首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using plateau-phase cultures of AG1522 normal human fibroblasts, we examined relationships between the breakage and rejoining of chromosomes and the induction and repair of sublethal damage (SLD) following fractionated doses of X rays. The rate constant for the rejoining of breaks in prematurely condensed interphase chromosomes, measured previously, accurately predicts both the rate of change in survival due to potentially lethal damage (PLD) repair and the rate of change in survival for dose fractionation due to SLD repair. Further, changes in the frequency of chromosome-type deletions and asymmetrical exchange aberrations measured in the first postirradiation mitosis corresponded closely with changes in cell killing when doses were fractionated, and a dose-fractionation- or dose-rate-independent alpha component of damage was similar for aberration and cell killing end points. These results substantiate the hypothesis that sublethal damage repair results from the rejoining of breaks in interphase chromatin produced by a first dose so they no longer are capable of interacting with those produced by a second dose. The fact that the repair of potentially lethal damage is also readily explained on the basis of chromosome break rejoining (M. N. Cornforth and J. S. Bedford, Radiat. Res. 111, 385-405 (1987)) strongly suggests that PLD and SLD repair are different manifestations of the same basic process operating on the same basic lesions.  相似文献   

2.
Cell survival and recovery after gamma irradiation were investigated in a Chinese hamster ovary cell line (AA8) and in two radiosensitive clones (EM9 and NM2) derived from it. When analyzed by the multitarget and linear-quadratic equations, the dose-response curves for survival of both EM9 and NM2 cells, compared with AA8 cells, were characterized by a decreased magnitude of the shoulder or single-hit region (as reflected by Dq or alpha, respectively) but no difference in the terminal slope or double-hit region (as reflected by DO or beta, respectively). Recovery from sublethal damage (SLD) and potentially lethal damage (PLD) was measured in the three cell lines to examine the relationship between the shoulder width of the survival curve and the magnitude of cellular recovery. NM2 cells exhibited a reduced shoulder on their survival curve and a reduced capacity for SLD recovery, compared with AA8 cells, after equitoxic doses of radiation. EM9 cells, which also had a reduced shoulder on their survival curve, displayed the same rate and extent of recovery as AA8 cells for both SLD and PLD. PLD recovery, as assayed in fed plateau-phase NM2 cells by delayed plating, occurred with slower initial kinetics but to the same final extent as that in AA8 cells, resulting in modification of both the shoulder and the slope of the survival curve. However, PLD recovery, as assayed in log-phase NM2 cells by postirradiation treatment with hypertonic salt, was normal and affected predominantly the slope of the survival curve. These data demonstrate that although both SLD and PLD recovery play a role in determining cell survival, cell-survival curve parameters may not always be useful in predicting cellular recovery capacity.  相似文献   

