首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Periplasmic nitrate reductase (NapABC enzyme) has been characterized from a variety of proteobacteria, especially Paracoccus pantotrophus. Whole-genome sequencing of Escherichia coli revealed the structural genes napFDAGHBC, which encode NapABC enzyme and associated electron transfer components. E. coli also expresses two membrane-bound proton-translocating nitrate reductases, encoded by the narGHJI and narZYWV operons. We measured reduced viologen-dependent nitrate reductase activity in a series of strains with combinations of nar and nap null alleles. The napF operon-encoded nitrate reductase activity was not sensitive to azide, as shown previously for the P. pantotrophus NapA enzyme. A strain carrying null alleles of narG and narZ grew exponentially on glycerol with nitrate as the respiratory oxidant (anaerobic respiration), whereas a strain also carrying a null allele of napA did not. By contrast, the presence of napA+ had no influence on the more rapid growth of narG+ strains. These results indicate that periplasmic nitrate reductase, like fumarate reductase, can function in anaerobic respiration but does not constitute a site for generating proton motive force. The time course of phi(napF-lacZ) expression during growth in batch culture displayed a complex pattern in response to the dynamic nitrate/nitrite ratio. Our results are consistent with the observation that phi(napF-lacZ) is expressed preferentially at relatively low nitrate concentrations in continuous cultures (H. Wang, C.-P. Tseng, and R. P. Gunsalus, J. Bacteriol. 181:5303-5308, 1999). This finding and other considerations support the hypothesis that NapABC enzyme may function in E. coli when low nitrate concentrations limit the bioenergetic efficiency of nitrate respiration via NarGHI enzyme.  相似文献   

2.
The rumen bacterium Wolinella succinogenes grows by respiratory nitrate ammonification with formate as electron donor. Whereas the enzymology and coupling mechanism of nitrite respiration is well known, nitrate reduction to nitrite has not yet been examined. We report here that intact cells and cell fractions catalyse nitrate and chlorate reduction by reduced viologen dyes with high specific activities. A gene cluster encoding components of a putative periplasmic nitrate reductase system (napA, G, H, B, F, L, D) was sequenced. The napA gene was inactivated by inserting a kanamycin resistance gene cassette. The resulting mutant did not grow by nitrate respiration and did not reduce nitrate during growth by fumarate respiration, in contrast to the wild type. An antigen was detected in wild-type cells using an antiserum raised against the periplasmic nitrate reductase (NapA) from Paracoccus pantotrophus. This antigen was absent in the W. succinogenes napA mutant. It is concluded that the periplasmic nitrate reductase NapA is the only respiratory nitrate reductase in W. succinogenes, although a second nitrate-reducing enzyme is apparently induced in the napA mutant. The nap cluster of W. succinogenes lacks a napC gene whose product is thought to function in quinol oxidation and electron transfer to NapA in other bacteria. The W. succinogenes genome encodes two members of the NapC/NirT family, NrfH and FccC. Characterization of corresponding deletion mutants indicates that neither of these two proteins is required for nitrate respiration. A mutant lacking the genes encoding respiratory nitrite reductase (nrfHA) had wild-type properties with respect to nitrate respiration. A model of the electron transport chain of nitrate respiration is proposed in which one or more of the napF, G, H and L gene products mediate electron transport from menaquinol to the periplasmic NapAB complex. Inspection of the W. succinogenes genome sequence suggests that ammonia formation from nitrate is catalysed exclusively by periplasmic respiratory enzymes.  相似文献   

3.
The Pseudomonas fluorescens YT101 gene narG, which encodes the catalytic alpha subunit of the respiratory nitrate reductase, was disrupted by insertion of a gentamicin resistance cassette. In the Nar(-) mutants, nitrate reductase activity was not detectable under all the conditions tested, suggesting that P. fluorescens YT101 contains only one membrane-bound nitrate reductase and no periplasmic nitrate reductase. Whereas N(2)O respiration was not affected, anaerobic growth with NO(2) as the sole electron acceptor was delayed for all of the Nar(-) mutants following a transfer from oxic to anoxic conditions. These results provide the first demonstration of a regulatory link between nitrate and nitrite respiration in the denitrifying pathway.  相似文献   

