidation appears linked to the univalent oxidoreduction of iron ions by a reduced flavoprotein of radish plasmalemma which is then converted to a radical form. The latter, reacting with oxygen generates the superoxide anion which dismutases to H2O2. Hydrogen peroxide, through a Fenton's reaction, may react with Fe2+ to produce hydroxyl radicals, or with Fe3+ to generate the superoxide anion.  相似文献   

17.
The activity of lysyl oxidase was found in egg shell membrane (ESM) of hens. The activity was determined by measuring the enzymatic conversion of n-butylamine and Nalpha-acetyl-L-lysine to n-butyraldehyde and Nalpha-acetyl-L-allysine, respectively. ESM lysyl oxidase was significantly inhibited by beta-aminopropionitrile, chelating agents, and deoxygenation, consistent with the known properties of lysyl oxidase. Nevertheless, ESM lysyl oxidase was insoluble in urea solution, suggesting that it complexes with ESM. These findings support previous reports indicating the presence of lysine-derived cross-links in ESM and the necessity of lysyl oxidase located in the isthmus of the hen oviduct for the biosynthesis of ESM. Lysyl oxidase secreted around the egg white from the isthmus may initiate the cross-linking reaction of ESM protein, and remain as the constituent of ESM. Moreover, the H(2)O(2) released by lysyl oxidase in ESM was completely decomposed by coexisting catalase activity. ESM lysyl oxidase activity was greatly elevated in the presence of H(2)O(2), probably due to the O(2) produced by catalase. These findings indicate that lysyl oxidase is coupled with catalase in ESM. This coupling enzyme system was considered to be involved in the biosynthesis of ESM and to protect the embryo against H(2)O(2).  相似文献   

18.
Han Q  Li G  Li J 《Biochimica et biophysica acta》2000,1523(2-3):246-253
A specific chorion peroxidase is present in Aedes aegypti and this enzyme is responsible for catalyzing chorion protein cross-linking through dityrosine formation during chorion hardening. Peroxidase-mediated dityrosine cross-linking requires H(2)O(2), and this study discusses the possible involvement of the chorion peroxidase in H(2)O(2) formation by mediating NADH/O(2) oxidoreduction during chorion hardening in A. aegypti eggs. Our data show that mosquito chorion peroxidase is able to catalyze pH-dependent NADH oxidation, which is enhanced in the presence of Mn(2+). Molecular oxygen is the electron acceptor during peroxidase-catalyzed NADH oxidation, and reduction of O(2) leads to the production of H(2)O(2), demonstrated by the formation of dityrosine in a NADH/peroxidase reaction mixture following addition of tyrosine. An oxidoreductase capable of catalyzing malate/NAD(+) oxidoreduction is also present in the egg chorion of A. aegypti. The cooperative roles of chorion malate/NAD(+)oxidoreductase and chorion peroxidase on generating H(2)O(2) with NAD(+) and malate as initial substrates were demonstrated by the production of dityrosine after addition of tyrosine to a reaction mixture containing NAD(+) and malate in the presence of both malate dehydrogenase fractions and purified chorion peroxidase. Data suggest that chorion peroxidase-mediated NADH/O(2) oxidoreduction may contribute to the formation of the H(2)O(2) required for chorion protein cross-linking mediated by the same peroxidase, and that the chorion associated malate dehydrogenase may be responsible for the supply of NADH for the H(2)O(2) production.  相似文献   

19.
Oxidative stress and the role of novel thiol compounds at fertilization   总被引:1,自引:0,他引:1  
A new class of thiols, the 1-methyl-4-mercaptohistidines, has been found in high concentrations in invertebrate eggs. This family, called the ovothiols, has unusual redox properties, including the ability to confer a CN- -resistant NAD(P)H oxidase activity on ovoperoxidase, the enzyme that catalyzes the physiological crosslinking of the fertilization envelope with dityrosine residues. Ovothiol has a redox potential of 44 mV positive to glutathione and thus is maintained in the reduced state in eggs by reduced glutathione, without the need for an ovothiol reductase. We propose that high concentrations of reduced ovothiol are present in eggs to protect them from the oxidative stress caused by the respiratory burst of fertilization.  相似文献   

20.
5-Ethylphenazine-lactate-dehydrogenase-NAD+ conjugate (EP(+)-LDH-NAD+) was prepared by linking poly(ethylene glycol)-bound 5-ethylphenazine and poly(ethylene glycol)-bound NAD+ to lactate dehydrogenase. The average number of the ethylphenazine moieties bound per molecule of enzyme subunit was 0.46, and that of the NAD+ moieties was 0.32. This conjugate is a semisynthetic enzyme having lactate oxidase activity using oxygen or 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) as an electron acceptor; to make such conjugates seems to be a general method for artificially converting a dehydrogenase into an oxidase. When the concentration of oxygen or MTT is varied, the oxidase activity fits the Michaelis-Menten equation with the following kinetic constants: for the reaction system with oxygen, the turnover number per subunit is 2.3 min-1 and Km for oxygen is 1.91 mM; and for the system with MTT, the turnover number is 0.25 min-1 and Km for MTT is 0.076 mM. At the initial steady state of the oxidase reaction, only 2.1% of the NAD+ moieties of the conjugate are in the free state (i.e. not bound in the coenzyme-binding site of the lactate dehydrogenase moiety) and the rest are hidden in the coenzyme site; almost all the NAD+ moieties are in the reduced state. The apparent intramolecular rate constant for the reaction between a free NADH moiety and an oxidized ethylphenazine moiety is 2.3 s-1 and 2.1 s-1 for the systems with oxygen and with MTT, respectively. The apparent effective concentration of the free NADH moiety for the ethylphenazine moiety is 5.5 microM and is much smaller than that (0.34 mM) of the ethylphenazine moiety for the free NADH moiety; this difference is due to the effect of hiding the NADH moiety in the binding site, as the hidden NADH moiety cannot react with the ethylphenazine moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号