3.
Plateau-phase Chinese V79 hamster cells were sequentially treated after exposure to gamma rays in medium made hypertonic by the addition of sodium chloride (370 mM) and with various concentrations of 9-beta-D-arabinofuranosyladenine (araA) to study their combined effect on fixation of potentially lethal damage (PLD). A 10-min treatment in hypertonic medium fixed an extensive amount of PLD and caused a decrease in D0 from 1.8 to 1.2 Gy without significantly affecting Dq. Subsequent treatment with araA caused further fixation of PLD but resulted in a specific, concentration-dependent reduction in Dq from 4.9 to 1.6 Gy after a 4-h exposure to 150 microM araA. A 30-min treatment in hypertonic medium reduced not only Do (from 1.8 to 1.0 Gy) but also Dq (from 4.9 to 2.7 Gy). Subsequent treatment with araA in this case affected only the residual shoulder, reducing it to 1.6 Gy after a 4-h treatment with 100 microM araA, a value similar to that obtained after treatment with araA of cells exposed to salt for only 10 min. When the repair of PLD fixed by a 10-min treatment with salt was measured by delaying its postirradiation application in the presence of various amounts of araA, a small decrease in the repair rate was observed but no significant effect on the relative increase in survival. Qualitatively similar results were obtained for repair of PLD sensitive to araA after a 10-min treatment in hypertonic medium. These results suggest the radiation induction of forms of PLD with different sensitivity to fixation by postirradiation treatments. araA is proposed to fix a form of PLD termed alpha-PLD, the repair of which takes place within 4-6 h and which causes the formation of the shoulder in the survival curve of cells plated immediately after irradiation. Short treatments in hypertonic medium (less than 10 min) are proposed to fix a form of PLD termed beta-PLD, the repair of which takes place within 1 h and leads to restoration of the slope to values equal to those obtained in the survival curve of cells plated immediately after irradiation. However, longer treatments in hypertonic medium also affect Dq and thus also alpha-PLD. Repair of beta-PLD was not significantly affected by araA and repair of alpha-PLD was not significantly affected by short hypertonic treatment, thus indicating the independence of the two forms of PLD.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Multifraction survival curves for slowly cycling, density-inhibited C3H 10T1/2 cells were shown previously to bend toward lower survival levels with increasing total dose, even for doses per fraction as small as about 2.0 Gy. In an attempt to explain this, we tested the capacity of cells to repair potentially lethal damage (PLD) as fractionation progressed. Plateau-phase cultures were exposed to repeated doses of 4.0 Gy of 137Cs gamma rays delivered at 12-hr intervals. After zero, three, five, and seven fractions, some cultures were put aside, incubated for 12 hr at 37 degrees C, irradiated with a single dose of 9.0 Gy, and subsequently returned to a 37 degrees C incubator. At 0, 2, 4, 6, and 12 hr after the 9.0 Gy dose, cultures were trypsinized and plated for a survival assay. Following three fractions of 4.0 Gy, cells were able to repair PLD as well as those receiving a single dose of 9.0 Gy without prior fractionation. Following five fractions, cells were less able to repair PLD, and after seven fractions, only a very small amount of PLD repair was detectable using this method of measurement.  相似文献   

5.
Quiescence in 9L cells and correlation with radiosensitivity and PLD repair   总被引:4,自引:0,他引:4  
The onset of quiescence, changes in X-ray sensitivity, and changes in capacity for potentially lethal damage (PLD) repair of unfed plateau-phase 9L44 cell cultures have been systematically investigated. The quiescent plateau phase in 9L cells was the result of nutrient deprivation and was not a cell contact effect. Eighty-five to 90% of the plateau-phase cells had a G1 DNA content and a growth fraction less than or equal to 0.15. The cell kinetic shifts in the population were temporally correlated with a developing radioresistance, which was characterized by a larger shoulder in the survival curve of the quiescent cells (Dq = 5.71 Gy) versus exponentially growing cells (Dq = 4.48 Gy). When the quiescent plateau-phase cells were refed, an increase in radiosensitivity resulted which approached that of exponentially growing 9L cells. Delayed plating experiments after irradiation of exponentially growing cells, quiescent plateau-phase cells, and synchronized early to mid-G1-phase cells indicated that while significant PLD repair was evident in all three populations, the quiescent 9L cells had a higher PLD repair capacity. Although data for immediate plating indicated that 9L cells may enter quiescence in the relatively radioresistant mid-G1 phase, the enhanced PLD repair capacity of quiescent cells cannot be explained by redistribution into G1 phase. When the unfed quiescent plateau-phase 9L cells were stimulated to reenter the cell cycle by replating into fresh medium, the first G1 was extended by 6 h compared with the G1 of exponentially growing or refed plateau-phase 9L cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Cells that have been grown as multicell tumor spheroids exhibit radioresistance compared to the same cells grown in monolayers. Comparison of potentially lethal damage (PLD) repair and its kinetics was made between 9L cells grown as spheroids and confluent monolayers. Survival curves of cells plated immediately after irradiation showed the typical radioresistance associated with spheroid culture compared to plateau-phase monolayers. The dose-modification factor for spheroid cell survival is 1.44. Postirradiation incubations in normal phosphate-buffered saline (PBS), conditioned media, or 0.5 M NaCl in PBS reduced the differences in radiosensitivity between the two culture conditions. Postirradiation treatment in PBS or conditioned medium promoted repair of potentially lethal damage, and 0.5 M NaCl prevented the removal of PLD and allowed the fixation of damage resulting in lower survival. Survival of spheroid and monolayer cells after hypertonic NaCl treatment was identical. NaCl treatment reduced Do more than it did the shoulder (Dq) of the survival curve. PLD repair kinetics measured after postirradiation incubation in PBS followed by hypertonic NaCl treatment was the same for spheroids and for plateau-phase monolayers. The kinetics of PLD repair indicates a biphasic phenomenon. There is an initial fast component with a repair half-time of 7.9 min and a slow component with a repair half-time of 56.6 min. Most of the damage (59%) is repaired slowly. Since the repair capacity and kinetics are the same for spheroids and monolayers, the radioresistance of spheroids cannot be explained on this basis. Evidence indicates that the time to return from a Go (noncycling G1 cells) state to a proliferative state (recruitment) for cells from confluent monolayers and from spheroids after dissociation by protease treatment may be the most important determinant of the degree of PLD repair that occurs. Growth curves and flow cytometry cell cycle analysis indicate that spheroid cells have a lag period for reentry into a proliferative state. Since plating efficiency remains high and unchanging during this period, one cannot account for the delay on the basis of the existence of a large fraction of Go cells which are not potentially clonogenic. The cell cycle progression begins in 6-8 h for monolayer cells and in 14-15 h for spheroids. It is hypothesized that the slower reentry of spheroid cells into a cycling phase allows more time for repair than for the rapidly proliferating monolayer cells.  相似文献   