4.
BACKGROUND: The periplasmic nitrate reductase (NAP) from the sulphate reducing bacterium Desulfovibrio desulfuricans ATCC 27774 is induced by growth on nitrate and catalyses the reduction of nitrate to nitrite for respiration. NAP is a molybdenum-containing enzyme with one bis-molybdopterin guanine dinucleotide (MGD) cofactor and one [4Fe-4S] cluster in a single polypeptide chain of 723 amino acid residues. To date, there is no crystal structure of a nitrate reductase. RESULTS: The first crystal structure of a dissimilatory (respiratory) nitrate reductase was determined at 1.9 A resolution by multiwavelength anomalous diffraction (MAD) methods. The structure is folded into four domains with an alpha/beta-type topology and all four domains are involved in cofactor binding. The [4Fe-4S] centre is located near the periphery of the molecule, whereas the MGD cofactor extends across the interior of the molecule interacting with residues from all four domains. The molybdenum atom is located at the bottom of a 15 A deep crevice, and is positioned 12 A from the [4Fe-4S] cluster. The structure of NAP reveals the details of the catalytic molybdenum site, which is coordinated to two MGD cofactors, Cys140, and a water/hydroxo ligand. A facile electron-transfer pathway through bonds connects the molybdenum and the [4Fe-4S] cluster. CONCLUSIONS: The polypeptide fold of NAP and the arrangement of the cofactors is related to that of Escherichia coli formate dehydrogenase (FDH) and distantly resembles dimethylsulphoxide reductase. The close structural homology of NAP and FDH shows how small changes in the vicinity of the molybdenum catalytic site are sufficient for the substrate specificity.  相似文献   

5.
Two genes, norB and norZ, encoding two independent nitric oxide reductases have been identified in Alcaligenes eutrophus H16. norB and norZ predict polypeptides of 84.5 kDa with amino acid sequence identity of 90%. While norB resides on the megaplasmid pHG1, the norZ gene is located on a chromosomal DNA fragment. Amino acid sequence analysis suggests that norB and norZ encode integral membrane proteins composed of 14 membrane-spanning helices. The region encompassing helices 3 to 14 shows similarity to the NorB subunit of common bacterial nitric oxide reductases, including the positions of six strictly conserved histidine residues. Unlike the Nor enzymes characterized so far from denitrifying bacteria, NorB and NorZ of A. eutrophus contain an amino-terminal extension which may form two additional helices connected by a hydrophilic loop of 203 amino acids. The presence of a NorB/NorZ-like protein was predicted from the genome sequence of the cyanobacterium Synechocystis sp. strain PCC6803. While the common NorB of denitrifying bacteria is associated with a second cytochrome c subunit, encoded by the neighboring gene norC, the nor loci of A. eutrophus and Synechocystis lack adjacent norC homologs. The physiological roles of norB and norZ in A. eutrophus were investigated with mutants disrupted in the two genes. Mutants bearing single-site deletions in norB or norZ were affected neither in aerobic nor in anaerobic growth with nitrate or nitrite as the terminal electron acceptor. Inactivation of both norB and norZ was lethal to the cells under anaerobic growth conditions. Anaerobic growth was restored in the double mutant by introducing either norB or norZ on a broad-host-range plasmid. These results show that the norB and norZ gene products are isofunctional and instrumental in denitrification.  相似文献   

6.
The Azospirillum brasilense Sp245 napABC genes, encoding nitrate reductase activity, were isolated and sequenced. The derived protein sequences are very similar throughout the whole Nap segment to the NapABC protein sequences of Escherichia coli, Pseudomonas sp. G-179, Ralstonia eutropha, Rhodobacter sphaeroides, and Paracoccus denitrificans. Based on whole-cell nitrate reductase assays with the artificial electron donors benzyl viologen and methyl viologen, and assays with periplasmic cell-free extracts, it was concluded that the napABC-encoded enzyme activity in Azospirillum brasilense Sp245 corresponds to a periplasmic dissimilatory nitrate reductase, which was expressed under anoxic conditions and oxic conditions. A kanamycin-resistant Azospirillum brasilense Sp245 napA insertion mutant was constructed. The mutant still expressed assimilatory nitrate reductase activity, but was devoid of its periplasmic dissimilatory nitrate reductase activity.  相似文献   

