首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Missense mutations in the human presenilin-1 (PS1) gene, which is found on chromosome 14, cause early-onset familial Alzheimer's disease (FAD). FAD-linked PS1 variants alter proteolytic processing of the amyloid precursor protein and cause an increase in vulnerability to apoptosis induced by various cell stresses. However, the mechanisms responsible for these phenomena are not clear. Here we report that mutations in PS1 affect the unfolded-protein response (UPR), which responds to the increased amount of unfolded proteins that accumulate in the endoplasmic reticulum (ER) under conditions that cause ER stress. PS1 mutations also lead to decreased expression of GRP78/Bip, a molecular chaperone, present in the ER, that can enable protein folding. Interestingly, GRP78 levels are reduced in the brains of Alzheimer's disease patients. The downregulation of UPR signalling by PS1 mutations is caused by disturbed function of IRE1, which is the proximal sensor of conditions in the ER lumen. Overexpression of GRP78 in neuroblastoma cells bearing PS1 mutants almost completely restores resistance to ER stress to the level of cells expressing wild-type PS1. These results show that mutations in PS1 may increase vulnerability to ER stress by altering the UPR signalling pathway.  相似文献   

2.
gadd153, also known as chop, is a highly stress-inducible gene that is robustly expressed following disruption of homeostasis in the endoplasmic reticulum (ER) (so-called ER stress). Although all reported types of ER stress induce expression of Gadd153, its role in the stress response has remained largely undefined. Several studies have correlated Gadd153 expression with cell death, but a mechanistic link between Gadd153 and apoptosis has never been demonstrated. To address this issue we employed a cell model system in which Gadd153 is constitutively overexpressed, as well as two cell lines in which Gadd153 expression is conditional. In all cell lines, overexpression of Gadd153 sensitized cells to ER stress. Investigation of the mechanisms contributing to this effect revealed that elevated Gadd153 expression results in the down-regulation of Bcl2 expression, depletion of cellular glutathione, and exaggerated production of reactive oxygen species. Restoration of Bcl2 expression in Gadd153-overexpressing cells led to replenishment of glutathione and a reduction in levels of reactive oxygen species, and it protected cells from ER stress-induced cell death. We conclude that Gadd153 sensitizes cells to ER stress through mechanisms that involve down-regulation of Bcl2 and enhanced oxidant injury.  相似文献   

3.
Role of the unfolded protein response in cell death   总被引:10,自引:0,他引:10  
Unfolded protein response (UPR) is an important genomic response to endoplasmic reticulum (ER) stress. The ER chaperones, GRP78 and Gadd153, play critical roles in cell survival or cell death as part of the UPR, which is regulated by three signaling pathways: PERK/ATF4, IRE1/XBP1 and ATF6. During the UPR, accumulated unfolded protein is either correctly refolded, or unsuccessfully refolded and degraded by the ubiquitin-proteasome pathway. When the unfolded protein exceeds a threshold, damaged cells are committed to cell death, which is mediated by ATF4 and ATF6, as well as activation of the JNK/AP-1/Gadd153-signaling pathway. Gadd153 suppresses activation of Bcl-2 and NF-κB. UPR-mediated cell survival or cell death is regulated by the balance of GRP78 and Gadd153 expression, which is coregulated by NF-κB in accordance with the magnitude of ER stress. Less susceptibility to cell death upon activation of the UPR may contribute to tumor progression and drug resistance of solid tumors.  相似文献   

4.
FAD mutations in presenilin-1 (PS1) cause attenuation of the induction of the endoplasmic reticulum (ER)-resident chaperone GRP78/BiP under ER stress, due to disturbed function of IRE1, the sensor for accumulation of unfolded protein in the ER lumen. PERK, an ER-resident transmembrane protein kinase, is also a sensor for the unfolded protein response (UPR), causing phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) to inhibit translation initiation. Here, we report that the FAD mutant PS1 disturbs the UPR by attenuating both the activation of PERK and the phosphorylation of eIF2alpha. Consistent with the results of a disturbed UPR, inhibition of protein synthesis under ER stress was impaired in cells expressing PS1 mutants. These results suggest that mutant PS1 impedes general translational attenuation regulated by PERK and eIF2alpha, resulting in an increased load of newly synthesized proteins into the ER and subsequently increasing vulnerability to ER stress.  相似文献   