7.
We studied effects of tetrac (tetraiodothyroacetic acid) on survival of GL261, a murine brain tumor cell line, following single doses of 250 kVp x-rays and on repair of damage (sublethal and potentially lethal damage repair; SLDR, PLDR) in both exponential and plateau phase cells. Cells were exposed to 2 μM tetrac (1 h at 37oC) prior to x-irradiation. At varying times after irradiation, cells were re-plated in medium without tetrac. Two weeks later, colonies were counted and results analyzed using either the linear-quadratic (LQ) or single-hit, multitarget (SHMT) formalisms. Tetrac sensitized both exponential and plateau phase cells to x-irradiation, as shown by a decrease in the quasi-threshold dose (Dq), leading to an average tetrac enhancement factor (ratio of SF2 values) of 2.5. Tetrac reduced SLDR in exponential cells by a factor of 1.8. In plateau phase cells there was little expression of SLDR, but tetrac produced additional cell killing at 1-4 h after the first dose. For PLDR expression in exponential cells, tetrac inhibited PLDR by a factor of 1.9, and in plateau phase cells, tetrac decreased PLDR expression by a factor of 3.4. These data show that the decreased Dq value seen after single doses of x-rays with tetrac treatment is also accompanied by a significant decrease in recovery from sublethal and potentially lethal damage.  相似文献   

8.
Repair of potentially lethal damage (PLD) was investigated in a gamma-ray-sensitive Chinese hamster cell mutant, XR-1, and its parent by comparing survival of plateau-phase cells plated immediately after irradiation with cells plated after a delay. Previous work indicated that XR-1 cells are deficient in repair of double-strand DNA breaks and are gamma-ray sensitive in G1 but have near normal sensitivity and repair capacity in late S phase. At irradiation doses from 0 to 1.0 Gy (100 to 10% survival), the delayed- and immediate-plating survival curves of XR-1 cells were identical; however, at doses greater than 1.0 Gy a significant increase in survival was observed when plating was delayed (PLD repair), approaching a 20-fold increase at 8 Gy. Elimination of S-phase cells by [3H]thymidine suicide dramatically increased gamma-ray sensitivity of plateau-phase XR-1 mutant cells and reduced by 600-fold the number of cells capable of PLD repair after a 6-Gy dose. In contrast, elimination of S-phase cells in plateau-phase parental cells did not alter PLD repair. These results suggest that the majority of PLD repair observed in plateau-phase XR-1 cells occurs in S-phase cells while G1 cells perform little PLD repair. In contrast, G1 cells account for the majority of PLD repair in plateau-phase parental cells. Thus, in the XR-1 mutant, a cell's ability to repair PLD seems to depend upon the stage of the cell cycle at which the irradiation is delivered. A possible explanation for these findings is discussed.  相似文献   