7.
Selenite reduction in Rhodobacter sphaeroides f. sp. denitrificans was observed under photosynthetic conditions, following a 100-h lag period. This adaptation period was suppressed if the medium was inoculated with a culture previously grown in the presence of selenite, suggesting that selenite reduction involves an inducible enzymatic pathway. A transposon library was screened to isolate mutants affected in selenite reduction. Of the eight mutants isolated, two were affected in molybdenum cofactor synthesis. These moaA and mogA mutants showed an increased duration of the lag phase and a decreased rate of selenite reduction. When grown in the presence of tungstate, a well-known molybdenum-dependent enzyme (molybdoenzyme) inhibitor, the wild-type strain displayed the same phenotype. The addition of tungstate in the medium or the inactivation of the molybdocofactor synthesis induced a decrease of 40% in the rate of selenite reduction. These results suggest that several pathways are involved and that one of them involves a molybdoenzyme. Although addition of nitrate or dimethyl sulfoxide (DMSO) to the medium increased the selenite reduction activity of the culture, neither the periplasmic nitrate reductase NAP nor the DMSO reductase is the implicated molybdoenzyme, since the napA and dmsA mutants, with expression of nitrate reductase and DMSO reductase, respectively, eliminated, were not affected by selenite reduction. A role for the biotine sulfoxide reductase, another characterized molybdoenzyme, is unlikely, since its overexpression in a defective strain did not restore the selenite reduction activity.  相似文献   

8.
Anaerobic cultures of Shewanella oneidensis MR-1 grown with nitrate as the sole electron acceptor exhibited sequential reduction of nitrate to nitrite and then to ammonium. Little dinitrogen and nitrous oxide were detected, and no growth occurred on nitrous oxide. A mutant with the napA gene encoding periplasmic nitrate reductase deleted could not respire or assimilate nitrate and did not express nitrate reductase activity, confirming that the NapA enzyme is the sole nitrate reductase. Hence, S. oneidensis MR-1 conducts respiratory nitrate ammonification, also termed dissimilatory nitrate reduction to ammonium, but not respiratory denitrification.  相似文献   

9.
Dissimilatory nitrate reduction is catalyzed by a membrane-bound and a periplasmic nitrate reductase. We set up a real-time PCR assay to quantify these two enzymes, using the narG and napA genes, encoding the catalytic subunits of the two types of nitrate reductases, as molecular markers. The narG and napA gene copy numbers in DNA extracted from 18 different environments showed high variations, with most numbers ranging from 2 x 10(2) to 6.8 x 10(4) copies per ng of DNA. This study provides evidence that, in soil samples, the number of proteobacteria carrying the napA gene is often as high as that of proteobacteria carrying the narG gene. The high correlation observed between narG and napA gene copy numbers in soils suggests that the ecological roles of the corresponding enzymes might be linked.  相似文献   

10.
Quaternary structure and composition of squash NADH:nitrate reductase   总被引:6,自引:0,他引:6  
NADH:nitrate reductase (EC 1.6.6.1) was isolated from squash cotyledons (Cucurbita maxima L.) by a combination of Blue Sepharose and zinc-chelate affinity chromatographies followed by gel filtration on Bio-Gel A-1.5m. These preparations gave a single protein staining band (Mr = 115,000) on sodium dodecyl sulfate gel electrophoresis, indicating that the enzyme is homogeneous. The native Mr of nitrate reductase was found to be 230,000, with a minor form of Mr = 420,000 also occurring. These results indicate that the native nitrate reductase is a homodimer of Mr = 115,000 subunits. Acidic amino acids predominate over basic amino acids, as shown both by the amino acid composition of the enzyme and an isoelectric point for nitrate reductase of 5.7. The homogeneous nitrate reductase had a UV/visible spectrum typical of a b-type cytochrome. The enzyme was found to contain one each of flavin (as FAD), heme iron, molybdenum, and Mo-pterin/Mr = 115,000 subunit. A model is proposed for squash nitrate reductase in which two Mr = 115,000 subunits are joined to made the native enzyme. Each subunit contains 1 eq of FAD, cytochrome b, and molybdenum/Mo-pterin.  相似文献   

