首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accurate normalization is a primary component of a reliable gene expression analysis based on qRT-PCR technique. While the use of one or more reference genes as internal controls is commonly accepted as the most appropriate normalization strategy, many qPCR-based published studies still contain data poorly normalized and reference genes arbitrarily chosen irrespective of the particular tissue and the specific experimental design. To date, no validated reference genes have been identified for endometrial cancer tissues. In this study, 10 normalization genes (GAPDH, B2M, ACTB, POLR2A, UBC, PPIA, HPRT1, GUSB, TBP, H3F3A) belonging to different functional and abundance classes in various tissues and used in different studies, were analyzed to determine their applicability. In total, 100 endometrioid endometrial cancer samples, which were carefully balanced according to their tumor grade, and 29 normal endometrial tissues were examined using SYBR Green Real-Time RT-PCR. The expression stability of candidate reference genes was determined and compared by means of geNorm and NormFinder softwares. Both algorithms were in agreement in identifying GAPDH, H3F3A, PPIA, and HPRT1 as the most stably expressed genes, only differing in their ranking order. Analysis performed on the expression levels of all candidate genes confirm HPRT1 and PPIA as the most stably expressed in the study groups regardless of sample type, to be used alone or better in combination. As the stable expression of HPRT1 and PPIA between normal and tumor endometrial samples fulfill the basic requirement of a reference gene to be used for normalization purposes, HPRT1 expression showed significant differences between samples from low-grade and high-grade tumors. In conclusion, our results recommend the use of PPIA as a single reference gene to be considered for improved reliability of normalization in gene expression studies involving endometrial tumor samples at different tumor degrees.  相似文献   

2.
Quantitative real-time RT-PCR was used to investigate the effects of prototypical drug-metabolizing enzyme inducers rifampicin (Rif), dexamethasone (Dex), and omeprazole (Ome) on mRNA expression levels of the housekeeping genes beta-actin (ACTB), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta-glucuronidase (GUSB), hypoxanthine phosphoribosyltransferase 1 (HPRT1), peptidylprolylisomerase A (PPIA), TATA box binding protein (TBP), and transferrin receptor (TFRC) in primary cultures of cryopreserved human and rat hepatocytes. The mRNA levels of ACTB, GAPDH, GUSB, PPIA, TBP, and TFRC relative to HPRT1 in human hepatocytes were constant at all concentrations of inducers. However, the mRNA level of GAPDH relative to HPRT1 in rat hepatocytes was markedly increased by Rif. The mRNA levels of GAPDH, GUSB, PPIA, TBP, and TFRC relative to HPRT1 in rat hepatocytes were significantly increased by Dex. ACTB and HPRT1 are suitable internal controls for evaluating mRNA expression levels in primary cultures of human and rat hepatocytes after Rif, Dex, or Ome exposure.  相似文献   

3.
We used quantitative real-time RT-PCR to investigate the effects of dimethyl sulfoxide (DMSO) and dexamethasone (Dex) on the mRNA expression levels of the housekeeping genes β-actin (ACTB), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-glucuronidase (GUSB), hypoxanthine phosphoribosyltransferase 1 (HPRT1), phosphoglycerate kinase 1 (PGK1), peptidylprolyl isomerase A (PPIA), and transferrin receptor (TFRC) in cultures of C2C12 myotubes. The ratios of ACTB mRNA levels to the HPRT1 mRNA level in C2C12 cells that were differentiating from myoblast cells to myotubes decreased from 0 to 120 h of culture, whereas the ratios of TFRC mRNA levels to the HPRT1 mRNA level increased from 0 to 120 h of culture. The ratios of GAPDH, GUSB, PGK1, and PPIA mRNA levels to the HPRT1 mRNA level remained constant from 0 to 120 h of culture. All housekeeping gene mRNA levels were unaffected by exposure to DMSO concentrations of 0.1% or less. The GAPDH mRNA level was increased by Dex, while the ACTB and PGK1 mRNA levels were significantly decreased by Dex. The GUSB, PPIA, and TFRC mRNA levels were unaffected by exposure to Dex. GUSB, HPRT1, and PPIA are thus suitable internal controls for evaluating mRNA expression levels in cultures of C2C12 cells.  相似文献   