9.
The capacity of a human germ-cell tumour line to repair radiation damage has been investigated by means of a clonogenic assay. Dose-rate dependence studies, split-dose experiments and experiments designed to measure repair of potentially lethal damage have been performed. The cells showed some ability to repair radiation-induced damage in all three types of experiment. An attempt has been made to understand the possible cellular mechanisms of these repair processes by the use of 3-aminobenzamide (3-AB), an agent thought to act by inhibition of ADP-ribosylation. 3-AB added 2 h prior to and removed 18 h after irradiation at a non-toxic dose to unirradiated cells caused a small but consistent increase in cell kill with acute (150 cGy min-1) irradiation, largely involving a reduction in the shoulder region of the survival curve, but had a greater effect in increasing cell kill at a dose rate of 7.6 cGy min-1 and an even greater effect at a dose rate of 1.6 cGy min-1. When 3-Ab was present 2 h prior to the first dose and between two equal doses in a split-dose experiment, inhibition of split-dose recovery was observed. In addition, some inhibition of potentially lethal damage recovery was observed with 3-AB. A possible role for poly(ADP-ribosylation) is thus implicated in the repair of radiation-induced damage of this human tumour cell line during continuous low dose rate or fractionated radiation schedules, although other effects of 3-AB on respiratory metabolism and/or purine synthesis cannot be eliminated as the cause of the observed inhibitory effects.  相似文献   

10.
The effect of cis-diamminedichloroplatinum (II) (c-DDP) on the shape of the radiation dose-response curve for mouse duodenal crypt cells was investigated. A priming X-ray dose was followed 18 h later by graded test doses (single doses or five equal fractions at 3-h intervals) with or without c-DDP. Curves were fitted by a linear quadratic (LQ) relationship. The drug modified the dose-response curve by enhancing both the alpha and the beta terms. Repair kinetics were analyzed in split-dose experiments. c-DDP caused a minor, nonsignificant decrease in the rate of repair after irradiation. The survival ratio after split-dose irradiation, when the same X-ray doses were given, was actually slightly increased by the drug. This paradoxical effect can be explained by the fact that c-DDP mainly increased the beta term in the LQ relationship. There was no significant increase in crypt cell survival when split-drug doses were given alone at increasing intervals, suggesting no cellular repair after c-DDP treatment. The data are discussed in the light of the recently proposed "lethal and potentially lethal" (LPL) unified repair model of Curtis.  相似文献   

11.
Mouse lymphoma strains L5178Y-R (LY-R) and L5178Y-S (LY-S), which are differentially sensitive to the cytotoxic effects of ionizing radiation, were found to differ in their abilities to repair potentially lethal damage (PLD) and sublethal damage (SLD). The results showed that strain LY-R was more proficient than strain LY-S in the repair of SLD. The split dose recovery observed in strain LY-S could be accounted for by its recovery during postirradiation incubation. In contrast, SLD repair occurred in the absence of PLD repair in strain LY-R. The possibility that the repair of PLD might be completed prior to the postirradiation incubation in strain LY-R was suggested by the decreased survival observed when the cells were irradiated in a hypotonic solution. The repair of PLD and SLD in strain LY-S was temperature sensitive, occurring during postirradiation incubations between 15 and 34 degrees C, but not at 37 or 40 degrees C. This temperature sensitivity is very similar to the temperature sensitivity of the repair of pH 9.6-labile lesions in DNA in strain LY-S, as reported previously. Thus postirradiation cellular recovery processes in strain LY-S may involve the repair of pH 9.6-labile lesions in DNA. Temperature-dependent changes in the postirradiation distribution of cells throughout the cell cycle were observed which could contribute to the temperature sensitivity of the postirradiation recovery of strain LY-S.  相似文献   