11.
The nucleotide sequence of a 6.5 kilobasepair chromosomal DNA fragment encoding the anaerobic dimethylsulphoxide (DMSO) reductase operon of Escherichia coli has been determined. The DMSO reductase structural operon was shown to consist of three open reading frames, namely dmsABC, encoding polypeptides with predicted molecular weights of 87,350, 23,070, and 30,789 Daltons, respectively. The DMS A polypeptide displayed a high degree of amino acid sequence homology with the single-subunit enzyme, biotin sulphoxide reductase (bisC) and with formate dehydrogenase (fdhF), suggesting that the active site and molybdopterin cofactor binding site that is common to these enzymes is located in the DMS A subunit. A comparison of the predicted N-terminal amino acids of the dmsA gene product to those of the 82,600 subunit of purified DMSO reductase indicated that post-translational processing of a 16 amino acid peptide at the amino terminus of DMS A had occurred. The DMS B polypeptide contains 16 cysteine residues organized in four clusters, two of which are typical of 4Fe-4S binding domains. The DMS C polypeptide is composed of eight segments of hydrophobic amino acids of appropriate length to cross the cytoplasmic membrane, suggesting that this subunit functions to anchor the enzyme to the membrane.  相似文献   

12.
The prototrophic bacterium Rhodobacter sphaeroides DSM 158 has a periplasmic nitrate reductase which is induced by nitrate and it is not repressed by ammonium or oxygen. In a Tn5 mutant lacking nitrate reductase activity, transposon insertion is localized in a 1.2 kb EcoRI fragment. A 0.6 kb BamHI-EcoRI segment of this region was used as a probe to isolate, from the wild-type strain, a 6.8 kb Pstl fragment carrying the putative genes coding for the periplasmic nitrate reductase. In vivo protein expression and DNA sequence analysis reveal the presence in this region of three genes, napABC, probably organized in an operon. These genes are required for nitrate reduction, as deduced by mutational and complementation studies. The napA gene codes for a protein with a high homology to the periplasmic nitrate reductase from Alcali-genes eutrophus and, to a lesser extent, to other prokaryotic nitrate reductases and molybdenum-containing enzymes. The napB gene product has two haem c-binding sites and shows a high homology with the cytochrome c-type subunit of the periplasmic nitrate reductase from A. eutrophus. NAPA and NAPB proteins appear to be translated with signal peptides of 29 and 24 residues, respectively, indicating that mature proteins are located in the periplasm. The napC gene codes for a 25 kDa protein with a transmembrane sequence of 17 hydrophobic residues. NAPC has four haem c-binding sites and is homologous to the membrane-bound c-type cytochromes encoded by Pseudomonas stutzeri nirT and Escherichia coli torC genes. The phenotypes of defined insertion mutants constructed for each gene also indicate that periplasmic nitrate reductase from R. sphaeroides DSM 158 is a dimeric complex of a 90kDa catalytic subunit (NAPA) and a 15kDa cytochrome c (NAPB), which receives electrons from a membrane-anchored tetrahaem protein (NAPC), thus allowing electron flow between membrane and periplasm. This nitrate-reducing system differs from the assimilatory and respiratory bacterial nitrate reductases at the level of cellular localization, regulatory properties, biochemical characteristics and gene organization.  相似文献   