4.
Quantitative real-time PCR (qPCR) is a powerful and reproducible method of gene expression analysis in which expression levels are quantified by normalization against reference genes. Therefore, to investigate the potential biomarkers and therapeutic targets for epithelial ovarian cancer by qPCR, it is critical to identify stable reference genes. In this study, twelve housekeeping genes (ACTB, GAPDH, 18S rRNA, GUSB, PPIA, PBGD, PUM1, TBP, HRPT1, RPLP0, RPL13A, and B2M) were analyzed in 50 ovarian samples from normal, benign, borderline, and malignant tissues. For reliable results, laser microdissection (LMD), an effective technique used to prepare homogeneous starting material, was utilized to precisely excise target tissues or cells. One-way analysis of variance (ANOVA) and nonparametric (Kruskal-Wallis) tests were used to compare the expression differences. NormFinder and geNorm software were employed to further validate the suitability and stability of the candidate genes. Results showed that epithelial cells occupied a small percentage of the normal ovary indeed. The expression of ACTB, PPIA, RPL13A, RPLP0, and TBP were stable independent of the disease progression. In addition, NormFinder and geNorm identified the most stable combination (ACTB, PPIA, RPLP0, and TBP) and the relatively unstable reference gene GAPDH from the twelve commonly used housekeeping genes. Our results highlight the use of homogeneous ovarian tissues and multiple-reference normalization strategy, e.g. the combination of ACTB, PPIA, RPLP0, and TBP, for qPCR in epithelial ovarian tissues, whereas GAPDH, the most commonly used reference gene, is not recommended, especially as a single reference gene.  相似文献   

5.
Real-time PCR is the benchmark method for measuring mRNA expression levels, but the accuracy and reproducibility of its data greatly depend on appropriate normalization strategies. Though the minipig model is largely used to study cardiovascular disease, no specific reference genes have been identified in porcine myocardium. The aim of the study was to identify and validate reference gene to be used in RT-PCR studies of failing (HF) and non-failing pig hearts. Eight candidate reference genes (GAPDH, ACTB, B2M, TBP, HPRT-1, PPIA, TOP2B, YWHAZ) were selected to compare cardiac tissue of normal (n=4) and HF (n=5) minipigs. The most stable genes resulted: HPRT-1, TBP, PPIA (right and left atrium); PPIA, GAPDH, ACTB (right ventricle); HPRT-1, TBP, GAPDH (left ventricle). The normalization strategy was tested analyzing mRNA expression of TNF-α, which is known to be up-regulated in HF and whose variations resulted more significant when normalized with the appropriately selected reference genes. The findings obtained in this study underline the importance to provide a set of reference genes to normalize mRNA expression in HF and control minipigs. The use of unvalidated reference genes can generate biased results because also their expression could be altered by the experimental conditions.  相似文献   

6.
7.
Reference genes can be used to normalize mRNA levels across different samples for the exact comparison of the mRNA expression level. It is important to select reference genes with high quality for the accurate interpretation of qRT-PCR data. Although several studies have attempted to validate reference genes in pigs, no validation studies have been performed on spermatozoa samples frozen with different cryoprotectants. In this study, 11 commonly used reference genes (ACTB, B2M, GAPDH, HPRT1, RPL4, SDHA, YWHAZ, PPIA, PGK1, S18, and BLM) were investigated in boar spermatozoa frozen with six different cryoprotectants using qRT-PCR. The expression stability of these reference genes in different samples was evaluated using geNorm (qbaseplus software), NormFinder, and BestKeeper. The geNorm results revealed that PGK1, ACTB, and RPL4 exhibit high expression stability in all of the samples, and the NormFinder results indicated that GAPDH is the most stable gene. Furthermore, the BestKeeper results indicated that the three most stable genes are PPIA, GAPDH, and RPL4 and that S18, B2M and BLM are the three least stable genes. There are a number of differences in the ranking order of the reference genes obtained using the different algorithms. In conclusion, GAPDH, RPL4, and PPIA were the three most stable genes in frozen boar spermatozoa, as determined based on the cycle threshold coefficient of variation (Ct CV%) and the comprehensive ranking order, and this finding is consistent with the BestKeeper results  相似文献   

