首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arabinoxylan oligosaccharides (AXOS) are a promising class of prebiotics that have the potential to stimulate the growth of bifidobacteria and the production of butyrate in the human colon, known as the bifidogenic and butyrogenic effects, respectively. Although these dual effects of AXOS are considered beneficial for human health, their underlying mechanisms are still far from being understood. Therefore, this study investigated the metabolic interactions between Bifidobacterium longum subsp. longum NCC2705 (B. longum NCC2705), an acetate producer and arabinose substituent degrader of AXOS, and Eubacterium rectale ATCC 33656, an acetate-converting butyrate producer. Both strains belong to prevalent species of the human colon microbiota. The strains were grown on AXOS during mono- and coculture fermentations, and their growth, AXOS consumption, metabolite production, and expression of key genes were monitored. The results showed that the growth of both strains and gene expression in both strains were affected by cocultivation and that these effects could be linked to changes in carbohydrate consumption and concomitant metabolite production. The consumption of the arabinose substituents of AXOS by B. longum NCC2705 with the concomitant production of acetate allowed E. rectale ATCC 33656 to produce butyrate (by means of a butyryl coenzyme A [CoA]:acetate CoA-transferase), explaining the butyrogenic effect of AXOS. Eubacterium rectale ATCC 33656 released xylose from the AXOS substrate, which favored the B. longum NCC2705 production of acetate, explaining the bifidogenic effect of AXOS. Hence, those interactions represent mutual cross-feeding mechanisms that favor the coexistence of bifidobacterial strains and butyrate producers in the same ecological niche. In conclusion, this study provides new insights into the bifidogenic and butyrogenic effects of AXOS.  相似文献   

2.
The microbial community of the human colon contains many bacteria that produce lactic acid, but lactate is normally detected only at low concentrations (<5 mM) in feces from healthy individuals. It is not clear, however, which bacteria are mainly responsible for lactate utilization in the human colon. Here, bacteria able to utilize lactate and produce butyrate were identified among isolates obtained from 10(-8) dilutions of fecal samples from five different subjects. Out of nine such strains identified, four were found to be related to Eubacterium hallii and two to Anaerostipes caccae, while the remaining three represent a new species within clostridial cluster XIVa based on their 16S rRNA sequences. Significant ability to utilize lactate was not detected in the butyrate-producing species Roseburia intestinalis, Eubacterium rectale, or Faecalibacterium prausnitzii. Whereas E. hallii and A. caccae strains used both D- and L-lactate, the remaining strains used only the d form. Addition of glucose to batch cultures prevented lactate utilization until the glucose became exhausted. However, when two E. hallii strains and one A. caccae strain were grown in separate cocultures with a starch-utilizing Bifidobacterium adolescentis isolate, with starch as the carbohydrate energy source, the L-lactate produced by B. adolescentis became undetectable and butyrate was formed. Such cross-feeding may help to explain the reported butyrogenic effect of certain dietary substrates, including resistant starch. The abundance of E. hallii in particular in the colonic ecosystem suggests that these bacteria play important roles in preventing lactate accumulation.  相似文献   

3.
Fluorescence in situ hybridization was used to quantitate bacteria growing in a three-stage continuous culture system inoculated with human faeces, operated at two system retention times (60 and 20 h). Twenty-three different 16S rRNA gene oligonucleotide probes of varying specificities were used to detect bacteria. Organisms belonging to genera Bacteroides and Bifidobacterium, together with the Eubacterium rectale/Clostridium coccoides group, the Atopobium, Faecalibacterium prausnitzii and Eubacterium cylindroides groups, as well as the segmented filamentous bacteria, the Roseburia intestinalis group and lactic acid bacteria, were all present in high numbers in the continuous culture system. Other groups and species such as Ruminococci and Enterobacteria also persisted in the model, though not always at levels that allowed reliable quantitation. Some organisms such as Streptococci and Corynebacteria, present in the faecal inoculum, did not colonize the system. Other probes specific for Eubacterium lentum and for members of the genus Desulfovibrio did not detect these organisms at any time. Short chain fatty acid production was always highest in vessel I of the continuous culture system, however, a marked increase in acetate formation and a reduction in butyrate production occurred when system retention time was reduced to 20 h, which correlated with reductions in the numbers of butyrate-producing Roseburia.  相似文献   

