首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An important feature of antimicrobial peptides is their ability to distinguish pro- from eukaryotic membranes. In vitro experiments on the antimicrobial peptide NK-2 indicate that the discrimination between zwitterionic phosphatidylethanolamine lipids exposed by prokaryotes and phosphatidylcholine lipids exposed by eukaryotes plays an important role. The underlying mechanism is not understood. Here we present molecular dynamics simulations in conjunction with a coarse grained model and thermodynamic integration showing that NK-2 binds more strongly to palmitoyloleoylphosphatidylethanolamine (POPE) than to palmitoyloleoylphosphatidylcholine (POPC) bilayers. Finite size effects on the relative free energy have been corrected for with a method that may also be useful in future studies of the affinities of macromolecules for lipid membranes. Our results support the previous hypothesis that the stronger binding to PE compared to PC arises from a better accessibility of the phosphates of the lipids to the cationic peptide in a sense that a similar number of peptide-lipid salt bridges requires to break more favorable electrostatic headgroup-headgroup interactions for PC relative to PE. The transfer of NK-2 from POPC to POPE is found to lead to a decrease in electrostatic peptide-lipid but an increase in lipid-lipid and ion-lipid interactions, correlating with a dehydration of the lipids and the ions but an increased hydration of the peptide. The increase in affinity of NK-2 for POPE compared to POPC hence arises from a complex interplay of competing interactions. This work opens the perspective to study how the affinity of antimicrobial peptides changes with amino acid sequence and lipid composition.  相似文献   

2.
R S Prosser  J H Davis  C Mayer  K Weisz  G Kothe 《Biochemistry》1992,31(39):9355-9363
A unique model membrane system composed of a synthetic amphiphilic peptide (Lys2-Gly-Leu16-Lys2-Ala-amide) and a specifically labeled phospholipid (1,2-[7,7-2H2]dipalmitoyl-sn-glycero-3-phosphocholine) has been studied by 2H NMR, using inversion recovery, quadrupolar echo, and modified Jeener-Broekaert sequences, from 213 to 333 K, at molar peptide concentrations of 0, 2, 4, and 6%. Analysis of the experiments, employing a density matrix treatment based on the stochastic Liouville equation, revealed information about the dynamic organization of the lipid in the model membrane system, whose phase behavior has been determined previously [Huschilt et al. (1985) Biochemistry 24, 1377-1386]. The dynamic organization is described in terms of segmental and molecular order parameters and in terms of correlation times corresponding to both internal and overall lipid motions. In the liquid crystalline phase, the molecular order parameter, SZZ, was observed to decrease slightly upon addition of peptide while the conformational order parameter corresponding to the seventh segment, SZ'Z', did not change for any concentration of peptide. In general, the gauche-trans isomerization rate in the middle of the chain was not observed to change upon peptide addition, whereas the whole body reorientational correlation times (tau R parallel and tau R perpendicular) increased by nearly an order of magnitude. The anisotropy ratio (tau R perpendicular/tau R parallel) decreased with peptide added. An additional motion which involves a jump about the axis of the sn-2 chain is also observed to be slowed down significantly in the presence of peptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Modulation of membrane surface curvature by peptide-lipid interactions   总被引:1,自引:0,他引:1  
Recent reports on the interaction of cardiotoxin and melittin with phospholipid model membranes are reviewed and analyzed. These types of peptide toxins are able to modulate lipid surface curvature and polymorphism in a highly lipid-specific way. It is demonstrated that the remarkable variety of effects of melittin on the organization of different membrane phospholipids can be understood in a relatively simple model, based on the shape-structure concept of lipid polymorphism and taking into account the position of the peptide molecule with respect to the lipids. Based on the strong preference of the peptides for negatively charged lipids and the structural consequences thereof, and on preliminary studies of signal peptide-lipid interaction, a role of inverted or concave lipid structures in the process of protein translocation across membranes is suggested.  相似文献   

4.
Many important processes in life take place in or around the cell membranes. Lipids have different properties regarding their membrane-forming capacities, their mobility, shape, size and surface charge, and all of these factors influence the way that proteins and peptides interact with the membrane. In order for us to correctly understand these interactions, we need to be able to study all aspects of the interplay between lipids and peptides and proteins. Solution-state NMR offers a somewhat unique possibility to investigate structure, dynamics and location of proteins and peptides in bilayers. This review focuses on solution NMR as a tool for investigating peptide-lipid interaction, and special attention is given to the various membrane mimetics that are used to model the membrane. Examples from the field of cell-penetrating peptides and their lipid interactions will be given. The importance of studying lipid and peptide dynamics, which reflect on the effect that peptides have on bilayers, is highlighted, and in this respect, also the need for realistic membrane models.  相似文献   

