首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hyperosmotic pressure increased specific antibody productivity (q(Ab)) of recombinant Chinese hamster ovary (rCHO) cells (SH2-0.32) and it depressed cell growth. Thus, the use of hyperosmolar medium did not increase the maximum antibody concentration substantially. To overcome this drawback, the feasibility of biphasic culture strategy was investigated. In the biphasic culture, cells were first cultivated in the standard medium with physiological osmolality (294 mOsm/kg) for cell growth. When cells reached the late exponential growth phase, the spent standard medium was replaced with the fresh hyperosmolar medium (522 mOsm/kg) for antibody production. The q(Ab) in growth phase with the standard medium was 2.1 microg per 10(6) cells/d, whereas the q(Ab) in antibody production phase with the hyperosmolar medium was 11.1 microg per 10(6) cells/d. Northern blot analysis showed a positive relationship between the relative contents of intracellular immunoglobulin messenger ribonucleic acid and q(Ab). Because of the enhanced q(Ab) and the increased cell concentration in biphasic culture, the maximum antibody concentration obtained in biphasic culture with 522 mOsm/kg medium exchange was 161% higher than that obtained in batch culture with the standard medium. Taken together, the simple biphasic culture strategy based on hyperosmotic culture is effective in improving antibody production of rCHO cells.  相似文献   

3.
When mouse hybridoma cells were grown in culture media which were made hyperosmotic through the addition of NaCl or sucrose, the specific rate of antibody production increased with medium osmolality, reaching approx. 1.9 times the level obtained at physiological osmolality. However, due to a simultaneous reduction of the maximal cell density in the hyperosmotic media, the effect of the increased production rate did not give significant increases in the maximum antibody titer obtained in the cultures. When the osmoprotective compound, glycine betaine, was included in the NaCl- or sucrose-stressed cultures, the specific antibody production rate wasincreased up to 2.6-fold and maximum antibody titer up to twofold over that obtained in the control culture (physiological osmolality). A similar pattern of response was observed when other osmoprotective compounds (sarcosine, proline, glycine) were added to NaCl-stressed hybridoma cell cultures. For the present experiments, the results suggest that medium osmolality, rather than growth rate, will determine the specific antibody production rate by hybridoma cell line 6H11 growing in hyperosmotic culture media. (c) 1994 John Wiley & Sons, Inc.  相似文献   

4.
A search was undertaken for osmoprotective compounds for mouse hybridoma cell line 6H11 grown in culture. When the osmolality of the growth medium was increased above the normal osmolality of 330 mOsmol/kg, growth rates were decreased in a dose-dependent fashion, reaching zero when the osmolality of the medium reached approx. 435 mOsmol/kg through the addition of KCl (60 mM), or 510 mOsmol/kg through the addition of NaCl (100 mM), or sucrose (175 mM). For NaCl or sucrose-stressed cultures, the inclusion of glycine betaine, sarcosine, proline, glycine, or asparagine in the growth medium gave a moderate to strong osmoprotective effect, measured as the ability of these compounds to enhance cell growth rates under hyperosmotic conditions. Inclusion of dimethylglycine may also give a strong osmoprotective effect under these stress conditions.In KCl-stressed cell cultures, addition of glycine betaine, sarcosine, or dimethylglycine gave strong osmoprotective effects. Of 38 compounds tested during NaCl stress, 7 gave weak osmoprotective effects and 25 gave no osmoprotective effect. The osmoprotective compounds accumulated inside the stressed cells. Accumulation was completed after 4 to 8 h, reaching intracellular concentrations of approx. 0.27 pmol/cell, or 0.15 M, in NaCl stressed cells (100 mM NaCl added).Glycine betaine, dimethylglycine, and sarcosine accumulation was observed only when these protectants were included in the medium. For all osmoprotectants, a growth medium concentration between 5 and 30 mM gave the maximal protective effect, with the exception of dimethylglycine, for which the optimum concentration was approx. 65 mM. Osmoprotective effects obtained with glycine, sarcosine, dimethylglycine, and glycine betaine, indicate that the more methylated compounds are the most effective protectants.The cellular content of glycine betaine and the glycine betaine uptake rate increased with medium osmolality in a linear fashion. Glycine betaine uptake was described by a model comprising a saturable component obeying Michaelis-Menten kinetics and a nonsaturable component. K(m) and V(max) for glycine betaine uptake were determined at 420 mOsmol/kg (50 mM NaCl added) and 510 mOsmol/kg (100 mM NaCl added). A K(m) value of approx. 2.5 mM was obtained at both medium osmolalities, while V(max) increased from 0.010 pmol/cell . h to 0.018 pmol/cell . h as the osmolality of the growth medium was increased, indicating an effect of medium osmolality on the maximal rate of transport rather than on the affinity of the transporters for glycine betaine. Hybridoma cells were not able to utilize the glycine betaine precursors choline or glycine betaine aldehyde for osmoprotection, suggesting that the cells lack part, or all, of the choline-glycine betaine pathway or the appropriate uptake mechanism.The uptake rate for glycine in NaCl-stressed hybridoma cells was approx. four times higher than the uptake rate for glycine betaine. Furthermore, if equimolar amounts of glycine betaine, glycine, sarcosine, and proline were simultaneously added to NaCl-stressed cell cultures, the intracellular concentrations of glycine, proline, and sarcosine were significantly higher than the concentration of glycine betaine.A 40% increase in hybridoma cell volume was observed when the growth medium osmolality was increased from 300 to 520 mOsmol/kg. (c) 1994 John Wiley & Sons, Inc.  相似文献   