8.
本研究通过比较9个内参基因在山羊不同组织中的表达水平进而确定最适合研究山羊组织表达的内参基因。本试验以简州大耳羊为试验材料,利用实时荧光定量PCR技术分析9个内参基因(GAPDH,PPIA,18S rRNA,PPIB,UXT,RPLP0,ACTB,EIF3K和TBP)在心脏、肝脏、脾脏、肺脏、肾脏、大肠、瘤胃、背最长肌和皮下脂肪等组织中的表达差异情况,并利用geNorm、NormFinder和BestKeeper等程序分析了它们的表达稳定性。geNorm和NormFinder程序一致显示TBP表达最稳定,其次是UXT和RPLP0;BestKeeper分析显示18S rRNA表达最为稳定,其次为TBP和ACTB;3个程序一致认为GAPDH表达稳定性最差。综合3个程序分析得出TBP最适合作为山羊组织中的内参基因,其次为UXT和RPLP0,GAPDH表达稳定性最差,不适合作为山羊组织内参,这为后续研究其他目的基因在山羊组织器官中的表达模式提供数据保障。  相似文献   

9.
小鼠基因转录表达分析中内参基因的优选   总被引:1,自引:0,他引:1  
目的 建立小鼠基因转录表达分析中内参基因的选择方法.方法 以C57BL/6J和C3H/HeJ两个品系3个不同组织及2个不同发育阶段为研究对象,应用反转录实时定量PCR技术,评价GAPDH(glyceraldehyde-3-phosphate dehydrogenase)、HPRTl(hypoxanthine phosphoribosyl transferase)、B2M(β2-microglobulin)、PPIA(peptidylprolyl isomerase A)、ACTB(Actin-beta)和18S rRNA(18S ribosomal RNA)等6个看家基因在下丘脑、垂体与卵巢中mRNA水平的表达稳定性.结果 GeNorm统计分析表明,GAPDH和HPRT1表达最为稳定,PPIA等次之,B2M在不同组织和发育阶段中都几乎无表达.结论 成功筛选到GAPDH和HPRT1两个稳定表达的看家基因,证实了小鼠基因表达转录分析中内参基因选择的必要性和可行性.  相似文献   

10.
The liver has an intrinsic ability to undergo active proliferation and recover functional liver mass in response to an injury response. This regenerative process involves a complex yet well orchestrated change in the gene expression profile. To produce accurate and reliable gene expression of target genes during various stages of liver regeneration, the determination of internal control housekeeping genes (HKGs) those are uniformly expressed is required. In the present study, the gene expression of 8 commonly used HKGs, including GAPDH, ACTB, HPRT1, GUSB, PPIA, TBP, TFRC, and RPL4, were studied using mouse livers that were quiescent and actively regenerating induced by partial hepatectomy. The amplification of the HKGs was statistically analyzed by two different mathematical algorithms, geNorm and NormFinder. Using this method, PPIA and TBP gene expression found to be relatively stable regardless of the stages of liver regeneration and would be ideal for normalization to target gene expression.  相似文献   

