首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Studies on Polyphosphoinositides in Developing Rat Brain   总被引:5,自引:5,他引:0  
Polyphosphoinositides in rat brain exist in two forms: the metabolically active form that is readily attacked by the polyphosphoinositide phosphohydrolases, and the inert form that is attacked by the enzymes at a slower rate. The two pools continue to increase even during the postweaning period, suggesting a role in glial as well as myelin development apart from their role in neurons.  相似文献   

2.
The hypothalamic melanocortin system, which includes neurons that produce pro-opiomelanocortin (POMC)-derived peptides, is a major negative regulator of energy balance. POMC neurons begin to acquire their unique properties during neonatal life. The formation of functional neural systems requires massive cytoplasmic remodeling that may involve autophagy, an important intracellular mechanism for the degradation of damaged proteins and organelles. Here we investigated the functional and structural effects of the deletion of an essential autophagy gene, Atg7, in POMC neurons. Lack of Atg7 in POMC neurons caused higher postweaning body weight, increased adiposity, and glucose intolerance. These metabolic impairments were associated with an age-dependent accumulation of ubiquitin/p62-positive aggregates in the hypothalamus and a disruption in the maturation of POMC-containing axonal projections. Together, these data provide direct genetic evidence that Atg7 in POMC neurons is required for normal metabolic regulation and neural development, and they implicate hypothalamic autophagy deficiency in the pathogenesis of obesity.  相似文献   

3.
Abstract— The lipid composition of chick brain and sciatic nerve was determined during development. It was confirmed that the addition of CaCl2 to solvents during the extraction of lipids from brain results in much higher yields of diphosphoinositides particularly from unmyelinated embryo brain. Unlike the earlier report for rat brain, the recovery of triphosphoinositides was also Substantially increased. The amount of CaCl2, required to achieve optimal recoveries decreased with increasing age and addition of more than this optimal amount depressed the yields of polyphosphoinositides, particularly triphosphoinositides. CaCl2, addition did not improve the yield of diphosphoinositides from sciatic nerve of any age but drastically reduced recovery of triphosphoinositidcs. Differenccs in the effect of CaCl2 were not the result of variation in the tissue concentrations of calcium or magnesium.
The lipid composition of sciatic nerve closely reflected that of the myelin. Both polyphosphoinositides were absent initially and their accumulation paralleled that of cerebrosides and sulfatides. The concentration of diphosphoinositides remained constant after the period of most active myelination while triphosphoinositides and the galactolipids continued to increase suggesting maturational changes in the myelin composition. The pattern of deposition in chick brain was similar except for the much greater contribution of non-myelin structures. Both polyphosphoinositides were present in equimolar amounts in pre-myelination embryonic tissue. The concentration of diphosphoinositides increased during active myelination only while triphosphoinositides continued to increase thereafter.  相似文献   

4.
The importance of neural impulse activity in regulating neuronal plasticity is widely appreciated; increasingly, it is becoming apparent that activity-dependent communication between neurons and glia is critical in regulating many aspects of nervous system development and plasticity. This communication takes place not only at the synapse, but also between premyelinating axons and glia, which form myelin in the PNS and CNS. Recent work indicates that neural impulse activity releases ATP and adenosine from non-synaptic regions of neurons, which activates purinergic receptors on myelinating glia. Acting through this receptor system, neural impulse activity can regulate gene expression, mitosis, differentiation, and myelination of Schwann cells (SCs) and oligodendrocytes, helping coordinate nervous system development with functional activity in the perinatal period. ATP and adenosine have opposite effects on differentiation of Schwann cells and oligodendrocytes, providing a possible explanation for the opposite effects of impulse activity reported on myelination in the CNS and PNS.  相似文献   