5.
Abstract

Many important processes in life take place in or around the cell membranes. Lipids have different properties regarding their membrane-forming capacities, their mobility, shape, size and surface charge, and all of these factors influence the way that proteins and peptides interact with the membrane. In order for us to correctly understand these interactions, we need to be able to study all aspects of the interplay between lipids and peptides and proteins. Solution-state NMR offers a somewhat unique possibility to investigate structure, dynamics and location of proteins and peptides in bilayers. This review focuses on solution NMR as a tool for investigating peptide-lipid interaction, and special attention is given to the various membrane mimetics that are used to model the membrane. Examples from the field of cell-penetrating peptides and their lipid interactions will be given. The importance of studying lipid and peptide dynamics, which reflect on the effect that peptides have on bilayers, is highlighted, and in this respect, also the need for realistic membrane models.  相似文献   

6.
Surface behaviour of Maculatin 1.1 and Citropin 1.1 antibiotic peptides have been studied using the Langmuir monolayer technique in order to understand the peptide-membrane interaction proposed as critical for cellular lysis. Both peptides have a spontaneous adsorption at the air-water interface, reaching surface potentials similar to those obtained by direct spreading. Collapse pressures (Pi(c), stability to lateral compression), molecular areas at maximal packing and surface potentials (DeltaV) obtained from compression isotherms of both pure peptide monolayers are characteristic of peptides adopting mainly alpha-helical structure at the interface. The stability of Maculatin monolayers depended on the subphase and increased when pH was raised. In an alkaline environment, Maculatin exhibits a molecular reorganization showing a reproducible discontinuity in the Pi-A compression isotherm. Both peptides in lipid films with the zwitterionic palmitoyl-oleoyl-phosphatidylcholine (POPC) showed an immiscible behaviour at all lipid-peptide proportions studied. By contrast, in films with the anionic palmitoyl-oleoyl-phosphatidylglycerol (POPG), the peptides showed miscible behaviour when the peptides represented less than 50% of total surface area. Additional penetration experiments also demonstrated that both peptides better interact with POPG compared with POPC monolayers. This lipid preference is discussed as a possible explanation of their antibiotic properties.  相似文献   

7.
The effect of peptides on bilayer----non-bilayer phase transitions can be used as a tool to investigate the molecular aspects of peptide-lipid interactions. In this contribution the action on membranes of the peptide antibiotic gramicidin A and the bee venom component melittin are compared. Although the known structures and locations of these peptides upon membrane binding are very different, their actions on membranes show striking parallels. A general model is proposed that explains the seemingly complex peptide-lipid interactions by making use of simple concepts.  相似文献   

8.
Surface behaviour of Maculatin 1.1 and Citropin 1.1 antibiotic peptides have been studied using the Langmuir monolayer technique in order to understand the peptide-membrane interaction proposed as critical for cellular lysis. Both peptides have a spontaneous adsorption at the air-water interface, reaching surface potentials similar to those obtained by direct spreading. Collapse pressures (Πc, stability to lateral compression), molecular areas at maximal packing and surface potentials (ΔV) obtained from compression isotherms of both pure peptide monolayers are characteristic of peptides adopting mainly α-helical structure at the interface. The stability of Maculatin monolayers depended on the subphase and increased when pH was raised. In an alkaline environment, Maculatin exhibits a molecular reorganization showing a reproducible discontinuity in the Π-A compression isotherm. Both peptides in lipid films with the zwitterionic palmitoyl-oleoyl-phosphatidylcholine (POPC) showed an immiscible behaviour at all lipid-peptide proportions studied. By contrast, in films with the anionic palmitoyl-oleoyl-phosphatidylglycerol (POPG), the peptides showed miscible behaviour when the peptides represented less than 50% of total surface area. Additional penetration experiments also demonstrated that both peptides better interact with POPG compared with POPC monolayers. This lipid preference is discussed as a possible explanation of their antibiotic properties.  相似文献   