5.
6.
Presenilin 1 (PS1), a polytopic membrane protein, has a critical role in the trafficking and proteolysis of a selected set of transmembrane proteins. The vast majority of individuals affected with early onset familial Alzheimer's disease (FAD) carry missense mutations in PS1. Two studies have suggested that loss of PS1 function, or expression of FAD-linked PS1 variants, compromises the mammalian unfolded-protein response (UPR), and we sought to evaluate the potential role of PS1 in the mammalian UPR. Here we show that that neither the endoplasmic reticulum (ER) stress-induced accumulation of BiP and CHOP messenger RNA, nor the activation of ER stress kinases IRE1alpha and PERK, is compromised in cells lacking both PS1 and PS2 or in cells expressing FAD-linked PS1 variants. We also show that the levels of BiP are not significantly different in the brains of individuals with sporadic Alzheimer's disease or PS1-mediated FAD to levels in control brains. Our findings provide evidence that neither loss of PS1 and PS2 function, nor expression of PS1 variants, has a discernable impact on ER stress-mediated induction of the several established 'readouts' of the UPR pathway.  相似文献   

7.
8.
9.
Falcarindiol (FAD) is a natural polyyne with various beneficial biological activities. We show here that FAD preferentially kills colon cancer cells but not normal colon epithelial cells. Furthermore, FAD inhibits tumor growth in a xenograft tumor model and exhibits strong synergistic killing of cancer cells with 5-fluorouracil, an approved cancer chemotherapeutic drug. We demonstrate that FAD-induced cell death is mediated by induction of endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR). Decreasing the level of ER stress, either by overexpressing the ER chaperone protein glucose-regulated protein 78 (GRP78) or by knockout of components of the UPR pathway, reduces FAD-induced apoptosis. In contrast, increasing the level of ER stress by knocking down GRP78 potentiates FAD-induced apoptosis. Finally, FAD-induced ER stress and apoptosis is correlated with the accumulation of ubiquitinated proteins, suggesting that FAD functions at least in part by interfering with proteasome function, leading to the accumulation of unfolded protein and induction of ER stress. Consistent with this, inhibition of protein synthesis by cycloheximide significantly decreases the accumulation of ubiquitinated proteins and blocks FAD-induced ER stress and cell death. Taken together, our study shows that FAD is a potential new anticancer agent that exerts its activity through inducing ER stress and apoptosis.  相似文献   

10.
The mechanism of how fluoride causes fluorosis remains unknown. Exposure to fluoride can inhibit protein synthesis, and this may also occur by agents that cause endoplasmic reticulum (ER) stress. When translated proteins fail to fold properly or become misfolded, ER stress response genes are induced that together comprise the unfolded protein response. Because ameloblasts are responsible for dental enamel formation, we used an ameloblast-derived cell line (LS8) to characterize specific responses to fluoride treatment. LS8 cells were growth-inhibited by as little as 1.9-3.8 ppm fluoride, whereas higher doses induced ER stress and caspase-mediated DNA fragmentation. Growth arrest and DNA damage-inducible proteins (GADD153/CHOP, GADD45alpha), binding protein (BiP/glucose-responsive protein 78 (GRP78), the non-secreted form of carbonic anhydrase VI (CA-VI), and active X-box-binding protein-1 (Xbp-1) were all induced significantly after exposure to 38 ppm fluoride. Unexpectedly, DNA fragmentation increased when GADD153 expression was inhibited by short interfering RNA treatment but remained unaffected by transient GADD153 overexpression. Analysis of control and GADD153(-/-) embryonic fibroblasts demonstrated that caspase-3 mediated the increased DNA fragmentation observed in the GADD153 null cells. We also demonstrate that mouse incisor ameloblasts are sensitive to the toxic effects of high dose fluoride in drinking water. Activated Ire1 initiates an ER stress response pathway, and mouse ameloblasts were shown to express activated Ire1. Ire1 levels appeared induced by fluoride treatment, indicating that ER stress may play a role in dental fluorosis. Low dose fluoride, such as that present in fluoridated drinking water, did not induce ER stress.  相似文献   