5.
Addition of osmoprotective compounds has a positive effect on growth and monoclonal antibody production in hyperosmotic hybridoma cell cultures. In order to better understand the processes involved in the osmoprotective response, uptake of the osmoprotective compounds glycine betaine, proline, sarcosine and glycine in mouse hybridoma cell line 6H11 during exposure to hyperosmotic stress was studied. Hyperosmotic stress (510 mOsmol/kg) was introduced through the addition of NaCl (100 mM) to the growth medium, and amino acid transport activity was measured immediately after transfer of the cells to the hyperosmotic medium. The osmoprotective capability of the four osmoprotectants tested was negatively affected if methylaminosobutyric acid (MeAiB), a specific substrate for amino acid transport system A, was simultaneously included in the hyperosmotic medium in equimolar amounts with one of the osmoprotective compounds. This was due to accumulation of MeAiB in the stressed cells, giving a significant reduction in the concentration of the osmoprotective compound inside the cells. Furthermore, addition of excess meAiB gave approx. 905 reduction in the initial rate of uptake of glycine betaine, while 40–50% reduction in the initial rate of uptake of proline, glycine and sarcosine. Similarly, addition of proline, glycine or sarcosine also gave a significant reduction in the initial rate of glycine betaine uptake. These results suggest that the four osmoprotective compounds share, at least in part, a common, MeAiB inhibitable carrier for transport into osmotically stressed hybridoma cells. This carrier is probably equal to amino acid transport system A.  相似文献   

6.
7.
To determine the effect of hyperosmotic stress on the monoclonal antibody (MAb) production by calcium-alginate-immobilized S3H5/gamma2bA2 hybridoma cells, the osmolalities of medium in the MAb production stage were varied through the addition of NaCI. The specific MAb productivity (q(MAb)) of immobilized cells exposed to abrupt hyperosmotic stress (398 mOsm/kg) was increased by 55% when compared with that of immobilized cells in the control culture (286 mOsm/kg). Furthermore, this enhancement of q(MAb) was not transient. Abrupt increase in osmolality, however, inhibited cell growth, resulting in no increase in volumetric MAb productivity (r(MAb)). On the other hand, gradual increase in osmolality allowed further cell growth while maintaining the enhanced q(MAb) immobilized cells. The q(MAb) immobilized cells at 395 mOsm/kg was 0.661 +/- 0.019 mug/10(6) cells/h, which is almost identical to that of immobilized cells exposed to abrupt osmotic stress. Accordingly, the r(MAb) was increased by ca. 40% when compared with that in the control immobilized cell culture. This enhancement in i(MAb) of immobilized S3H5/gamma2bA2 hybridoma cells by applying gradual osmotic stress suggests the potential of using hyperosmolar medium in other perfusion culture systems for improved MAb production. (c) 1995 John Wiley & Sons, Inc.  相似文献   