9.
10.
Class A tick evasins are natural chemokine-binding proteins that block the signaling of multiple chemokines from the CC subfamily through their cognate receptors, thus suppressing leukocyte recruitment and inflammation. Development of tick evasins as chemokine-targeted anti-inflammatory therapeutics requires an understanding of the factors controlling their chemokine recognition and selectivity. To investigate the role of the evasin N-terminal region for chemokine recognition, we prepared chimeric evasins by interchanging the N-terminal regions of four class A evasins, including a newly identified evasin, EVA-RPU02. We show through chemokine binding analysis of the parental and chimeric evasins that the N-terminal region is critical for chemokine binding affinity and selectivity. Notably, we found some chimeras were unable to bind certain cognate chemokine ligands of both parental evasins. Moreover, unlike any natural evasins characterized to date, some chimeras exhibited specific binding to a single chemokine. These results indicate that the evasin N terminus interacts cooperatively with the “body” of the evasin to enable optimum chemokine recognition. Furthermore, the altered chemokine selectivity of the chimeras validates the approach of engineering the N termini of evasins to yield unique chemokine recognition profiles.  相似文献   

11.
8-Oxo-7,8,-dihydro-2′-deoxyguanosine triphosphate (8-oxo-dGTP) is a major product of oxidative damage in the nucleotide pool. It is capable of mispairing with adenosine (dA), resulting in futile, mutagenic cycles of base excision repair. Therefore, it is critical that DNA polymerases discriminate against 8-oxo-dGTP at the insertion step. Because of its roles in oxidative DNA damage repair and non-homologous end joining, DNA polymerase lambda (Pol λ) may frequently encounter 8-oxo-dGTP. Here, we have studied the mechanisms of 8-oxo-dGMP incorporation and discrimination by Pol λ. We have solved high resolution crystal structures showing how Pol λ accommodates 8-oxo-dGTP in its active site. The structures indicate that when mispaired with dA, the oxidized nucleotide assumes the mutagenic syn-conformation, and is stabilized by multiple interactions. Steady-state kinetics reveal that two residues lining the dNTP binding pocket, Ala510 and Asn513, play differential roles in dNTP selectivity. Specifically, Ala510 and Asn513 facilitate incorporation of 8-oxo-dGMP opposite dA and dC, respectively. These residues also modulate the balance between purine and pyrimidine incorporation. Our results shed light on the mechanisms controlling 8-oxo-dGMP incorporation in Pol λ and on the importance of interactions with the incoming dNTP to determine selectivity in family X DNA polymerases.  相似文献   

12.
The binding of bovine serum albumin (BSA) and β-lactoglobulin (BLG) to TTMA (a cationic gold nanoparticle coupled to 3,6,9,12-tetraoxatricosan-1-aminium, 23-mercapto-N,N,N-trimethyl) was studied by high-resolution turbidimetry (to observe a critical pH for binding), dynamic light scattering (to monitor particle growth), and isothermal titration calorimetry (to measure binding energetics), all as a function of pH and ionic strength. Distinctively higher affinities observed for BLG versus BSA, despite the lower pI of the latter, were explained in terms of their different charge anisotropies, namely, the negative charge patch of BLG. To confirm this effect, we studied two isoforms of BLG that differ in only two amino acids. Significantly stronger binding to BLGA could be attributed to the presence of the additional aspartates in the negative charge domain for the BLG dimer, best portrayed in DelPhi. This selectivity decreases at low ionic strength, at which both isoforms bind well below pI. Selectivity increases with ionic strength for BLG versus BSA, which binds above pI. This result points to the diminished role of long-range repulsions for binding above pI. Dynamic light scattering reveals a tendency for higher-order aggregation for TTMA-BSA at pH above the pI of BSA, due to its ability to bridge nanoparticles. In contrast, soluble BLG-TTMA complexes were stable over a range of pH because the charge anisotropy of this protein at makes it unable to bridge nanoparticles. Finally, isothermal titration calorimetry shows endoenthalpic binding for all proteins: the higher affinity of TTMA for BLGA versus BLGB comes from a difference in the dominant entropy term.  相似文献   

13.
Tachi T  Epand RF  Epand RM  Matsuzaki K 《Biochemistry》2002,41(34):10723-10731
Cationic antimicrobial peptides are promising candidates as novel antibiotics of clinical usefulness. Magainin 2, a representative antimicrobial peptide isolated from the skin of the African clawed frog Xenopus leavis, electrostatically recognizes anionic lipids that are abundant in bacterial membranes, forming a peptide-lipid supramolecular complex pore, whereas the peptide does not effectively bind to zwitterionic phospholipids constituting the outer leaflets of mammalian cell membranes because of the low hydrophobicity of the peptide [Matsuzaki, K. (1999) Biochim. Biophys. Acta 1462, 1-10]. In this study, two magainin analogues with enhanced hydrophobicity, MG-H1 (GIKKFLHIIWKFIKAFVGEIMNS) and MG-H2 (IIKKFLHSIWKFGKAFVGEIMNI), with identical amino acid compositions were designed and interactions with lipid bilayers and biological activities were examined in comparison with those of MG (GIGKWLHSAKKFGKAFVGEIMNS = F5W-magainin 2). The apparent hydrophobicities and hydrophobic moments of MG-H1 and MG-H2, conventionally calculated assuming that all residues are involved in helix formation, were almost the same. MG-H2 behaved like MG except for greatly enhanced activity against zwitterionic membranes and erythrocytes. In contrast, despite a very similar calculated hydrophobicity, the observed hydrophobicity of MG-H1 was larger than that of MG-H2 because of a tendency toward helix fraying near the termini. Therefore, the physicochemical parameters of only the helical portion should be considered in characterizing peptide-lipid interactions, although this point was overlooked in most studies. Moreover, MG-H1 induced aggregation and/or fusion of negatively charged membranes. Furthermore, the peptide hydrophobicity was found to affect pore formation rate, pore size, and pore stability. These observations demonstrate that the hydrophobicity of the peptide also controls the mode of action and is dependent on the position of the hydrophobic amino acids in the peptide sequence.  相似文献   