12.
Summary The effects on cell survival of maintaining bone marrow cells (CFU-S) in situ following irradiation and before assay by transplantation was investigated. When the CFU-S cells are maintained in situ following irradiation survival drops and plateaus at about 9 h post-irradiation. Evidence is presented that this decrease in survival may be due to potentially lethal damage repair (PLD) inhibition caused by post-irradiation in situ holding. This effect on PLD repair is different than that usually found in cells in vitro and in vivo tumors in that it mainly alters the shoulder rather than the slope of the survival curve of CFU-S cells. It is different than PLDR found in vivo for normal mammary and thyroid gland epithelial cells because in situ holding decreases rather than increases the survival of CFU-S cells. Evidence is also presented that the radiation survival curve for in situ bone marrow cells (CFU-S) may not have a shoulder.Supported in part by NIH, NCI grants P01 CA 19298 and P30 CA 14520Supported in part by an American Cancer Society Clinical Fellowship  相似文献   

13.
Repair of potentially lethal damage (PLD) was studied in the RIF-1 tumor system in several different growth states in vivo and in vitro. Exponentially growing, fed plateau, and unfed plateau cells in cell culture as well as small and large subcutaneous or intramuscular tumors were investigated. Large single doses of radiation followed by variable repair times as well as graded doses of radiation to generate survival curves immediately after irradiation or after full repair were investigated. All repair-promoting conditions studied in vitro (delayed subculture, exposure of cells to depleted growth medium after irradiation) increased surviving fraction after a single dose. The D0 of the cell survival curve was also increased by these procedures. No PLD repair was observed for any tumors irradiated in vivo and maintained in the animal for varying times prior to assay in vitro. The nearly 100% cell yield obtained when this tumor is prepared as a single-cell suspension for colony formation, the representative cell sample obtained, and the constant cell yield per gram as a function of time postirradiation suggest that this discrepancy is not an artifact of the assay system. The most logical explanation of these data and information on radiocurability of this neoplasm is that PLD repair, which is so frequently demonstrated in vitro, may not be a major factor in the radioresponse of this tumor when left in situ.  相似文献   

14.
Tonicity shock or caffeine postirradiation treatment makes evident fast-type potentially lethal damage (PLD). Caffeine expresses fast-type PLD more efficiently than tonicity shock in X-irradiated B-16 mouse melanoma cells, compared with V79 Chinese hamster cells. The survival curves of thermal neutrons for either V79 or B-16 cells exhibit no shoulder. Neither V79 nor B-16 cells show the sublethal damage (SLD) repair of thermal neutrons. Caffeine-sensitive fast-type PLD repairs exist in X-irradiated B-16 cells, as well as V79 cells. The fast-type PLD repair of B-16 cells exposed to thermal neutrons alone is rather less than that of X-irradiated cells. Furthermore, an extremely low level of fast-type PLD repair of B-16 cells with 10B1-paraboronophenylalanine (BPA) preincubation (20 hours) followed by thermal neutron irradiation indicated that 10B(n,alpha)7Li reaction effectively eradicates actively growing melanoma cells. The plateau-phase B-16 cells are well able to repair the slow-type PLD of X-rays. However, cells can not repair the slow-type PLD induced by thermal neutron irradiation with or without 10B1-BPA preincubation. These results suggest that thermal neutron capture therapy can effectively kill radioresistant melanoma cells in both proliferating and quiescent phases.  相似文献   