5.
Polyphosphoinositides in myelin   总被引:25,自引:14,他引:11       下载免费PDF全文
1. On fractionation of guinea-pig forebrain homogenates by differential and gradient-density centrifugation most of the polyphosphoinositides were recovered in the myelin-rich particles. 2. The phospholipids of pure preparations of myelin contained di- and tri-phosphoinositide in proportions 2-3 times greater than in the whole-brain phospholipids. 3. Di- and tri-phosphoinositide appeared in young rat brain during the period of myelination. 4. After the administration of [(32)P]phosphate to guinea pigs the labelling of the polyphosphoinositides in isolated pure myelin was as great as in the whole brain, whereas little synthesis of the other myelin phospholipids had occurred. 5. When brain subcellular fractions were incubated with [gamma-(32)P]ATP, some triphosphoinositide labelling occurred in the myelin-rich fraction whereas the active labelling of diphosphoinositide was localized mainly in the mitochondrial fraction. 6. The Na(+), K(+) and Mg(2+) plus Ca(2+) concentrations in purified myelin have been determined. The Mg(2+) plus Ca(2+) content present showed close acid-base equivalence to the polyphosphoinositides. 7. It is concluded that di- and tri-phosphoinositide are rapidly-metabolizing components of the myelin sheath or intimately associated structures.  相似文献   

6.
Glia mediate neuroendocrine and neuroimmune functions that are altered during the process of normal aging. The biological functions of glia are also important in synaptic remodeling and the loss of synaptic connections that occur during aging. These functions are carried out by changes in glia, including changes in shape, interactions with neurons and other glia, and gene expression. The predominant change that occurs in glia during aging is glial activation, which can progress to reactive gliosis in response to neurodegeneration. More markers are needed to distinguish normal and reactive glia. During aging, astrocytes hypertrophy and exhibit signs of metabolic activation, and astrocytic processes surround neurons. Microglia also become activated and subsets of activated microglial increase in number and may enter the phagocytic or reactive stage. Glial markers of brain aging and glial activation include glial fibrillary acidic protein (GFAP) and transforming growth factor (TGF)-beta1, which are increased in astrocytes and microglia, respectively. Steroids regulate the interactions between glia and neurons and glial gene expression, including GFAP and TGF-beta1. Therefore, changes in these parameters during aging may be due to altered steroid regulation. In general, the effects of steroids oppose the effects of aging. Recent data indicate that steroid treatment can decrease the expression of GFAP in the aged brain, yet GFAP is resistant to down-regulation by endogenous glucocorticoids. Cellular and molecular markers of glial activation are being used to determine how changes in neuroendocrine and neuroimmune regulation contribute to repair and functional recovery that may reverse synaptic loss and cognitive impairment during aging.  相似文献   

7.
Abstract— (1) The sum of the values of total (tissue + medium) amino acid-N of glutamate, glutamine, γ-aminobutyrate, and aspartate (referred to as the glutamate system) and of ammonia-N of incubated rat brain cortex slices is approximately constant under a variety of metabolic conditions (presence or absence of glucose or of oxygen or in the presence of metabolic inhibitors such as aminooxyacetate, malonate, methionine sulfoximine, fluoroacetate, ouabain, 2:4 dinitrophenol, or Amytal). Fluctuations in the value of one constituent are compensated by fluctuations in the values of other constituents. The same applies to infant rat brain cortex slices and to rat brain synaptosome preparations. It is suggested that the constancy of the glutamate-ammonia system implies a coupling of neurons and glia in such a manner that glutamate released from the neurons during excitation is taken up by the glia and there converted to glutamine. The glutamine is returned to the neurons where it is hydrolysed to glutamate and ammonia. The glia, on this view, exercise an important buffering effect on the extracellular content of the excitatory amino acid, glutamate, and possibly on that of other functionally active amino acids emanating from the neurons. (2) The magnitude of the glutamate-ammonia system in the infant rat brain cortex is about 43% of that in the adult. It is suggested that, with maturity, the development of the glutamate-ammonia system is linked with the development of the citric acid cycle of operations. (3) The ammonia in the system is tightly linked to the activity of the ATP-controlled glutamine synthetase. (4) Proteolytic ammonia and amino acids are formed, during the incubation, to values that seem to be independent of a wide variety of metabolic conditions. The total value is approximately 10 μmol/g in the first h of incubation. (5) As the ammonium ion is necessary for the return of glutamate to the neuron in the form of glutamine, it is inferred that the ion plays a functional role in the nervous system by helping to maintain the steady state of glutamate in the neuron.  相似文献   