14.
Transporters of the major excitatory neurotransmitter glutamate play a crucial role in glutamatergic neurotransmission by removing their substrate from the synaptic cleft. The transport mechanism involves co-transport of glutamic acid with three Na(+) ions followed by countertransport of one K(+) ion. Structural work on the archeal homologue Glt(Ph) indicates a role of a conserved asparagine in substrate binding. According to a recent proposal, this residue may also participate in a novel Na(+) binding site. In this study, we characterize mutants of this residue from the neuronal transporter EAAC1, Asn-451. None of the mutants, except for N451S, were able to exhibit transport. However, the K(m) of this mutant for l-aspartate was increased ~30-fold. Remarkably, the increase for d-aspartate and l-glutamate was 250- and 400-fold, respectively. Moreover, the cation specificity of N451S was altered because sodium but not lithium could support transport. A similar change in cation specificity was observed with a mutant of a conserved threonine residue, T370S, also implicated to participate in the novel Na(+) site together with the bound substrate. In further contrast to the wild type transporter, only l-aspartate was able to activate the uncoupled anion conductance by N451S, but with an almost 1000-fold reduction in apparent affinity. Our results not only provide experimental support for the Na(+) site but also suggest a distinct orientation of the substrate in the binding pocket during the activation of the anion conductance.  相似文献   

15.
G A Woolley  C M Deber 《Biopolymers》1989,28(1):267-272
A membrane potential is shown to be established in phosphatidylcholine/cholesterol unilamellar vesicles using valinomycin in conjunction with a potassium ion gradient; this potential is monitored using the externally added fluorescent dye Safranine O. In the same system, transmembrane calcium fluxes are then detected using the (internally trapped) fluorescent dye Quin-2. The calcium-transport behavior of the channel-forming peptide alamethicin is shown to be potential dependent in this system, in contrast to calcium transport by the ionophore Br-A23187, which is unaffected by the potential. The observation of this potential-dependent behavior for alamethicin suggests that this vesicle system may be suitable for direct spectroscopic observation of the voltage-gating process.  相似文献   

16.
Varma S  Rempe SB 《Biophysical journal》2010,99(10):3394-3401
Selective binding of ions to biomolecules plays a vital role in numerous biological processes. To understand the specific role of induced effects in selective ion binding, we use quantum chemical and pairwise-additive force-field simulations to study Na+ and K+ binding to various small molecules representative of ion binding functional groups in biomolecules. These studies indicate that electronic polarization significantly contributes to both absolute and relative ion-binding affinities. Furthermore, this contribution depends on both the number and the specific chemistries of the coordinating molecules, thus highlighting the complexity of ion-ligand interactions. Specifically, multibody interactions reduce as well as enhance the dipole moments of the ion-coordinating molecules, thereby affecting observables like coordination number distributions of ions. The differential polarization induced in molecules coordinating these two equivalently charged, but different-sized, ions also depends upon the number of coordinating molecules, showing the importance of multibody effects in distinguishing these ions thermodynamically. Because even small differences in ionic radii (0.4 Å for Na+ and K+) produce differential polarization trends critical to distinguishing ions thermodynamically, it is likely that polarization plays an important role in thermodynamically distinguishing other ions and charged chemical and biological functional groups.  相似文献   