8.
During recombinant Chinese hamster ovary (rCHO) cell culture, various events, such as feeding with concentrated nutrient solutions or the addition of base to maintain an optimal pH, increase the osmolality of the medium. To determine the effect of hyperosmotic stress on two types of programmed cell death (PCD), apoptosis and autophagy, of rCHO cells, two rCHO cell lines, producing antibody and erythropoietin, were subjected to hyperosmotic stress resulting from NaCl addition (310–610 mOsm/kg). For both rCHO cell lines, hyperosmolality up to 610 mOsm/kg increased cleaved forms of PARP, caspase‐3, caspase‐7, and fragmentation of chromosomal DNA, confirming the previous observation that apoptosis was induced by hyperosmotic stress. Concurrently, hyperosmolality increased the level of accumulation of LC3‐II, a widely used autophagic marker, which was determined by Western blot analysis and confocal microscopy. When glucose and glutamine concentrations were measured during the cultures, glucose and glutamine concentrations in the culture medium at various osmolalities (310–610 mOsm/kg) showed no significant differences. This result suggests that induction of PCD by hyperosmotic stress occurred independently of nutrient depletion. Taken together, autophagy as well as apoptosis was observed in rCHO cells subjected to hyperosmolality. Biotechnol. Bioeng. 2010;105: 1187–1192. © 2009 Wiley Periodicals, Inc.  相似文献   

9.
Elevated osmolality and pCO(2) have been shown to alter sialylation in a protein-specific manner. In Chinese hamster ovary (CHO)MT2-l-8 cells, tPA sialylation changed only slightly from 40 to 250 mm Hg pCO(2), whereas neural cell adhesion molecule polysialic acid (NCAM PSA) content decreased by up to 70% at 250 mm Hg pCO(2), pH 7.2. NCAM PSA content also decreased with increasing NaCl or NH(4)Cl concentration. This suggests that PSA content is a sensitive indicator of conditions that may alter glycosylation. Amino acids and their derivatives have been used to protect hybridoma and CHO cell growth under hyperosmotic stress. We examined the impact of osmoprotectants on NCAM PSA content in CHO MT2-1-8 cells under hyperosmolality (up to 545 mOsm/kg) and at 195 and 250 mm Hg pCO(2). NCAM PSA content at 545 mOsm/kg was at least two-fold greater in the presence of glycine betaine or L-proline compared to that without osmoprotectant. Surprisingly, in the presence of 20 mM glycine betaine, PSA levels were 50-60% of the control level for osmolalities ranging from 320 to 545 mOsm/kg. Thus, glycine betaine inhibits NCAM polysialylation at osmolalities below 435 mOsm/kg and is beneficial at higher osmolalities. In contrast to glycine betaine, L-proline increased PSA content by 25-120% relative to the unprotected culture at < or =545 mOsm/kg. The decrease in NCAM PSA levels of CHO MT2-1-8 cells cultured at 195 mm Hg pCO(2)-435 mOsm/kg was not mitigated by the presence of 25 mM glycine betaine, glycine, or L-threonine, even though all of these compounds enhanced cell growth. At 250 mm Hg pCO(2), all osmoprotectants tested (20 mM L-threonine, L-proline, glycine, or glycine betaine) increased NCAM polysialylation, with 20 mM glycine betaine restoring NCAM PSA to near control levels. Thus, osmoprotectants may (partially) offset changes in glycosylation, as well as the inhibition of growth, in cells under environmental stress. Supernatant beta-galactosidase levels, which increase upon alkalization of acidic organelles, did not differ significantly under elevated pCO(2) and hyperosmolality from that at control conditions.  相似文献   

10.
To investigate the influence of hyperosmolar basal media on hybridoma response, S3H5/γ2bA2 and DB9G8 hybridomas were cultivated in a batch mode using hyperosmolar basal media resulting from additional sodium chloride supplementation. The basal media used in this study were IMDM, DMEM, and RPMI 1640, all of which are widely used for hybridoma cell culture. In IMDM, two hybridomas showed different responses to hyperosmotic stress regarding specific MAb productivity (q MAb), though they showed similar depression of cell growth in hyperosmolar media. Unlike S3H5/γ2bA2 hybridoma, the q MAb of DB9G8 hybridoma was not enhanced significantly around 390 mOsm kg?1. The variation of basal media influenced DB9G8 hybridoma response to hyperosmotic stress regarding q MAb. In IMDM, the q MAb of DB9G8 hybridoma was increased by more than 200% when the osmolality increased from 281 to 440 mOsm/kg. However, in RPMI 1640 and DMEM, similar amplitude of osmolality increase resulted in less than 100% increase in q MAb. The variation of basal media also influenced the cell growth in hyperosmolar medium. Both hybridomas were more tolerant against hyperosmotic stress in DMEM than in IMDM, which was found to be due to the high osmolality of standard DMEM. The osmolalities of standard IMDM and DMEM used for inocula preparation were 281 and 316 mOsm kg?1, respectively. Thus, when the cells were cultivated at 440 mOsm kg?1, the cells in IMDM experienced higher osmotic shock than in DMEM. By using the inoculum prepared at 317 mOsm kg?1 in IMDM, S3H5/γ2bA2 cell growth at 440 mOsm kg?1 in IMDM was comparable to that in DMEM. Taken together, the results obtained from this study show that the selection of basal media is an important factor for MAb production by employing hyperosmotic stress.  相似文献   