15.
Expotentially growing and plateau-phase V79 cells were exposed to various doses of neutrons and plated either immediately or after treatment in hypertonic medium (250-500 mM NaCl) to express radiation-induced potentially lethal damage (PLD). Postirradiation treatment of exponentially growing cells in hypertonic medium (500 mM) resulted in a decrease in both Dq and D0, whereas postirradiation treatment of plateau-phase cells in hypertonic medium (in the range between 200 to 1,500 mM) resulted mainly in a reduction of Dq. This difference in response between exponentially growing and plateau-phase cells may reflect differences in the chromatin structure in cells at various stages of the cell cycle, affecting fixation of radiation-induced damage. Exposure of plateau-phase cells to gamma rays, on the other hand, resulted in a treatment time and salt concentration-dependent decrease in Dq along with a decrease in D0. Repair of neutron-induced, hypertonic treatment-sensitive PLD, measured by delaying treatment for various periods after irradiation, was found to proceed with a t1/2 of about 1 h. This is similar to the repair kinetics obtained by delaying treatment of plateau-phase cells with 150 microM beta-D-arabinofuranosyladenine (araA) after exposure to gamma rays or neutrons and contrasts the repair kinetics observed after exposure of cells to gamma rays. In this case, hypertonic treatment was found to affect a form of PLD repaired with a t1/2 of 10-15 min (beta-PLD) and araA, a different form of PLD, repaired with a t1/2 of about 1 h (alpha-PLD). Based on these results it is hypothesized that the sector of lesions affected by hypertonic treatment and araA coincides after exposure to neutrons (effect on alpha-PLD) but only partly overlaps after exposure to gamma rays (due to the effect on beta-PLD of hypertonic treatment). The results presented, together with previously published observations, suggest a differential induction and/or fixation by hypertonic medium of the alpha- and beta-PLD forms as the LET of the radiation increases. Furthermore, they indicate that direct comparison of the effects of a postirradiation treatment, as well as of the repair kinetics obtained by its delayed application after exposure to radiations of various LET, should be made with caution.  相似文献   

16.
We have studied the influence of postirradiation conditions resulting in repair or fixation of X-ray-induced potentially lethal damage (PLD) on the induction of 6-thioguanine-resistant mutants in plateau phase Ehrlich ascites tumour cells. For repair of PLD cells were incubated under plateau-phase conditions for 6–8 hours after irradiation. For fixation of PLD we used either a 4-h treatment with 120 μM β-araA or a 50-min treatment in hypertonic medium (2.5 times the normal tonicity). These treatment are known to effectively reduce or eliminate the shoulder of the X-ray survival care. The mutants were allowed to form colonies in agar medium containing 1.5 μg/ml 6-thioguanine, after expression times of 6–12 days.We observed a decrease in the number of mutants induced (per 105 cells) when the cells were allowed to repair PLD, as compared with that of cells processed immediately after irradiation, and an increase in their number after treatment either with β-araA or in hypertonic medium. The curves obtained for the induction of mutants as a function of the radiation dose were usually upward bending.After irradiation at low dose rate we obtained an exponential survival curve and a linear induction of mutants as a function of the dose.Based on these results we suggest that potentially lethal lesions resulting in the formation of the shoulder of the survival curve are not identical with those lesions responsible for the induction of mutants.  相似文献   

17.
Results are reported of studies to measure the extent of recovery of potentially lethal damage (PLD) in rat rhabdomyosarcoma tumor cells after irradiation both in vivo and in vitro with either high-LET or low-LET radiation. Stationary-phase cultures were found to exhibit repair of PLD following irradiation in vitro either with low-LET X rays or with high-LET neon ions in the extended-peak ionization region. Following a 9-Gy dose of 225-kVp X rays or a 3.5-Gy dose of peak neon ions, both of which reduced the initial cell survival to 6-8%, the maximum PLD recovery factors were 3.4 and 1.6, respectively. In contrast, the standard tumor excision assay procedure failed to reveal any recovery from PLD in tumors irradiated in situ with either X rays or peak neon ions. PLD repair by the in vivo tumor cells could be observed, however, when the excision assay procedure was altered by the addition of a known PLD repair inhibitor beta-arabinofuranosyladenine (beta-ara-A). When a noncytotoxic 50 microM concentration of beta-ara-A was added to the excised tumor cells immediately following a 14.5-Gy in situ dose of X rays, cell survival in the inhibitor-treated cells was lower than in the untreated cells (0.018 compared to 0.056), resulting in a PLD repair inhibition factor of 3.1. Delaying the addition of beta-ara-A for 1, 2, or 3 h following tumor excision reduced the PLD repair inhibition factor to 1.6, 1.5, and 0.9, respectively. Following tumor irradiation in situ with neon ions in the extended-peak ionization region (median LET = 145 keV/micron), less PLD repair was observed than after X irradiation. For 5.8 Gy of peak neon ions, the PLD repair inhibition factors were 2.1, 1.5, 1.3, and 1.1 at 0, 1, 2, and 3 h, respectively. We interpret the absence of measurable PLD repair using the standard tumor excision assay procedure as resulting from undetectable repair occurring during the long interval (about 2 h) required for the cell dissociation and plating procedures. We conclude that at least for our tumor system, PLD repair does occur after irradiation of tumors in situ, even though it is not detectable using the standard tumor excision assay procedure. Thus a failure to measure such repair by this assay in a given tumor system does not necessarily mean the cells are incapable of PLD repair.  相似文献   