17.
The interactions of salmon cacitonin with a number of phospholipids are studied by electron microscopy, circular dichroism and the leakage of carboxyfluorescein. At room temperature, calcitonin reacts strongly with dimyristoylphosphatidylglycerol and egg phosphatidic acid, while only moderate or no interaction is observed with several other phospholipids. The interaction is judged by the dissolution of the phospholipid dispersion and by electron microscopic observation and is in general concomitant with an increase in the helical content of the peptide. The electrostatic charge and the transition temperature of each of the phospholipids are important factors in determining the extent of reaction with salmon calcitonin. An exception is the sulphatide from bovine brain. The resulting morphology of the complex formed between salmon calcitonin and phosphatidic acid is quite different from that formed with phosphatidylglycerol. In the case of phosphatidylglycerol and most other negatively charged phospholipids, disc-shaped complexes are observed under the electron microscope by negative staining. The calcitonin-DMPG complexes are about 7 nm thick and their diameter increases with an increasing lipid-to-peptide ratio. In contrast, phosphatidic acids form spherical complexes with salmon calcitonin causing large multilamellar structures to spontaneously break-up into smaller particles of about 10 to 20 nm in diameter independent of the lipid-to-peptide ratio. The contrasting effects of salmon calcitonin on the morphology of these two phospholipids is explicable by consideration of the size of the lipid headgroup. Phosphatidic acid can accommodate the peptide without rupture of the bilayer, while the larger headgroup of phosphatidylglycerol requires the bilayer to rupture. This model is supported by studies of calcitonin-induced leakage of carboxyfluorescein from sonicated vesicles of 75% egg phosphatidylcholine and 25% either egg phosphatidic acid, egg phosphatidylglycerol or dimyristoylphosphatidylglycerol. There was a much greater increase in carboxyfluorescein leakage from phosphatidylglycerol-containing vesicles induced by salmon calcitonin demonstrating the greater ability of the peptide to rupture bilayers containing this phospholipid.  相似文献   

18.
The interactions of salmon calcitonin with a number of phospholipids are studied by electron microscopy, circular dichroism and the leakage of carboxyfluorescein. At room temperature, calcitonin reacts strongly with dimyristoylphosphatidylglycerol and egg phosphatidic acid, while only moderate or no interaction is observed with several other phospholipids. The interaction is judged by the dissolution of the phospholipid dispersion and by electron microscopic observation and is in general concomitant with an increase in the helical content of the peptide. The electrostatic charge and the transition temperature of each of the phospholipids are important factors in determining the extent of reaction with salmon calcitonin. An exception is the sulphatide from bovine brain. The resulting morphology of the complex formed between salmon calcitonin and phosphatidic acid is quite different from that formed with phosphatidylglycerol. In the case of phosphatidylglycerol and most other negatively charged phospholipids, disc-shaped complexes are observed under the electron microscope by negative staining. The calcitonin- DMPG complexes are about 7 nm thick and their diameter increases with an increasing lipid-to-peptide ratio. In contrast, phosphatidic acids form spherical complexes with salmon calcitonin causing large multilamellar structures to spontaneously break-up into smaller particles of about 10 to 20 nm in diameter independent of the lipid-to-peptide ratio. The contrasting effects of salmon calcitonin on the morphology of these two phospholipids is explicable by consideration of the size of the lipid headgroup. Phosphatidic acid can accommodate the peptide without rupture of the bilayer, while the larger headgroup of phosphatidylglycerol requires the bilayer to rupture. This model is supported by studies of calcitonin-induced leakage of carboxyfluorescein from sonicated vesicles of 75% egg phosphatidylcholine and 25% either egg phosphatidic acid, egg phosphatidylglycerol or dimyristoylphosphatidylglycerol . There was a much greater increase in carboxyfluorescein leakage from phosphatidylglycerol-containing vesicles induced by salmon calcitonin demonstrating the greater ability of the peptide to rupture bilayers containing this phospholipid.  相似文献   

19.
20.
Peptide-membrane interactions have been gaining increased relevance, mainly in biomedical investigation, as the potential of the natural, nature-based and synthetic peptides as new drugs or drug candidates also expands. These peptides must face the cell membrane when they interfere with or participate in intracellular processes. Additionally, several peptide drugs and drug leads actions occur at the membrane level (e.g., antimicrobial peptides, cell-penetrating peptides and enveloped viruses membrane fusion inhibitors). Here we explore fluorescence spectroscopy methods that can be used to monitor such interactions. Two main approaches are considered, centered either on the peptide or on the membrane. On the first, we consider mainly the methodologies based on the intrinsic fluorescence of the aminoacid residues tryptophan and tyrosine. Regarding membrane-centric approaches, we review methods based on lipophilic probes sensitive to membrane potentials. The use of fluorescence constitutes a simple and sensitive method to measure these events. Unraveling the molecular mechanisms that govern these interactions can unlock the key to understand specific biological processes involving natural peptides or to optimize the action of a peptide drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号