11.
In an attempt to use the hyperosmotic pressure for improved foreign protein production in recombinant Chinese hamster ovary (rCHO) cells, the response of rCHO cells producing a humanized antibody (SH2-0.32-(Delta)bcl-2 cells) to hyperosmotic pressure was determined in regard to cell growth and death, and antibody production. Further, the feasibility of Bcl-2 overexpression in improving rCHO cell viability under hyperosmotic pressure was also determined by comparing control cells (SH2-0.32-(Delta)bcl-2) with Bcl-2 overexpressing cells (14C6-bcl-2). After 3 days of cultivation in the standard medium (294 mOsm x kg(-1)), the spent medium was exchanged with the fresh media with various osmolalities (294-640 mOsm x kg(-1)). The results obtained show that hyperosmotic pressure inhibited cell growth in a dose-dependent manner, though 14C6-bcl-2 cells were less susceptible to hyperosmotic pressure than SH2-0.32-(Delta)bcl-2 cells. At 522 mOsm x kg(-1), SH2-0.32-(Delta)bcl-2 cells underwent a gradual cell death mainly through apoptosis due to the cytotoxic effect of hyperosmotic pressure. In contrast, Bcl-2 overexpression in 14C6-bcl-2 cells could delay the apoptosis induced by 522 mOsm x kg(-1) by inhibiting caspase-3 activation. Bcl-2 overexpression could also improve the cellular membrane integrity of 14C6-bcl-2 cells. When subjected to hyperosmotic pressure, the specific antibody productivity of SH2-0.32-(Delta)bcl-2 cells and 14C6-bcl-2 cells was increased in a similar extent. As a result, the final antibody concentration achieved in 14C6-bcl-2 cells at 522 mOsm x kg(-1) was 2.5-fold higher than that at 294 mOsm x kg(-1). At 580 mOsm x kg(-1), acute hyperosmotic pressure induced the rapid loss of viability in both SH2-0.32-(Delta)bcl-2 and 14C6-bcl-2 cells through necrosis rather than through apoptosis. Taken together, Bcl-2 overexpression and optimized hyperosmotic pressure could improve the antibody production of rCHO cells.  相似文献   

12.
Abstract Naturally occuring betaines, especially glycine betaine and proline betaine, were accumulated by Escherichia coli from urine. In synthetic hyperosmotic medium, with an homologous series of added betaines, (CH3)3N+-(CH2) n -COO, osmoprotective activity and intracellular accumulation decreased monotonically as n increased from 1 to 5. In contrast, α -substituted glycine betaines were accumulated in a similar manner to glycine betaine, but with different osmoprotective activities. Arsenobetaine, with a quaternary arsonium group, was also accumulated but amino acids which can become negatively charged in a chemically basic environment were not.  相似文献   

13.
The use of glycine betaine combined with hyperosmolality is known to be an efficient means for achieving high protein production in recombinant Chinese hamster ovary (rCHO) cells. In order to understand the intracellular events and identify the key factors in rCHO cells cultivated with glycine betaine under hyperosmotic conditions, two-dimensional differential in-gel electrophoresis (2D-DIGE) followed by mass spectrometric analysis was applied. Differentially expressed 19 protein spots were selected and 16 different kinds of proteins were successfully identified. The identified proteins were associated with cellular metabolism (PEPCK, GAPDH, and PK), cellular architecture (β-tubulin and β-actin), protein folding (GRP78 and OSP94), mRNA processing (Rbm34, ACF, and IPMK), and protein secretion (γ-COP). 2D-Western blot analysis of β-tubulin, GAPDH, Peroxidoxin-1, and GRP78 confirmed the proteomic findings. The proteins identified from this study, which are related to cell growth and antibody production, can be applied to cell engineering for maximizing the efficacy of the use of glycine betaine combined with hyperosmolality in rCHO cells.  相似文献   