18.
Using a human fibroblast strain deficient in glutathione synthetase and a related proficient control strain, the role of glutathione (GSH) in repair of potentially lethal damage (PLD) has been investigated in determining survival by plating cells immediately or 24 h after irradiation. After oxic or hypoxic irradiation, both cell strains repair radiation-induced damage. However, under hypoxic conditions, the proficient cells repair PLD as well as under oxic conditions while the deficient cells repair less PLD after irradiation under hypoxic than under oxic conditions. Therefore, the oxygen enhancement ratio (o.e.r.) for proficient cells is similar whether the cells are plated immediately or 24 h later (2.0 and 2.13, respectively). In contrast, the o.e.r. for deficient cells is lower when the cells are plated 24 h after irradiation than when they are plated immediately thereafter (1.16 as compared to 1.55). The results indicate that GSH is involved in PLD repair and, in particular, in the repair of damage induced by radiation delivered under hypoxic conditions.  相似文献   

19.
To determine whether different fractionation schemes could simulate low-dose-rate irradiation, ovarian cells of the carcinoma cell lines A2780s (radiosensitive) and A2780cp (radioresistant) and AG1522 normal human fibroblasts were irradiated in vitro using different fraction sizes and intervals between fractions with an overall average dose rate of 0.53 Gy/h. For the resistant cell line, the three fractionation schemes, 0.53 Gy given every hour, 1.1 Gy every 2 h, and 1.6 Gy every 3 h, were equivalent to low dose rate (0.53 Gy/h). Two larger fraction sizes, 2.1 Gy every 4 h and 3.2 Gy every 6 h, resulted in lower survival than that after low-dose-rate irradiation for the resistant cell line, suggesting incomplete repair of radiation damage due to the larger fraction sizes. The survival for the sensitive cell line was lower at small doses, but then it increased until it was equivalent to that after low-dose-rate irradiation for some fractionation schemes. The sensitive cell line showed equivalence only with the 1.6-Gy fraction every 3 h, although 0.53 Gy every 1 h and 1.1 Gy every 2 h showed equivalence at lower doses. This cell line also showed an adaptive response. The normal cell line showed a sensitization to the pulsed-dose-rate schemes compared to low-dose-rate irradiation. These data indicate that the response to pulsed-dose-rate irradiation is dependent on the cell line and that compared to the response to low-dose-rate irradiation, it shows some equivalence with the resistant carcinoma cell line, an adaptive response with the parental carcinoma cell line, and sensitization with the normal cells. Therefore, further evaluation is required before implementing pulsed-dose-rate irradiation in the clinic.  相似文献   

20.
The capacity of HL-60 cells, human acute promyelocytic leukemic cells established in culture, to repair sublethal radiation damage was estimated from the response of the cells to fractionated irradiation or to a single irradiation at different dose rates. The HL-60 cells grown as a suspension culture in RPMI 1640 medium supplemented with 10% calf serum and antibiotics showed a cloning efficiency of about 0.46 in an agar culture bed. After exposure of cells to a single dose of X rays at a dose rate of 78 rad/min, the survival curve was characterized by n = 2.5, Dq = 80 rad, and D0 = 83.2 rad. Split-dose studies demonstrated that the cells were able to repair a substantial portion of sublethal radiation damage in 2 hr. The response of the cells to irradiation at different dose rates decreased with a decrease in the dose rates, which could be attributed to repair of sublethal radiation damage. The radiation response of leukemic cells is only one of the many factors which affect the clinical outcome of total-body irradiation (TBI) followed by bone marrow transplantation. Nevertheless, the possibility that some of the malignant hemopoietic cells, if not all, may possess a substantial capacity to repair sublethal radiation damage should not be underestimated in planning total-body irradiation followed by bone marrow transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号