13.
The goal of this research was to investigate the simultaneous occurrence of nitrification and denitrification by activated sludge exposed to volatile fatty acids (VFAs) during aerobic wastewater treatment using a single-stage reactor. A mixture of VFAs was spiked directly into a continuous-stirred tank reactor (CSTR) to assess subsequent impacts on nitrite removal, nitrate formation, CO(2) fixation, total bacterial density, and dominant nitrite oxidizing bacteria (NOB) concentration (i.e., Nitrospira). The activity of the periplasmic nitrate reductase (NAP) enzyme and the presence of nap gene were also measured. A rapid decrease in the nitrate formation rate (>70% reduction) was measured for activated sludge exposed to VFAs; however, the nitrite removal rate was not reduced. The total bacterial density and Nitrospira concentration remained essentially constant; therefore, the reduction in nitrate formation rate was likely not due to heterotrophic uptake of nitrogen or to a decrease in the dominant NOB population. Additionally, VFA exposure did not impact microbial CO(2) fixation efficiency. The activity of NAP enzyme increased in the presence of VFAs suggesting that nitrate produced as a consequence of nitrite oxidation was likely further reduced to gaseous denitrification products via catalysis by NAP. Little, if any, nitrogen was discharged in the aqueous effluent of the CSTR after exposure to VFAs demonstrating that activated sludge treatment yielded compounds other than those typically produced solely by nitrification.  相似文献   

14.
15.
Generic primers are available for detecting bacterial genes required for almost every reaction of the biological nitrogen cycle, the one notable exception being napA (gene for the molybdoprotein of the periplasmic nitrate reductase) encoding periplasmic nitrate reductases. Using an iterative approach, we report the first successful design of three forward oligonucleotide primers and one reverse primer that, in three separate PCRs, can amplify napA DNA from all five groups of Proteobacteria. All 140 napA sequences currently listed in the NCBI (National Center for Biotechnology Information) database are predicted to be amplified by one or more of these primer pairs. We demonstrate that two pairs of these primers also amplify PCR products of the predicted sizes from DNA isolated from human faeces, confirming their ability to direct the amplification of napA fragments from mixed populations. Analysis of the resulting amplicons by high-throughput sequencing will enable a good estimate to be made of both the range and relative abundance of nitrate-reducing bacteria in any community, subject only to any unavoidable bias inherent in a PCR approach to molecular characterization of a highly diverse target.  相似文献   

16.
Respiratory reduction of nitrate and nitrite is encoded in Thermus thermophilus by the respective transferable gene clusters. Nitrate is reduced by a heterotetrameric nitrate reductase (Nar) encoded along transporters and regulatory signal transduction systems within the nitrate respiration conjugative element (NCE). The nitrite respiration cluster (nic) encodes homologues of nitrite reductase (Nir) and nitric oxide reductase (Nor). The expression and role of the nirSJM genes in nitrite respiration were analyzed. The three genes are expressed from two promoters, one (nirSp) producing a tricistronic mRNA under aerobic and anaerobic conditions and the other (nirJp) producing a bicistronic mRNA only under conditions of anoxia plus a nitrogen oxide. As for its nitrite reductase homologues, NirS is expressed in the periplasm, has a covalently bound heme c, and conserves the heme d1 binding pocket. NirJ is a cytoplasmic protein likely required for heme d1 synthesis and NirS maturation. NirM is a soluble periplasmic homologue of cytochrome c552. Mutants defective in nirS show normal anaerobic growth with nitrite and nitrate, supporting the existence of an alternative Nir in the cells. Gene knockout analysis of different candidate genes did not allow us to identify this alternative Nir protein but revealed the requirement for Nar in NirS-dependent and NirS-independent nitrite reduction. As the likely role for Nar in the process is in electron transport through its additional cytochrome c periplasmic subunit (NarC), we concluded all the Nir activity takes place in the periplasm by parallel pathways.  相似文献   

