首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Climate‐driven range shifts are ongoing in pelagic marine environments, and ecosystems must respond to combined effects of altered species distributions and environmental drivers. Hypoxic oxygen minimum zones (OMZs) in midwater environments are shoaling globally; this can affect distributions of species both geographically and vertically along with predator–prey dynamics. Humboldt (jumbo) squid (Dosidicus gigas) are highly migratory predators adapted to hypoxic conditions that may be deleterious to their competitors and predators. Consequently, OMZ shoaling may preferentially facilitate foraging opportunities for Humboldt squid. With two separate modeling approaches using unique, long‐term data based on in situ observations of predator, prey, and environmental variables, our analyses suggest that Humboldt squid are indirectly affected by OMZ shoaling through effects on a primary food source, myctophid fishes. Our results suggest that this indirect linkage between hypoxia and foraging is an important driver of the ongoing range expansion of Humboldt squid in the northeastern Pacific Ocean.  相似文献   

2.
The rate of oxygen consumption (OC) of 9 species of freshwater mussels was measured under declining dissolved oxygen (DO) concentrations. The effects of temperature for some species also was investigated. The pattern of the OC vs. DO curve for each species was used in a hyperbolic model to compare abilities to regulate OC under low oxygen conditions. At 24.5 °C, Pyganodon grandis (from lakes), Amblema plicata and Quadrula pustulosa (from mud or sand in large rivers), Elliptio complanata (from pool areas in rivers), and Elliptio fisheriana and Elliptio lanceolata (from bank margins of rivers) were better able to maintain OC under low DO than were Villosa iris and Villosa constricta (which inhabit riffles) and Pleurobema cordatum (found in rivers with moderate flow). Villosa iris was especially sensitive to low oxygen conditions. The ability to maintain normal OC at low DO was improved considerably at 16.5 °C for V. iris, P. grandis and E. complanata. It is concluded that oxygen regulation ability appears to be related to the degree of hypoxia a species normally experiences in its habitat type, and it is enhanced at low temperature. The measurement of OC vs. DO may be a useful technique for estimating DO water quality criteria for endangered species because it is noninvasive.  相似文献   

3.
Crocodilians are diving reptiles that can hold their breath under water for long periods of time and are crepuscular animals with excellent sensory abilities. They comprise a sister lineage of birds and have no sex chromosome. Here we report the genome sequence of the endangered Chinese alligator (Alligator sinensis) and describe its unique features. The next-generation sequencing generated 314 Gb of raw sequence, yielding a genome size of 2.3 Gb. A total of 22 200 genes were predicted in Alligator sinensis using a de novo, homology- and RNA-based combined model. The genetic basis of long-diving behavior includes duplication of the bicarbonate-binding hemoglobin gene, co-functioning of routine phosphate-binding and special bicarbonate-binding oxygen transport, and positively selected energy metabolism, ammonium bicarbonate excretion and cardiac muscle contraction. Further, we elucidated the robust Alligator sinensis sensory system, including a significantly expanded olfactory receptor repertoire, rapidly evolving nerve-related cellular components and visual perception, and positive selection of the night vision-related opsin and sound detection-associated otopetrin. We also discovered a well-developed immune system with a considerable number of lineage-specific antigen-presentation genes for adaptive immunity as well as expansion of the tripartite motif-containing C-type lectin and butyrophilin genes for innate immunity and expression of antibacterial peptides. Multifluorescence in situ hybridization showed that alligator chromosome 3, which encodes DMRT1, exhibits significant synteny with chicken chromosome Z. Finally, population history analysis indicated population admixture 0.60-1.05 million years ago, when the Qinghai-Tibetan Plateau was uplifted.  相似文献   

4.
目的:观察模拟空气潜水对大鼠脾组织氧自由基(OFR)生成的影响。方法:腹腔注射自旋捕捉剂,高气压处理后检测大鼠脾组织生成的OFR。结果:模拟空气潜水后大鼠脾组织OFR生成增多,并检测到了.OH信号。结论:空气模拟潜水时呼吸气中高分压氧可促进脾组织OFR生成,主要类型可能为羟自由基。  相似文献   