14.
To investigate the response of hybridoma cells to hypoosmotic stress, S3H5/gamma2bA2 and DB9G8 hybridomas were cultivated in the hypoosmolar medium [Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% serum] resulting from sodium chloride subtraction. Both hybridomas showed similar responses to hypoosmotic stress in regard to cell growth and antibody production. The cell growth and antibody production at 276 mOsm/kg were comparable to those at 329 mOsm/kg (standard DMEM). Both cells grew well at 219 mOsm/kg, though their growth and antibody production were slightly decreased. When the osmolality was further decreased to 168 mOsm/kg, the cell growth did not occur. When subjected to hyperosmotic stress, both cells displayed significantly enhanced specific antibody productivity (q(Ab)). However, the cells subjected to hypoosmotic stress did not display enhanced q(Ab). Taken together, both hyperosmotic and hypoosmotic stresses depressed the growth of S3H5/gamma2bA2 and DB9G8 hybridomas. However, their response to hypoosmotic stress in regard to q(Ab) was different from that to hyperosmotic stress. (c) 1997 John Wiley & Sons, Inc. Biotechnol Biong 55: 565-570, 1997.  相似文献   

15.
In Escherichia coli the osmoprotective compound glycine betaine is produced from choline by two enzymes; choline dehydrogenase (CDH) oxidizes choline to betaine aldehyde and then further on to glycine betaine, while betaine aldehyde dehydrogenase (BADH) facilitates the conversion of betaine aldehyde to glycine betaine. To evaluate the importance of BADH, a BADH/CDH fusion enzyme was constructed and expressed in E. coli and in Nicotiana tabacum. The fusion enzyme displayed both enzyme activities, and a coupled reaction could be measured. The enzyme was characterized regarding molecular weight and the dependence of the enzyme activities on environmental factors (salt, pH, and poly(ethylene glycol) addition). At high choline concentrations, E. coli cells expressing BADH/CDH were able to grow to higher final densities and to accumulate more glycine betaine than cells expressing CDH only. The intracellular glycine betaine levels were almost 5-fold higher for BADH/CDH when product concentration was related to CDH activity. Also, after culturing the cells at high NaCl concentrations, more glycine betaine was accumulated. On medium containing 20 mM choline, transgenic tobacco plants expressing BADH/CDH grew considerably faster than vector-transformed control plants.  相似文献   

16.
Hybridomas with non-growth-associated antibody production are thought to exhibit enhanced specific monoclonal antibody productivity (q MAb) when subjected to hyperosmotic stress. Two hybridoma cell lines exhibiting non-growth-associated antibody production, S3H5/2bA2 and DB9G8 hybridomas, are cultivated in a batch mode using hyperosmolar media resulting from sodium chloride addition. Their response to hyperosmotic stress regarding q MAb is quite different, though they show similar depression of cell growth in hyperosmolar media. The q MAb of S3H5/2bA2 cells in a hyperosmolar medium (396 mOsm/kg, 10% fetal bovine serum (FBS)) is enhanced by approximately 180% when compared with that in a standard medium (283 mOsm/kg, 10% FBS), while q MAb of DB9G8 cells in the same hyperosmolar medium is enhanced by only 10%. Thus, the enhanced q MAb of hybridomas exhibiting non-growth-associated antibody production resulting from hyperosmotic stress is cell line-specific.  相似文献   

17.
Lee MS  Kim KW  Kim YH  Lee GM 《Biotechnology progress》2003,19(6):1734-1741
To better understand intracellular responses to hyperosmotic pressure of recombinant Chinese hamster ovary (rCHO) cells expressing an antibody, we have taken a proteomics approach. Using two-dimensional electrophoresis and mass spectrometry, a proteome profile of rCHO cells comprising 23 identified proteins was established. On the basis of this proteome profile, we found three proteins of which expression levels were significantly changed at 450 mOsm/kg. Compared to the results at 300 mOsm/kg, two glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase, were found to be up-regulated, probably leading to an increased metabolic energy for antibody synthesis. The elevation of specific glucose consumption rate at 450 mOsm/kg agreed with the up-regulation of these glycolytic enzymes. On the other hand, tubulin expression was down-regulated, reflecting a depressed cell growth rate at 450 mOsm/kg. Taken together, this study shows the potential of the proteomics approach in understanding intracellular and physiological changes in cells and seeking a better insight into possible environmental or genetic manipulation approaches for increasing foreign protein production in rCHO cells.  相似文献   