17.
The metabolically versatile purple bacterium Rhodobacter sphaeroides 2.4.3 is a denitrifier whose genome contains two periplasmic nitrate reductase-encoding gene clusters. This work demonstrates nonredundant physiological roles for these two enzymes. One cluster is expressed aerobically and repressed under low oxygen while the second is maximally expressed under low oxygen. Insertional inactivation of the aerobically expressed nitrate reductase eliminated aerobic nitrate reduction, but cells of this strain could still respire nitrate anaerobically. In contrast, when the anaerobic nitrate reductase was absent, aerobic nitrate reduction was detectable, but anaerobic nitrate reduction was impaired. The aerobic nitrate reductase was expressed but not utilized in liquid culture but was utilized during growth on solid medium. Growth on a variety of carbon sources, with the exception of malate, the most oxidized substrate used, resulted in nitrite production on solid medium. This is consistent with a role for the aerobic nitrate reductase in redox homeostasis. These results show that one of the nitrate reductases is specific for respiration and denitrification while the other likely plays a role in redox homeostasis during aerobic growth.  相似文献   

18.
The ability of anaerobic prokaryotes to employ different terminal electron acceptors for respiration enables these organisms to flourish in subsurface ecosystems. Desulfurispirillum indicum strain S5 is an obligate anaerobic bacterium that is able to grow by respiring a range of different electron acceptors, including arsenate and nitrate. Here, we examined the growth, electron acceptor utilization, and gene expression of D. indicum growing under arsenate and nitrate-reducing conditions. Consistent with thermodynamic predictions, the experimental results showed that the reduction of nitrate to ammonium yielded higher cell densities than the reduction of arsenate to arsenite. However, D. indicum grew considerably faster by respiration on arsenate compared with nitrate, with doubling times of 4.3 ± 0.2 h and 19.2 ± 2.0 h, respectively. Desulfurispirillum indicum growing on both electron acceptors exhibited the preferential utilization of arsenate before nitrate. The expression of the arsenate reductase gene arrA was up-regulated approximately 100-fold during arsenate reduction, as determined by qRT-PCR. Conversely, the nitrate reductase genes narG and napA were not differentially regulated under the conditions tested. The results of this study suggest that physiology, rather than thermodynamics, controls the growth rates and hierarchy of electron acceptor utilization in D. indicum.  相似文献   

19.
Bacterial cellular metabolism is renowned for its metabolic diversity and adaptability. However, certain environments present particular challenges. Aerobic metabolism of highly reduced carbon substrates by soil bacteria such as Paracoccus pantotrophus presents one such challenge since it may result in excessive electron delivery to the respiratory redox chain when compared with the availability of terminal oxidant, O2. The level of a periplasmic ubiquinol-dependent nitrate reductase, NAP, is up-regulated in the presence of highly reduced carbon substrates. NAP oxidizes ubiquinol at the periplasmic face of the cytoplasmic membrane and reduces nitrate in the periplasm. Thus its activity counteracts the accumulation of excess reducing equivalents in ubiquinol, thereby maintaining the redox poise of the ubiquinone/ubiquinol pool without contributing to the protonmotive force across the cytoplasmic membrane. Although P. pantotrophus NapAB shows a high level of substrate specificity towards nitrate, the enzyme has also been reported to reduce selenate in spectrophotometric solution assays. This transaction draws on our current knowledge concerning the bacterial respiratory nitrate reductases and extends the application of PFE (protein film electrochemistry) to resolve and quantify the selenate reductase activity of NapAB.  相似文献   

20.
Geobacter sulfurreducens AM-1 can use methacrylate as a terminal electron acceptor for anaerobic respiration. In this paper, we report on the purification and properties of the periplasmic methacrylate reductase, and show that the enzyme is dependent on the presence of a periplasmic cytochrome c (apparent K(m) = 0.12 microM). The methacrylate reductase was found to be composed of only one polypeptide with an apparent molecular mass of 50 kDa and to contain, bound tightly but not covalently, 1 mol of FAD per mol. The N-terminal amino acid sequence showed sequence similarity to a periplasmic fumarate reductase from Shewanella putrefaciens. However, methacrylate reductase did not catalyze the reduction of fumarate. The periplasmic cytochrome c, which was also purified, had an apparent molecular mass of 30 kDa and contained approximately 4 mol of heme.mol(-1). Cells of G. sulfurreducens AM-1 grown on acetate and methacrylate as an energy source were found to contain all the enzymes required for the oxidation of acetate to CO(2) via the citric acid cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号