11.
12.
ABSTRACT: BACKGROUND: The selection of stable and suitable reference genes for real-time quantitative PCR (RT-qPCR) is a crucial prerequisite for reliable gene expression analysis under different experimental conditions. The present study aimed to identify reference genes as internal controls for gene expression studies by RT-qPCR in azole-stimulated Candida glabrata. RESULTS: The expression stability of 16 reference genes under fluconazole stress was evaluated using fold change and standard deviation computations with the hkgFinder tool. Our data revealed that the mRNA expression levels of three ribosomal RNAs (RDN5.8, RDN18, and RDN25) remained stable in response to fluconazole, while PGK1, UBC7, and UBC13 mRNAs showed only approximately 2.9-, 3.0-, and 2.5-fold induction by azole, respectively. By contrast, mRNA levels of the other 10 reference genes (ACT1, EF1a, GAPDH, PPIA, RPL2A, RPL10, RPL13A, SDHA, TUB1, and UBC4) were dramatically increased in C. glabrata following antifungal treatment, exhibiting changes ranging from 4.5- to 32.7-fold. We also assessed the expression stability of these reference genes using the 2-[increment][increment]CT method and three other software packages. The stability rankings of the reference genes by geNorm and the 2-[increment][increment]CT method were identical to those by hkgFinder, whereas the stability rankings by BestKeeper and NormFinder were notably different. We then validated the suitability of six candidate reference genes (ACT1, PGK1, RDN5.8, RDN18, UBC7, and UBC13) as internal controls for ten target genes in this system using the comparative CT method. Our validation experiments passed for all six reference genes analyzed except RDN18, where the amplification efficiency of RDN18 was different from that of the ten target genes. Finally, we demonstrated that the relative quantification of target gene expression varied according to the endogenous control used, highlighting the importance of the choice of internal controls in such experiments. CONCLUSIONS: We recommend the use of RDN5.8, UBC13, and PGK1 alone or the combination of RDN5.8 plus UBC13 or PGK1 as reference genes for RT-qPCR analysis of gene expression in C. glabrata following azole treatment. In contrast, we show that ACT1 and other commonly used reference genes (GAPDH, PPIA, RPL13A, TUB1, etc.) were not validated as good internal controls in the current model.  相似文献   

13.
内参基因的选择对功能基因表达量的归一化处理尤为重要。为了筛选出光裸星虫不同发育时期卵子的最适内参基因,利用qRT-PCR测定了甘油醛-3-磷酸脱氢酶(GAPDH)、肽基脯氨酰顺反异构酶A(PPIA)、60S核糖体蛋白L10(60S-L10)、铁蛋白(Ferritin)、β-肌动蛋白(β-actin)、泛素C(UBC)、真核生物翻译起始因子(eIF)、NADH脱氢酶(NDH)、28S核糖体RNA(28S)、TATA盒结合蛋白(TBP)、18S核糖体RNA(18S)和琥珀酸脱氢酶A亚基(SDHA)共12个候选内参基因的表达水平,并通过4个程序(geNorm,NormFinder,BestKeeper以及RefFinder)综合分析了各基因的表达稳定性。结果显示:(1)12个候选内参基因均能获得特异性扩增产物,但表达情况各异;(2)对候选内参基因进行综合打分,得到候选内参基因稳定性排名为18S>GAPDH>28S>β-actin>UBC>e IF>NDH|TBP>PPIA|Ferritin>60S-L10>SDHA。18S和GAPDH稳定性较好,可作为不同发育时期卵细胞基因表达研究的单内参基因,或最优组合内参基因。  相似文献   

14.
Quantitative real-time RT-PCR (RT-qPCR) has proven to be a valuable molecular technique in gene expression quantification. Target gene expression levels are usually normalized to a stably expressed reference gene simultaneously determined in the same sample. It is critical to select optimal reference genes to interpret data generated by RT-qPCR. However, no suitable reference genes have been identified in human ovarian cancer to date. In this study, 10 housekeeping genes, ACTB, ALAS1, GAPDH, GUSB, HPRT1, PBGD, PPIA, PUM1, RPL29, and TBP as well as 18S rRNA that were already used in various studies were analyzed to determine their applicability. Totally 20 serous ovarian cancer specimens and 20 normal ovarian epithelial tissue specimens were examined. All candidate reference genes showed significant differences in expression between malignant and nonmalignant groups except GUSB, PPIA, and TBP. The expression stability and suitability of the 11 genes were validated employing geNorm and NormFinder. GUSB, PPIA, and TBP were demonstrated as the most stable reference genes and thus could be used as reference genes for normalization in gene profiling studies of serous ovarian cancer, while the combination of two genes (GUSB and PPIA) or the all three genes should be recommended as a much more reliable normalization strategy.  相似文献   