18.
19.
Elevated pCO(2) inhibits cell growth. This growth inhibition is accompanied by a decrease in intracellular pH (pHi), as well as a decrease in glycolysis. Elevated concentrations (mM) of some amino acids have been shown by others to protect cells exposed to two very different environmental stresses: nutrient starvation and hyperosmolality. The fact that many of the amino acids shown to have protective effects against other stresses are transported into the cell through a pHi-sensitive transporter led us to study the possibility of using these amino acids as protective agents under elevated pCO(2). Screening experiments using 5, 15, and 25 mM of each amino acid showed that not all amino acids that protect cells from hyperosmolality protect them from elevated pCO(2). Glycine betaine and glycine were chosen for further characterization in both hybridoma and CHO cells. Asparagine and threonine were also tested in hybridoma and CHO cells, respectively. All amino acids tested under 195 mm Hg pCO(2)/435 mOsm/kg (50% growth inhibition) restored the specific growth rate (mu) in hybridoma cells to that observed under control conditions (40 mm Hg/320 mOsm/kg). Addition of each amino acid resulted in an increase in the consumption rate and intracellular accumulation of that amino acid. In CHO cells, glycine betaine also restored mu to control values, while glycine and threonine partially restored mu. In hybridoma cells, the higher specific antibody productivity obtained at elevated pCO(2) was maintained with the lowest amino acid concentration (5 mM). Productivity decreased toward control values with increasing amino acid concentrations. Elevated pCO(2) decreased the specific tPA productivity in the CHO cell line studied. Only glycine betaine resulted in a 20% increase in productivity at 195 mm Hg/435 mOsm/kg. With the exception of glycine betaine in hybridoma cells, amino acids did not mitigate the associated pHi decrease of at least 0.2 pH units at 195 mm Hg/435 mOsm/kg. pHi in hybridoma cells under elevated pCO(2) in the presence of glycine betaine was about 0.1 pH units below that of control. Amino acids had no effect on the cell size response of hybridoma cells, while they partially offset the increase in CHO cell size at elevated pCO(2). Glycine betaine, asparagine, and glycine increased the specific glucose consumption rate observed at 195 mm Hg/435 mOsm/kg (50% of control) to values greater than 70% of control in hybridoma cells. In CHO cells, only glycine betaine increased q(glc) (by 20%) under elevated pCO(2). All amino acids tested improved the cell yield from glutamine at 195 mm Hg/435 mOsm/kg in both cell lines.  相似文献   

20.
In an attempt to increase the specific thrombopoietin (TPO) productivity (q(TPO)) of recombinant Chinese hamster ovary (rCHO) cells (TPO-33), the effect of expression level of ERp57, an isoform of protein disulfide isomerase, on q(TPO) was investigated. To regulate ERp57 expression level, the Tet-Off system was first introduced in TPO-33 cells and stable Tet-Off cells (TPO-33-Tet-Off) were screened by the luciferase assay. The rCHO cells with a doxycycline-regulated ERp57 expression system (TPO-33-ERp57) were obtained by cotransfection of pTRE-ERp57 and pTK-Hyg expression vectors into TPO-33-Tet-Off cells and subsequent screening by Western blot analysis of ERp57 and an enzyme-linked immunosorbent assay of secreted TPO. Western blot analysis showed that ERp57 expression level in TPO-33-ERp57 cells could be regulated tightly by the addition of different concentrations of doxycycline to a culture medium. A doxycycline concentration of 1 microg/mL, which did not influence cell growth and TPO production of TPO-33-Tet-Off cells, was high enough to suppress the ERp57 expression to a basal level. Compared with the basal level, a 1.7-fold increase in ERp57 expression level was obtained in the absence of doxycycline. This increased expression level of ERp57 resulted in a 2.1-fold increase in q(TPO) without growth inhibition, probably as a result of the chaperone-like activity of ERp57 in CHO cells. Taken together, the results obtained here demonstrate that q(TPO) of rCHO cells can be increased by elevating the expression level of ERp57.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号