4.
Recent analyses of ribosomal RNA sequence diversity have demonstrated the extent of bacterial diversity in the human colon, and have provided new tools for monitoring changes in the composition of the gut microbial community. There is now an excellent opportunity to correlate ecological niches and metabolic activities with particular phylogenetic groups among the microbiota of the human gut. Bacteria that associate closely with particulate material and surfaces in the gut include specialized primary degraders of insoluble substrates, including resistant starch, plant structural polysaccharides and mucin. Butyrate-producing bacteria found in human faeces belong mainly to the clostridial clusters IV and XIVa. In vitro and in vivo evidence indicates that a group related to Roseburia and Eubacterium rectale plays a major role in mediating the butyrogenic effect of fermentable dietary carbohydrates. Additional cluster XIVa species can convert lactate to butyrate, while some members of the clostridial cluster IX convert lactate to propionate. The metabolic outputs of the gut microbial community depend not only on available substrate, but also on the gut environment, with pH playing a major role. Better understanding of the colonic microbial ecosystem will help to explain and predict the effects of dietary additives, including nondigestible carbohydrates, probiotics and prebiotics.  相似文献   

5.
AIM: To assess the role of lactate as a precursor for butyrate biosynthesis in human colonic microflora. METHODS AND RESULTS: Three human faecal microfloras were incubated in vitro with media supplemented with 30 mmol l(-1) unenriched or 13C-enriched lactate. Lactate metabolism and short-chain fatty acid (SCFA) production were quantified. Lactate conversion to butyrate was investigated by gas chromatography-mass spectrometry and the pathways involved were identified by 13C nuclear magnetic resonance spectroscopy. All human faecal microfloras rapidly and completely fermented lactate, yielding approx. 19 mmol l(-1) total SCFAs. However, the SCFA composition varied markedly between microfloras. Butyrate was the main end-product for two microfloras but not for the third (60 and 61%vs 27% of the net concentration of SCFA produced respectively). The latter was typified by its ability to produce propionate as a major product (37%), and valerate (3%). 13C-Labelling showed that butyrate was produced through the acetyl-CoA pathway and that the three microfloras possessed significant differences in their metabolic pathways for lactate consumption. CONCLUSIONS: In contrast to the ruminal microflora, the human intestinal microflora can utilize both d- and l-lactate as precursors for butyrate synthesis. Inter-individual variation is found. SIGNIFICANCE AND IMPACT OF THE STUDY: This study suggests that the butyrogenic capability of colonic prebiotics could be related to lactate availability. These findings will direct the development of selection strategies for the isolation of new butyrate-producing bacteria among the lactate-utilizing bacteria present in the human intestinal microfloras.  相似文献   

6.
肠道内产丁酸细菌及其产物丁酸生理功能的研究进展   总被引:2,自引:0,他引:2  
产丁酸细菌是利用糖类发酵产生丁酸的一类细菌,代表种是丁酸梭菌。在动物及人类肠道内存在的产丁酸细菌主要是梭菌属、柔嫩梭菌属、罗斯式菌属、真菌属及丁酸弧菌属。本文一方面介绍部分肠道内产丁酸细菌的种类、特点及膳食纤维的摄入和肠道益生菌对产丁酸细菌的影响,另一方面对其主要代谢产物丁酸在体内的生理功能进行探讨,以期为产丁酸细菌的应用及产品开发提供理论依据。  相似文献   

7.
Butyrate‐producing bacteria play an important role in the human colon, supplying energy to the gut epithelium and regulating host cell responses. In order to explore the diversity and culturability of this functional group, we designed degenerate primers to amplify butyryl‐CoA:acetate CoA‐transferase sequences from faecal samples provided by 10 healthy volunteers. Eighty‐eight per cent of amplified sequences showed > 98% DNA sequence identity to CoA‐transferases from cultured butyrate‐producing bacteria, and these fell into 12 operational taxonomic units (OTUs). The four most prevalent OTUs corresponded to Eubacterium rectale, Roseburia faecis, Eubacterium hallii and an unnamed cultured species SS2/1. The remaining 12% of sequences, however, belonged to 20 OTUs that are assumed to come from uncultured butyrate‐producing strains. Samples taken after ingestion of inulin showed significant (P = 0.019) increases in Faecalibacterium prausnitzii. Because several of the dominant butyrate producers differ in their DNA % G+C content, analysis of thermal melt curves obtained for PCR amplicons of the butyryl‐CoA:acetate CoA‐transferase gene provides a convenient and rapid qualitative assessment of the major butyrate producing groups present in a given sample. This type of analysis therefore provides an excellent source of information on functionally important groups within the colonic microbial community.  相似文献   