11.
Endogenous agonists of transient receptor potential vanilloid-1 (TRPV1) (endovanilloids) are implicated as mediators of lung injury during inflammation. This study tested the hypothesis that endovanilloids produced following lipopolysaccharide (LPS) treatment activate TRPV1 and cause endoplasmic reticulum stress/GADD153 expression in lung cells, representing a mechanistic component of lung injury. The TRPV1 agonist nonivamide induced GADD153 expression and caused cytotoxicity in immortalized and primary human bronchial, bronchiolar/alveolar, and microvascular endothelial cells, proportional to TRPV1 mRNA expression. In CF-1 mice, Trpv1 mRNA was most abundant in the alveoli, and intratracheal nonivamide treatment promoted Gadd153 expression in the alveolar region. Treatment of CF-1 mice with LPS increased Gadd153 in the lung, lactate dehydrogenase (LDH) in bronchoalveolar lavage (BAL) fluid, and lung wet-to-dry weight ratio. Cotreating mice with LPS and the TRPV1 antagonist LJO-328 reduced Gadd153 induction and LDH in BAL but did not inhibit increases in lung wet-to-dry ratio. In Trpv1(-/-) mice treated with LPS, Gadd153 induction and LDH in BAL were reduced relative to wild-type mice, and the wet-to-dry weight ratios of lungs from both wild-type and Trpv1(-/-) mice decreased. Organic extracts of blood collected from LPS-treated mice were more cytotoxic to TRPV1-overexpressing cells compared with BEAS-2B cells and extracts from control mice, however, most pure endovanilloids did not produce cytotoxicity in a characteristic TRPV1-dependent manner. Collectively, these data indicate a role for TRPV1, and endogenous TRPV1 agonists, in ER stress and cytotoxicity in lung cells but demonstrate that ER stress and cytotoxicity are not essential for pulmonary edema.  相似文献   

12.
Gene knockout studies in mice suggest that presenilin 1 (PS1) is the major gamma-secretase and that it contributes disproportionately to amyloid beta (Abeta) peptide generation from beta-amyloid precursor protein (APP), whereas PS2 plays a more minor role. Based on this and other observations we hypothesized that familial Alzheimer's disease (FAD) mutations in PS2 would have a dramatic effect on function in order to have an observable effect on Abeta levels in the presence of normal PS1 alleles. Only four of the eight reported FAD mutations in PS2 have altered function in vitro suggesting that the other variants represent rare polymorphisms rather than disease-causing mutations. In support of our hypothesis, the four verified PS2 FAD mutations cause substantial changes in the Abeta 42/40 ratio, comparable with PS1 mutations that cause very-early-onset FAD. Most of the PS2 mutations also cause a significant decrease in Abeta 40, APP C-terminal fragment (CTF)gamma and Notch intracellular domain (NICD) production suggesting that they are partial loss of function mutations. PS2 M239V, its PS1 homolog M233V, and other FAD mutations within transmembrane (TM) 5 of PS1 differentially affect CTFgamma and NICD production suggesting that TM5 of PS are important for gamma-secretase cleavage of APP but not Notch.  相似文献   

13.
Most mutations in amyloid precursor proteins (APPs) linked to early onset familial Alzheimer's disease (FAD) increase the production of amyloid-beta peptides ending at residue 42 (Abeta42), which are released from APP by beta- and gamma-secretase cleavage. Stably transfected cells expressing wild-type human APP (APP(WT)) were more resistant to apoptosis-inducing treatments than cells expressing FAD-mutant human APP (APP(FAD)). Preventing Abeta42 production with an M596I mutation (beta-), which blocks beta-secretase cleavage of APP, or by treatment with a gamma-secretase inhibitor increased the resistance of APP(FAD)-expressing cells to apoptosis. Exposing hAPP(FAD/beta-) cells to exogenous Abeta42 or conditioned medium from Abeta42-producing APP(FAD) cells did not diminish their resistance to apoptosis. Preventing APP from entering the distal secretory pathway, where most Abeta peptides are generated, by retaining APP in the endoplasmic reticulum (ER)/intermediate compartment (IC) increased the resistance of APP(FAD)-expressing cells to apoptosis and did not alter the resistance of APP(WT)-expressing cells. p53-mediated gene transactivation after apoptosis-inducing treatments was much stronger in APP(FAD) cells than in hAPP(WT) or hAPP(FAD/beta-) cells. In contrast, upon induction of ER stress, cells expressing APP(FAD), hAPP(FAD/beta-), or APP(WT) had comparable levels of glucose-regulated protein-78 mRNA, an unfolded protein response indicator. We conclude that Abeta, especially intracellular Abeta, counteracts the antiapoptotic function of its precursor protein and predisposes cells to p53-mediated, and possibly other, proapoptotic pathways.  相似文献   