15.
Accurate quantification of gene expression is fundamental for understanding the molecular, genetic and functional bases of tissue development and diseases. Quantitative real‐time PCR (qPCR) is now the most widely used method of quantifying gene expression due to its simplicity, specificity, sensitivity, and wide quantification range. The use of appropriate reference genes to ensure accurate normalization is crucial for the correct quantification of gene expression from the early development, maturation, aging to injury processes in the central nervous system (CNS). In this study, we have determined the expression profiles of 12 candidate housekeeping genes (ACTB, CYC1, HMBS, GAPDH, HPRT1, RPL13A, YWHAZ, PPIA, RPLP0, TFRC, GUS, and 18S rRNA) in developing mouse brain and spinal cord. Throughout development, there was a significant degree of fluctuations in their expression levels, indicating the importance and complexity of finding appropriate reference genes. Three software including BestKeeper, geNorm and NormFinder were used to evaluate the stability of potential reference genes. GUS was the most stable gene and GUS/YWHAZ were the most stable reference gene pair across different developmental stages in different CNS regions, whereas HPRT1 and GAPDH were the most variable genes and thus inappropriate to use as reference genes. Therefore, our results identified GUS and YWHAZ as the best combination of two reference genes for expression data normalization in CNS developmental studies. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 39–50, 2018  相似文献   

16.
17.
Glyceraldehyde‐3‐phosphate dehydrogenase, is one of the most investigated housekeeping genes and widely used as an internal control in analysis of gene expression levels. The present study was designed to assess whether GAPDH is associated with cancer cell growth and progression and, therefore may not be a good internal control in cancer research. Our results from clinical tissue studies showed that the levels of GAPDH protein were significantly up‐regulated in lung squamous cell carcinoma tissues, compared with the adjacent normal lung tissues, and this was confirmed by western blotting and immunohistochemistry. GAPDH knockdown by siRNA resulted in significant reductions in proliferation, migration, and invasion of lung squamous carcinoma cells in vitro. In a nude mouse cancer xenograft model, GAPDH knockdown significantly inhibited the cell proliferation and migration/invasion in vivo. In summary, GAPDH may not be an appropriate internal control for gene expression studies, especially in cancer research. The role of GAPDH in cancer development and progression should be further examined in pre‐clinical and clinical studies.  相似文献   

18.

Background  

Analysis of RNA expression using real-time PCR (qRT-PCR) traditionally includes reference genes (RG) as an internal control. This practice is being questioned as it becomes increasingly clear that RG may vary considerably under certain experimental conditions. Thus, the validity of a particular RG must be determined for each experimental setting. We used qRT-PCR to measure the levels of six RG, which have been reported in the literature to be invariant. The RG were analyzed in human myoblast cultures under differentiation conditions. We examined the expression by qRT-PCR of mRNA encoding Beta-actin (ACTB), Beta-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), peptidylprolyl isomerase A (PPIA), TATA box binding protein (TBP) and ribosomal protein, large, P0 (RPLPO). The mRNA expression of the following genes of interest (GOI) were analyzed: skeletal muscle alpha 1 actin (ACTA1), myogenin/myogenic factor 4 (MYOG), embryonic skeletal muscle myosin heavy chain 3 (MYH3) and the activity of creatine phosphokinase (CK). The geNorm, NormFinder and BestKeeper software programs were used to ascertain the most suitable RG to normalize the RNA input.  相似文献   

19.
Quantitative real-time PCR (qPCR) is becoming a popular tool for the quantification of gene expression in the brain and endocrine tissues of songbirds. Accurate analysis of qPCR data relies on the selection of appropriate reference genes for normalization, yet few papers on songbirds contain evidence of reference gene validation. Here, we evaluated the expression of ten potential reference genes (18S, ACTB, GAPDH, HMBS, HPRT, PPIA, RPL4, RPL32, TFRC, and UBC) in brain, pituitary, ovary, and testis in two species of songbirds: zebra finch and white-throated sparrow. We used two algorithms, geNorm and NormFinder, to assess the stability of these reference genes in our samples. We found that the suitability of some of the most popular reference genes for target gene normalization in mammals, such as 18S, depended highly on tissue type. Thus, they are not the best choices for brain and gonad in these songbirds. In contrast, we identified alternative genes, such as HPRT, RPL4 and PPIA, that were highly stable in brain, pituitary, and gonad in these species. Our results suggest that the validation of reference genes in mammals does not necessarily extrapolate to other taxonomic groups. For researchers wishing to identify and evaluate suitable reference genes for qPCR in songbirds, our results should serve as a starting point and should help increase the power and utility of songbird models in behavioral neuroendocrinology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号