8.
Phylogenetic relationships of butyrate-producing bacteria from the human gut   总被引:12,自引:0,他引:12  
Butyrate is a preferred energy source for colonic epithelial cells and is thought to play an important role in maintaining colonic health in humans. In order to investigate the diversity and stability of butyrate-producing organisms of the colonic flora, anaerobic butyrate-producing bacteria were isolated from freshly voided human fecal samples from three healthy individuals: an infant, an adult omnivore, and an adult vegetarian. A second isolation was performed on the same three individuals 1 year later. Of a total of 313 bacterial isolates, 74 produced more than 2 mM butyrate in vitro. Butyrate-producing isolates were grouped by 16S ribosomal DNA (rDNA) PCR-restriction fragment length polymorphism analysis. The results indicate very little overlap between the predominant ribotypes of the three subjects; furthermore, the flora of each individual changed significantly between the two isolations. Complete sequences of 16S rDNAs were determined for 24 representative strains and subjected to phylogenetic analysis. Eighty percent of the butyrate-producing isolates fell within the XIVa cluster of gram-positive bacteria as defined by M. D. Collins et al. (Int. J. Syst. Bacteriol. 44:812-826, 1994) and A. Willems et al. (Int. J. Syst. Bacteriol. 46:195-199, 1996), with the most abundant group (10 of 24 or 42%) clustering with Eubacterium rectale, Eubacterium ramulus, and Roseburia cecicola. Fifty percent of the butyrate-producing isolates were net acetate consumers during growth, suggesting that they employ the butyryl coenzyme A-acetyl coenzyme A transferase pathway for butyrate production. In contrast, only 1% of the 239 non-butyrate-producing isolates consumed acetate.  相似文献   

9.
Butyrate is the preferred energy source for colonocytes and has an important role in gut health; in contrast, accumulation of high concentrations of lactate is detrimental to gut health. The major butyrate-producing bacterial species in the human colon belong to the Firmicutes. Eubacterium hallii and a new species, Anaerostipes coli SS2/1, members of clostridial cluster XIVa, are able to utilize lactate and acetate via the butyryl CoA : acetate CoA transferase route, the main metabolic pathway for butyrate synthesis in the human colon. Here we provide a mathematical model to analyse the production of butyrate by lactate-utilizing bacteria from the human colon. The model is an aggregated representation of the fermentation pathway. The parameters of the model were estimated using total least squares and maximum likelihood, based on in vitro experimental data with E. hallii L2-7 and A. coli SS2/1. The findings of the mathematical model adequately match those from the bacterial batch culture experiments. Such an in silico approach should provide insight into carbohydrate fermentation and short-chain fatty acid cross-feeding by dominant species of the human colonic microbiota.  相似文献   

10.
Dietary carbohydrates have the potential to influence diverse functional groups of bacteria within the human large intestine. Of 12 Bifidobacterium strains of human gut origin from seven species tested, four grew in pure culture on starch and nine on fructo-oligosaccharides. The potential for metabolic cross-feeding between Bifidobacterium adolescentis and lactate-utilizing, butyrate-producing Firmicute bacteria related to Eubacterium hallii and Anaerostipes caccae was investigated in vitro. E. hallii L2-7 and A. caccae L1-92 failed to grow on starch in pure culture, but in coculture with B. adolescentis L2-32 butyrate was formed, indicating cross-feeding of metabolites to the lactate utilizers. Studies with [(13)C]lactate confirmed carbon flow from lactate, via acetyl coenzyme A, to butyrate both in pure cultures of E. hallii and in cocultures with B. adolescentis. Similar results were obtained in cocultures involving B. adolescentis DSM 20083 with fructo-oligosaccharides as the substrate. Butyrate formation was also stimulated, however, in cocultures of B. adolescentis L2-32 grown on starch or fructo-oligosaccharides with Roseburia sp. strain A2-183, which produces butyrate but does not utilize lactate. This is probably a consequence of the release by B. adolescentis of oligosaccharides that are available to Roseburia sp. strain A2-183. We conclude that two distinct mechanisms of metabolic cross-feeding between B. adolescentis and butyrate-forming bacteria may operate in gut ecosystems, one due to consumption of fermentation end products (lactate and acetate) and the other due to cross-feeding of partial breakdown products from complex substrates.  相似文献   