14.
The objective of this study was to test the hypothesis that extracellular matrix (ECM) would alter the endoplasmic reticulum (ER) stress response of chondrocytes. Chondrocytes were isolated from calf knees and maintained in monolayer culture or suspended in collagen I to form spot cultures (SCs). Our laboratory has shown that bovine chondrocytes form cartilage with properties similar to native cartilage after 2-4 weeks in SCs. Monolayer cultures treated with ER stressors glucose withdrawal (-Glu), tunicamycin (TN), or thapsigargin (TG) up-regulated Grp78 and Gadd153, demonstrating a complete ER stress response. SCs were grown at specific times from 1 day to 6 weeks before treatment with ER stressors. Additionally, SCs grown for 1, 2, or 6 weeks were treated with increasing concentrations of TN or TG. Western blotting of SCs for Grp78 indicated that increased ECM accumulation results in delayed expression; however, Grp78 mRNA is up-regulated in response to ER stressors even after 6 weeks in culture. SCs treated with ER stressors did not up-regulate Gadd153, suggesting that the cells experienced ER stress but would not undergo apoptosis. In fact, SCs undergo apoptosis upon ER stress treatment after 0-1 day of growth; however, after 4 days and to 6 weeks, apoptosis in treated samples was not different than controls. Pro-survival molecules Bcl-2 and Bag-1 were up-regulated upon ER stress in SCs. These results suggest that presence of ECM confers protection from ER stressors. Future studies involving chondrocyte physiology should focus on responses in conditions more closely mimicking the in vivo cartilage environment.  相似文献   

15.
Presenilin-1 (PS1) protein acts as passive ER Ca2+ leak channels that facilitate passive Ca2+ leak across ER membrane. Mutations in the gene encoding PS1 protein cause neurodegeneration in the brains of patients with familial Alzheimer’s disease (FAD). FADPS1 mutations abrogate the function of ER Ca2+ leak channel activity in human neuroblastoma SK-N-SH cells in vitro (Das et al., J Neurochem 122(3):487–500, 2012) and in mouse embryonic fibroblasts. Consequently, genetic deletion or mutations of the PS1 gene cause calcium (Ca2+) signaling abnormalities leading to neurodegeneration in FAD patients. By analogy with other known ion channels it has been proposed that the functional PS1 channels in ER may be multimers of several PS1 subunits. To test this hypothesis, we conjugated the human PS1 protein with an NH2-terminal YFP-tag and a COOH-terminal CFP-tag. As expected YFP–PS1, and PS1–CFP were found to be expressed on the plasma membranes by TIRF microscopy, and both these fusion proteins increased ER Ca2+ leak channel activity similar to PS1 (WT) in SK-N-SH cells, as determined by functional calcium imaging. PS1–CFP was either expressed alone or together with YFP–PS1 into SK-N-SH cell line and the interaction between YFP–PS1 and PS1–CFP was determined by Förster resonance energy transfer analysis. Our results suggest interaction between YFP–PS1 and PS1–CFP confirming the presence of a dimeric or multimeric form of PS1 in SK-N-SH cells. Lateral diffusion of PS1–CFP and YFP–PS1 in the plasma membrane of SK-N-SH cells was measured in the absence or in the presence of glycerol by fluorescence correlation spectroscopy to show that both COOH-terminal and NH2-terminal of human PS1 are located on the cytoplasmic side of the plasma membrane. Therefore, we conclude that both COOH-terminal and NH2-terminal of human PS1 may also be oriented on the cytosolic side of ER membrane.  相似文献   