5.
目的:建立一种实时记录常压低氧环境中动物氧耗量的方法。方法:本实验装置由动物舱、补水控制系统、天平、软管、装有体重记录软件的电脑等组成。为了实现常压低氧,用水补充动物消耗的氧气以保持动物舱内压力恒定,这个过程由气液联动装置控制;补充的水量由天平测量并同步输出信号至excel文档中。用注射器抽气校准方法检测了装置的准确性和精度。利用该装置观察了6只急性重复低氧小鼠(处理组)和6只未经低氧处理的小鼠(对照组)的常压低氧过程的氧耗量特征。结果:不同体积抽气量与相应补水量两组数据配对t检验P=1;重复抽1 ml氧气6次的补水量变异系数为4%。处理组小鼠的存活时间为(58.8±6.8)min,显著高于对照组(46.0±8.7)min(P〈0.05)。处理组小鼠的总氧耗量为(85.1±8.5)ml,显著高于对照组(73.6±5.4)ml(P〈0.05)。结论:处理组小鼠摄取氧总量增多从而显著延长其存活时间。氧耗量测定装置准确度和精密度较高,可用于低氧研究中氧耗量的测定。  相似文献   

6.
    
Deoxygenation in the global ocean is predicted to induce ecosystem‐wide changes. Analysis of multidecadal oxygen time‐series projects the northeast Pacific to be a current and future hot spot of oxygen loss. However, the response of marine communities to deoxygenation is unresolved due to the lack of applicable data on component species. We repeated the same benthic transect (n = 10, between 45 and 190 m depths) over 8 years in a seasonally hypoxic fjord using remotely operated vehicles equipped with oxygen sensors to establish the lower oxygen levels at which 26 common epibenthic species can occur in the wild. By timing our surveys to shoaling hypoxia events, we show that fish and crustacean populations persist even in severe hypoxia (<0.5 mL L?1) with no mortality effects but that migration of mobile species occurs. Consequently, the immediate response to hypoxia expansion is the collapse of community structure; normally partitioned distributions of resident species coalesced and localized densities increased. After oxygen renewal and formation of steep oxygen gradients, former ranges re‐established. High frequency data from the nearby VENUS subsea observatory show the average oxygen level at our site declined by ~0.05 mL L?1 year?1 over the period of our study. The increased annual duration of the hypoxic (<1.4 mL L?1) and severely hypoxic periods appears to reflect the oxygen dynamics demonstrated in offshore source waters and the adjacent Strait of Georgia. Should the current trajectory of oxygen loss continue, community homogenization and reduced suitable habitat may become the dominant state of epibenthic systems in the northeast Pacific. In situ oxygen occurrences were not congruent with lethal and sublethal hypoxia thresholds calculated across the literature for major taxonomic groups indicating that research biases toward laboratory studies on Atlantic species are not globally applicable. Region‐specific hypoxia thresholds are necessary to predict future impacts of deoxygenation on marine biodiversity.  相似文献   

7.
Oxygen supply and diffusion into tissues are necessary for survival. The oxygen partial pressure (pO(2)), which is a key component of the physiological state of an organ, results from the balance between oxygen delivery and its consumption. In mammals, oxygen is transported by red blood cells circulating in a well-organized vasculature. Oxygen delivery is dependent on the metabolic requirements and functional status of each organ. Consequently, in a physiological condition, organ and tissue are characterized by their own unique 'tissue normoxia' or 'physioxia' status. Tissue oxygenation is severely disturbed during pathological conditions such as cancer, diabetes, coronary heart disease, stroke, etc., which are associated with decrease in pO(2), i.e. 'hypoxia'. In this review, we present an array of methods currently used for assessing tissue oxygenation. We show that hypoxia is marked during tumour development and has strong consequences for oxygenation and its influence upon chemotherapy efficiency. Then we compare this to physiological pO(2) values of human organs. Finally we evaluate consequences of physioxia on cell activity and its molecular modulations. More importantly we emphasize the discrepancy between in vivo and in vitro tissue and cells oxygen status which can have detrimental effects on experimental outcome. It appears that the values corresponding to the physioxia are ranging between 11% and 1% O(2) whereas current in vitro experimentations are usually performed in 19.95% O(2), an artificial context as far as oxygen balance is concerned. It is important to realize that most of the experiments performed in so-called normoxia might be dangerously misleading.  相似文献   

8.
    