11.
Eubacterium maltosivorans YIT is a human intestinal isolate capable of acetogenic, propionogenic and butyrogenic growth. Its 4.3-Mb genome sequence contains coding sequences for 4227 proteins, including 41 different methyltransferases. Comparative proteomics of strain YIT showed the Wood–Ljungdahl pathway proteins to be actively produced during homoacetogenic growth on H2 and CO2 while butyrogenic growth on a mixture of lactate and acetate significantly upregulated the production of proteins encoded by the recently identified lctABCDEF cluster and accessory proteins. Growth on H2 and CO2 unexpectedly induced the production of two related trimethylamine methyltransferases. Moreover, a set of 16 different trimethylamine methyltransferases together with proteins for bacterial microcompartments were produced during growth and deamination of the quaternary amines, betaine, carnitine and choline. Growth of strain YIT on 1,2-propanediol generated propionate with propanol and induced the formation of bacterial microcompartments that were also prominently visible in betaine-grown cells. The present study demonstrates that E. maltosivorans is highly versatile in converting low-energy fermentation end-products in the human gut into butyrate and propionate whilst being capable of preventing the formation of the undesired trimethylamine by converting betaine and other quaternary amines in bacterial microcompartments into acetate and butyrate.  相似文献   

12.
Butyrate is a preferred energy source for colonic epithelial cells and is thought to play an important role in maintaining colonic health in humans. In order to investigate the diversity and stability of butyrate-producing organisms of the colonic flora, anaerobic butyrate-producing bacteria were isolated from freshly voided human fecal samples from three healthy individuals: an infant, an adult omnivore, and an adult vegetarian. A second isolation was performed on the same three individuals 1 year later. Of a total of 313 bacterial isolates, 74 produced more than 2 mM butyrate in vitro. Butyrate-producing isolates were grouped by 16S ribosomal DNA (rDNA) PCR-restriction fragment length polymorphism analysis. The results indicate very little overlap between the predominant ribotypes of the three subjects; furthermore, the flora of each individual changed significantly between the two isolations. Complete sequences of 16S rDNAs were determined for 24 representative strains and subjected to phylogenetic analysis. Eighty percent of the butyrate-producing isolates fell within the XIVa cluster of gram-positive bacteria as defined by M. D. Collins et al. (Int. J. Syst. Bacteriol. 44:812–826, 1994) and A. Willems et al. (Int. J. Syst. Bacteriol. 46:195–199, 1996), with the most abundant group (10 of 24 or 42%) clustering with Eubacterium rectale, Eubacterium ramulus, and Roseburia cecicola. Fifty percent of the butyrate-producing isolates were net acetate consumers during growth, suggesting that they employ the butyryl coenzyme A-acetyl coenzyme A transferase pathway for butyrate production. In contrast, only 1% of the 239 non-butyrate-producing isolates consumed acetate.  相似文献   

13.
High amylose maize starch (HAS) is not digested in the small intestine and most of it reaches the large intestine. In the large intestine, HAS is fermented by intestinal bacteria, resulting in production of short-chain fatty acids (SCFA), particularly butyrate. Clostridium butyricum can utilize HAS and produce butyrate and acetate. It has been proposed that butyrate inhibits carcinogenesis in the colon. In this study, we examined the inhibitory effects of HAS and C. butyricum strain MIYAIRI588 (CBM588) on azoxymethane-induced aberrant crypt foci (ACF) formation in rats. In the group of rats administered only CBM588 spores, the concentration of butyrate in the cecum increased, but there was no decrease in the number of ACF. In the group of rats fed an HAS diet, a decrease in the number of ACF was observed, and in the group of rats administered HAS and CBM588, the number of ACF decreased significantly. In these two groups, the concentrations of acetate and propionate in intestinal contents significantly increased, but the concentration of butyrate did not change. It was found that the beta-glucuronidase activity level of colonic contents decreased significantly in the two groups of rats fed HAS. This study showed that HAS and CBM588 changed the metabolism of colonic microbiota and decreased the level of beta-glucuronidase activity, phenomena that may play a role in the inhibition of ACF formation in the rat colon.  相似文献   