16.
Recent studies have shown independently that presenilin-1 (PS1) null mutants and familial Alzheimer's disease (FAD)-linked mutants should both down-regulate signaling of the unfolded protein response (UPR). However, it is difficult to accept that both mutants possess the same effects on the UPR. Furthermore, contrary to these observations, neither loss of PS1 and PS2 function nor expression of FAD-linked PS1 mutants were reported to have a discernable impact on the UPR. Therefore, re-examination and detailed analyses are needed to clarify the relationship between PS1 function and UPR signaling. Here, we report that PS1/PS2 null and dominant negative PS1 mutants, which are mutated at aspartate residue 257 or 385, did not affect signaling of the UPR. In contrast, FAD-linked PS1 mutants were confirmed to disturb UPR signaling by inhibiting activation of both Ire1alpha and ATF6, both of which are endoplasmic reticulum (ER) stress transducers in the UPR. Furthermore, PS1 mutants also disturbed activation of PERK (PKR-like ER kinase), which plays a crucial role in inhibiting translation during ER stress. Taken together, these observations suggested that PS1 mutations could affect signaling pathways controlled by each of the respective ER-stress transducers, possibly through a gain-of-function.  相似文献   

17.
Zhang L  Lee J  Song L  Sun X  Shen J  Terracina G  Parker EM 《Biochemistry》2005,44(11):4450-4457
Gamma-secretase catalyzes the proteolytic processing of a number of integral membrane proteins, including amyloid precursor protein (APP) and Notch. The native gamma-secretase is a heterogeneous population of large membrane protein complexes containing presenilin 1 (PS1) or presenilin 2 (PS2), aph-1a or aph-1b, nicastrin, and pen-2. Here we report the reconstitution of a gamma-secretase complex in Sf9 cells by co-infection with baculoviruses carrying the PS1, nicastrin, pen-2, and aph-1a genes. The reconstituted enzyme processes C99 and the Notch-like substrate N160 and displays the characteristic features of gamma-secretase in terms of sensitivity to a gamma-secretase inhibitor, upregulation of Abeta42 production by a familial Alzheimer's disease (FAD) mutation in the APP gene, and downregulation of Notch processing by PS1 FAD mutations. However, the ratio of Abeta42:Abeta40 production by the reconstituted gamma-secretase is significantly higher than that of the native enzyme from 293 cells. Unlike in mammalian cells where PS1 FAD mutations cause an increase in Abeta42 production, PS1 FAD missense mutations in the reconstitution system alter the cleavage sites in the C99 substrate without changing the Abeta42:Abeta40 ratio. In addition, PS1DeltaE9 is a loss-of-function mutation in both C99 and N160 processing. Reconstitution of gamma-secretase provides a homogeneous system for studying the individual gamma-secretase complexes and their roles in Abeta production, Notch processing and AD pathogenesis. These studies may provide important insight into the development of a new generation of selective gamma-secretase inhibitors with an improved side effect profile.  相似文献   

18.
19.
20.
At the neuropathological level, Parkinson's disease (PD) is characterized by the accumulation of misfolded proteins, which can trigger the unfolded protein response (UPR). UCH-L1 is a component of ubiquitin proteasome system (UPS). It is reported that the loss of its function will impair ubiquitin proteasome system and cause toxicity to cells. But its mechanism has not been illustrated. In this study, we detected the protein expression of Bip/Grp78 and the spliced form of XBP-1 to examine the activation of unfolded protein response after SK-N-SH cells being treated with LDN-57444, a UCH-L1 inhibitor which could inhibit UCH-L1 hydrolase activity. Our data showed that UCH-L1 inhibitor was able to cause cell death through the apoptosis pathway by decreasing the activity of ubiquitin proteasome system and increasing the levels of highly ubiquitinated proteins, both of which can activate unfolded protein response. There is a lot of evidence that unfolded protein response is activated as a protective response at the early stage of the stress; this protective response can switch to a pro-apoptotic response when the stress persists. In this study, we demonstrated this switch by detecting the upregulation of CHOP/Gadd153. Taken together, our data indicated that the apoptosis induced by UCH-L1 inhibitor may be triggered by the activation of endoplasmic reticulum stress (ERS). Moreover, we provide a new cell model for studying the roles of UCH-L1 in Parkinson's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号