Recent experiments support the idea that upper thermal limits of aquatic insects arise, at least in part, from a lack of sufficient oxygen: rising temperatures typically stimulate metabolic demand for oxygen more than they increase rates of oxygen supply from the environment. Consequently, factors influencing oxygen supply, like water flow, should also affect thermal and hypoxia tolerance. We tested this hypothesis by measuring the effects of experimentally manipulated flows on the heat and hypoxia tolerance of aquatic nymphs of the giant salmonfly (Plecoptera: Pteronarcys californica), a common stonefly in western North America. As predicted, stoneflies in flowing water (10 cm s−1) tolerated water that was approximately 4°C warmer and that contained approximately 15% less oxygen than did those in standing water. Our results imply that the impacts of climate change on streamflow, such as changes in patterns of precipitation and decreased snowpack, will magnify the threats to aquatic insects from warmer water temperatures and lower oxygen levels.  相似文献   

9.
In this paper recent benthic biological studies in the Eastern Gotland Basin area of the Baltic Sea are summarised. A general pattern of vertical distribution of macrofauna is presented and special reference is made to sharp temporal changes in macrofauna of deeper, subhalocline areas of the basin. Information on faunal sediment reworking ability is compiled. The environmental factors driving benthic zonation are discussed and the vertical benthic zones are defined on the basis of their major biological and abiotic features. This analysis shows that due to sharp gradients in environment and clear differences in composition of macrofauna, the ecological functioning of the Eastern Gotland Basin benthic zones is clearly different. Therefore, in the biogeochemical models of benthic-pelagic interaction, these zones (together with water layers they underlie) should be treated separately, as different sub-systems.  相似文献   

10.
The diurnal vertical migrations of smelt (Osmerus eperlanus), larvae of phantom midge (Chaoborus flavicans) and cladoceran zooplankton in eutrophic Lake Hiidenvesi were studied in order to clarify the factors behind the low zooplankton biomass. In the study area, an oxygen minimum occurred in the metalimnion in the 10–15 m depth. No diurnal fluctuations in the position of the minimum were observed. Cladocerans inhabited the epilimnion throughout the study period and their vertical movements were restricted to above the thermocline and above the oxygen minimum. C. flavicansconducted a diurnal migration. During the day, the majority of the population inhabited the 12 – 15 m depth just in the oxygen minimum, while during darkness they were found in the uppermost 8 m. Smelts started ascending towards the water surface before sunset and reached the uppermost 3 m around 23:00. During daytime, the majority of smelts inhabited the depth of 7–9 m, where the water temperature was unfavourably high for them (18 °C). Smelts thus probably avoided the steep oxygen gradient in the metalimnion, whereas Chaoborusused the oxygen minimum as a refuge against predation. Those smelts that were found in the same water layers as Chaoborusused the larvae as their main prey. The metalimnetic oxygen minimum thus seemed to favour the coexistence of vertebrate and invertebrate predators, leading to a depression of cladoceran zooplankton.  相似文献   

11.
    
Shoaling of large oxygen minimum zones (OMZs) that form along eastern margins of the world's oceans can reduce habitat availability for some pelagic fishes. Our aim was to test the hypothesis that habitat compression caused by shoaling of the Pacific OMZ in tropical regions creates a boundary to the southern distribution of shortfin mako sharks (Isurus oxyrinchus) in the Eastern North Pacific Ocean.  相似文献   

12.
The recent identification of the oxygen-sensing mechanism in plants is a breakthrough in plant physiology. The presence of a conserved N-terminal motif on some ethylene responsive factors (ERFs), targets the protein for post-translational modifications finally leading to degradation under normoxia and thus providing a mechanism for sensing the presence of oxygen. The stabilization of the N-terminus under low oxygen activates these ERFs, which regulate low oxygen core genes that enable plants to tolerate abiotic stress such as flooding. Additional mechanisms that signal low-oxygen probably also exist, and the production of reactive oxygen species (ROS) has been observed under low oxygen, suggesting that ROS might be part of the network involved in plant acclimation. Here, we review the most recent findings related to oxygen sensing.  相似文献   

13.
14.
    