14.
AIMS: To evaluate the sensitivity of 21 common intestinal bacteria to six antibiotics and three broad-spectrum bacteriocins (nisins Z and A and pediocin PA-1). METHODS AND RESULTS: Neutralized cell-free culture supernatants containing active bacteriocins, and antibiotics were tested with the agar diffusion test and the disc-diffusion method, respectively. The tested intestinal strains showed high sensitivity to most antibiotics except for streptomycin and oxacillin. Nisins A and Z (8 mug per well) had similar activity spectra and inhibited all Gram-positive intestinal bacteria at different levels (except Streptococcus salivarius), with bifidobacteria (except Bifidobacterium breve and Bif. catenulatum), Collinsella aerofaciens and Eubacterium biforme being the most sensitive strains, but they were not active against Gram-negative bacteria. Surprisingly, none of the tested strains were inhibited by pediocin PA-1 (16 mug per well). CONCLUSION: Pediocin PA-1 which is very active against Listeria spp. and other food pathogens did not inhibit major intestinal species in the human intestine in contrast to both nisins A and Z. SIGNIFICANCE AND IMPACT OF THE STUDY: Our data suggest that pediocin PA-1 has potential to inhibit Listeria within the intestinal microbiota without altering commensal bacteria.  相似文献   

15.
The human intestine harbors both lactate-producing and lactate-utilizing bacteria. Lactate is normally present at <3 mmol liter(-1) in stool samples from healthy adults, but concentrations up to 100 mmol liter(-1) have been reported in gut disorders such as ulcerative colitis. The effect of different initial pH values (5.2, 5.9, and 6.4) upon lactate metabolism was studied with fecal inocula from healthy volunteers, in incubations performed with the addition of dl-lactate, a mixture of polysaccharides (mainly starch), or both. Propionate and butyrate formation occurred at pH 6.4; both were curtailed at pH 5.2, while propionate but not butyrate formation was inhibited at pH 5.9. With the polysaccharide mix, lactate accumulation occurred only at pH 5.2, but lactate production, estimated using l-[U-(13)C]lactate, occurred at all three pH values. Lactate was completely utilized within 24 h at pH 5.9 and 6.4 but not at pH 5.2. At pH 5.9, more butyrate than propionate was formed from l-[U-(13)C]lactate in the presence of polysaccharides, but propionate, formed mostly by the acrylate pathway, was the predominant product with lactate alone. Fluorescent in situ hybridization demonstrated that populations of Bifidobacterium spp., major lactate producers, increased approximately 10-fold in incubations with polysaccharides. Populations of Eubacterium hallii, a lactate-utilizing butyrate-producing bacterium, increased 100-fold at pH 5.9 and 6.4. These experiments suggest that lactate is rapidly converted to acetate, butyrate, and propionate by the human intestinal microbiota at pH values as low as 5.9, but at pH 5.2 reduced utilization occurs while production is maintained, resulting in lactate accumulation.  相似文献   

16.
Three isolated strains from human feces were characterized by biochemical tests and 16S rDNA analysis. Phylogenetic analysis revealed that these isolated strains were members of the Clostridium subphylum of gram-positive bacteria. The phenotypic characters resembled those of the genus Eubacterium, but these strains were shown to be phylogenetically distant from the type species of the genus, Eubacterium limosum. The strains showed a specific phylogenetic association with Holdemania filiformis and Erysipelothrix rhusiopathiae. Based on a 16S rDNA sequence divergence of greater than 12% with H. filiformis and E. rhusiopathiae, a new genus, Solobacterium, is proposed for three strains, with one species, Solobacterium moorei. The type strain of Solobacterium moorei is JCM 10645T.  相似文献   

17.
Eubacterium limosum KIST612 is one of the few acetogenic bacteria that has the genes encoding for butyrate synthesis from acetyl-CoA, and indeed, E. limosum KIST612 is known to produce butyrate from CO but not from H2 + CO2. Butyrate production from CO was only seen in bioreactors with cell recycling or in batch cultures with addition of acetate. Here, we present detailed study on growth of E. limosum KIST612 on different carbon and energy sources with the goal, to find other substrates that lead to butyrate formation. Batch fermentations in serum bottles revealed that acetate was the major product under all conditions investigated. Butyrate formation from the C1 compounds carbon dioxide and hydrogen, carbon monoxide or formate was not observed. However, growth on glucose led to butyrate formation, but only in the stationary growth phase. A maximum of 4.3 mM butyrate was observed, corresponding to a butyrate:glucose ratio of 0.21:1 and a butyrate:acetate ratio of 0.14:1. Interestingly, growth on the C1 substrate methanol also led to butyrate formation in the stationary growth phase with a butyrate:methanol ratio of 0.17:1 and a butyrate:acetate ratio of 0.33:1. Since methanol can be produced chemically from carbon dioxide, this offers the possibility for a combined chemical-biochemical production of butyrate from H2 + CO2 using this acetogenic biocatalyst. With the advent of genetic methods in acetogens, butanol production from methanol maybe possible as well.  相似文献   