Mammals regulate their brain tissue PO2 tightly, and only small changes in brain PO2 are required to elicit compensatory ventilation. However, unlike the flow-through cardiovascular system of vertebrates, insect tissues exchange gases through blind-ended tracheoles, which may involve a more prominent role for diffusive gas exchange. We tested the effect of progressive hypoxia on ventilation and the PO2 of the metathoracic ganglion (neural site of control of ventilation) using microelectrodes in the American locust, Schistocerca americana. In normal air (21 kPa), PO2 of the metathoracic ganglion was 12 kPa. The PO2 of the ganglion dropped as air PO2 dropped, with ventilatory responses occurring when ganglion PO2 reached 3 kPa. Unlike vertebrates, insects tolerate relatively high resting tissue PO2 levels and allow tissue PO2 to drop during hypoxia, activity and discontinuous gas exchange before activating convective or spiracular gas exchange. Tracheated animals, and possibly pancrustaceans in general, seem likely to generally experience wide spatial and temporal variation in tissue PO2 compared with vertebrates, with important implications for physiological function and the evolution of oxygen-using proteins.  相似文献   

15.
    
This study quantified physiological responses of skilletfish Gobiesox strumosus exposed to thermal and oxic stress. Fish acclimated at 12, 22 and 32° C had low oxygen tolerance values (mean ±s.d .) of 0·40 ± 0·09, 0·40 ± 0·08 and 0·35 ± 0·03, and critical thermal maxima (mean ±s.d .) of 33·2 ± 0·5, 38·1 ± 0·0 and 39·5 ± 0·3° C, respectively. Furthermore, G. strumosus were oxygen conformers at all acclimation temperatures, i.e. the fish allowed oxygen consumption rates to decrease with ambient oxygen concentration. High temperature tolerance, low oxygen tolerance and decreasing metabolic rates during hypoxic events allow the fish to survive harsh environmental conditions encountered in their natural environment.  相似文献   

16.
17.
Cellular Adaptive Responses to Low Oxygen Tension: Apoptosis and Resistance   总被引:1,自引:0,他引:1  
Oxygen plays such a critical role in the central nervous system that a specialized mechanism of oxygen delivery to neurons is required. Reduced oxygen tension, or hypoxia, may have severe detrimental effects on neuronal cells. Several studies suggest that hypoxia can induce cellular adaptive responses that overcome apoptotic signals in order to minimize hypoxic injury or damage. Adaptive responses of neuronal cells to hypoxia may involve activation of various ion channels, as well as induction of specific gene expression. For example, ATP sensitive K+ channels are activated by hypoxia in selective neuronal cells, and may play a role in cell survival during hypoxia/anoxia. Additionally, hypoxia-induced c-Jun, bFGF and NGF expression appear to be associated with prevention (or delay) of neuronal cell apoptosis. In this paper, these adaptive responses to hypoxia in neuronal cells are discussed to examine the possible role of hypoxia in pathophysiology of diseases.  相似文献   

18.
    
Poor oxygen transport is a major obstacle currently for 3D microtissue culture platforms, which at this time cannot be grown large enough to be truly physiologically relevant and replicate adult human organ functions. To overcome internal oxygen transport deficiencies, oxygenating microgels are formed utilizing perfluorocarbon (PFC) modified chitosan and a highly scalable water‐in‐oil miniemulsion method. Microgels that are on the order of a cell diameter (≈10 µm) are formed allowing them to directly associate with cells when included in 3D spheroid culture, while not being internalized. The presence of immobilized PFCs in these microgels allows for enhancement and tuning of oxygen transport when incorporated into cultured microtissues. As such, it is demonstrated that incorporating oxygenating microgels at ratios ranging from 50:1 to 400:1 (# of cells:# of microgels) into dense human fibroblast‐based spheroids facilitated the growth of larger human cell‐based spheroids, especially at the highest incorporation percentages (50:1), which lacked defined hypoxic cores. Quantification of total double‐stranded (ds)‐DNA, a measure of number of live cells, demonstrated similar results to hypoxia quantification, showing more ds‐DNA due incorporation of oxygenating microgels. Finally, oxygen concentrations are measured at different depths within spheroids directly and confirmed higher oxygen partial pressures due to chitosan‐PFC microspheres.  相似文献   

19.
20.
    
The average rate of swimming speed and the physiological status or stress of individual Atlantic cod Gadus morhua was monitored in response to short-term acute (STA) hypoxia ( i.e. partial pressure of oxygen,     , reduced from 20·9 to 4·3 kPa within 1 h at 10° C). The STA hypoxic response of Atlantic cod was associated with a large primary increase (+29%) and a large secondary decrease (−54%) in swimming speed as well as major physiological stress ( e.g. plasma cortisol = 214·7 ng ml−1 and blood lactate = 2·41 mmol l−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号