18.
Wheat dextrin soluble fibre may have metabolic and health benefits, potentially acting via mechanisms governed by the selective modulation of the human gut microbiota. Our aim was to examine the impact of wheat dextrin on the composition and metabolic activity of the gut microbiota. We used a validated in vitro three-stage continuous culture human colonic model (gut model) system comprised of vessels simulating anatomical regions of the human colon. To mimic human ingestion, 7 g of wheat dextrin (NUTRIOSE® FB06) was administered to three gut models, twice daily at 10.00 and 15.00, for a total of 18 days. Samples were collected and analysed for microbial composition and organic acid concentrations by 16S rRNA-based fluorescence in situ hybridisation and gas chromatography approaches, respectively. Wheat dextrin mediated a significant increase in total bacteria in vessels simulating the transverse and distal colon, and a significant increase in key butyrate-producing bacteria Clostridium cluster XIVa and Roseburia genus in all vessels of the gut model. The production of principal short-chain fatty acids, acetate, propionate and butyrate, which have been purported to have protective, trophic and metabolic host benefits, were increased. Specifically, wheat dextrin fermentation had a significant butyrogenic effect in all vessels of the gut model and significantly increased production of acetate (vessels 2 and 3) and propionate (vessel 3), simulating the transverse and distal regions of the human colon, respectively. In conclusion, wheat dextrin NUTRIOSE® FB06 is selectively fermented in vitro by Clostridium cluster XIVa and Roseburia genus and beneficially alters the metabolic profile of the human gut microbiota.  相似文献   

19.
From human feces two phenotypically different types of bacteria were isolated on quercetin-3-glucoside as carbon and energy source. Isolates of one type were identified as strains of Enterococcus casseliflavus. They utilized the sugar moiety of the glycoside, but did not degrade the aglycon further. The sugar moiety (4 mM) was fermented to 5.5 ± 2.1 mM formate, 2.1 ± 0.7 mM acetate, 1.6 ± 0.3 mM l-lactate, and 1.3 ± 0.4 mM ethanol. The second type of isolate was identified as Eubacterium ramulus. This organism was capable of degrading the aromatic ring system. Growing cultures of Eubacterium ramulus converted 5 mM quercetin-3-glucoside to 1.7 ± 0.6 mM 3,4-dihydroxyphenylacetic acid, 7.6 ± 1.0 mM acetate, and 4.0 ± 0.4 mM butyrate. Molecular hydrogen, 3,4-dihydroxybenzaldehyde, and ethanol were detected in small amounts. Phloroglucinol was a transient intermediate in the breakdown of quercetin-3-glucoside. Eubacterium ramulus did not grow on the aglycon quercetin or the ring-fission intermediate phloroglucinol, but cleaved the flavonoid ring system when glucose was present as a cosubstrate. The most probable number of quercetin-3-glucoside-degrading bacteria determined in nine human fecal samples was 107–109/g dry mass. Isolates from these experiments were all identified as Eubacterium ramulus. Received: 9 July 1998 / Accepted: 10 November 1998  相似文献   

20.
Potential prebiotic properties of almond (Amygdalus communis L.) seeds   总被引:1,自引:0,他引:1  
Almonds are known to have a number of nutritional benefits, including cholesterol-lowering effects and protection against diabetes. They are also a good source of minerals and vitamin E, associated with promoting health and reducing the risk for chronic disease. For this study we investigated the potential prebiotic effect of almond seeds in vitro by using mixed fecal bacterial cultures. Two almond products, finely ground almonds (FG) and defatted finely ground almonds (DG), were subjected to a combined model of the gastrointestinal tract which included in vitro gastric and duodenal digestion, and the resulting fractions were subsequently used as substrates for the colonic model to assess their influence on the composition and metabolic activity of gut bacteria populations. FG significantly increased the populations of bifidobacteria and Eubacterium rectale, resulting in a higher prebiotic index (4.43) than was found for the commercial prebiotic fructooligosaccharides (4.08) at 24 h of incubation. No significant differences in the proportions of gut bacteria groups were detected in response to DG. The increase in the numbers of Eubacterium rectale during fermentation of FG correlated with increased butyrate production. In conclusion, we have shown that the addition of FG altered the composition of gut bacteria by stimulating the growth of bifidobacteria and Eubacterium rectale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号