8.
In the development of multiple sclerosis (MS), (re)activation of infiltrating T cells by myelin-derived Ags is considered to be a crucial step. Previously, alpha B-crystallin has been shown to be an important myelin Ag to human T cells. Since alpha B-crystallin is an intracellular heat shock protein, the question arises at what stage, if any, during lesional development in MS this Ag becomes available for CD4+ T cells. In 3 of 10 active MS lesions, alpha B-crystallin could be detected inside phagocytic vesicles of perivascular macrophages, colocalizing with myelin basic protein and myelin oligodendrocyte glycoprotein (MOG). Although the detectability of MOG in phagosomes is considered as a marker for very recent demyelination, MOG was detected in more macrophages and in more lesions than alpha B-crystallin. The disappearance of alpha B-crystallin from macrophages even before MOG was confirmed by in vitro studies; within 6 h after myelin-uptake alpha B-crystallin disappears from the phagosomes. Alpha B-crystallin-containing macrophages colocalized with infiltrating T cells and they were characterized by expression of MHC class II, CD40, and CD80. To examine functional presentation of myelin Ags to T cells, purified macrophages were pulsed in vitro with whole myelin membranes. These macrophages activated both myelin-primed and alpha B-crystallin-primed T cells in terms of proliferation and IFN-gamma secretion. In addition, alpha B-crystallin-pulsed macrophages activated myelin-primed T cells to the same extent as myelin-pulsed macrophages, whereas myelin basic protein-pulsed macrophages triggered no response at all. These data indicate that, in active MS lesions, alpha B-crystallin is available for functional presentation to T cells early during inflammatory demyelination.  相似文献   

9.
Myelin is the multi-layered glial sheath around axons in the vertebrate nervous system. Myelinating glia develop and function in intimate association with neurons and neuron-glial interactions control much of the life history of these cells. However, many of the factors that regulate key aspects of myelin development and maintenance remain unknown. To discover new molecules that are important for glial development and myelination, we undertook a screen of zebrafish mutants with previously characterized neural defects. We screened for myelin basic protein (mbp) mRNA by in situ hybridization and identified four mutants (neckless, motionless, iguana and doc) that lacked mbp expression in parts of the peripheral and central nervous systems (PNS or CNS), despite the presence of axons. In all four mutants electron microscopy revealed that myelin-forming glia were present and had formed loose wraps around axons but did not form compact myelin. We found that addition of exogenous retinoic acid (RA) rescued mbp expression in neckless mutant embryos, which lack endogenous RA synthesis. Timed application of the RA synthesis inhibitor DEAB to wild type embryos showed that RA signalling is required at least 48 h before the onset of myelin protein synthesis in both CNS and PNS.  相似文献   

10.
ABSTRACT

Macroautophagy/autophagy is a key homeostatic process that targets cytoplasmic components to the lysosome for breakdown and recycling. Autophagy plays critical roles in glia and neurons that affect development, functionality, and viability of the nervous system. The mechanisms that regulate autophagy in glia and neurons, however, are poorly understood. Here, we define the molecular underpinnings of autophagy in primary cortical astrocytes in response to metabolic stress, and perform a comparative study in primary hippocampal neurons. We find that inducing metabolic stress by nutrient deprivation or pharmacological inhibition of MTOR (mechanistic target of rapamycin kinase) robustly activates autophagy in astrocytes. While both paradigms of metabolic stress dampen MTOR signaling, they affect the autophagy pathway differently. Further, we find that starvation-induced autophagic flux is dependent on the buffering system of the starvation solution. Lastly, starvation conditions that strongly activate autophagy in astrocytes have less pronounced effects on autophagy in neurons. Combined, our study reveals the complexity of regulating autophagy in different paradigms of metabolic stress, as well as in different cell types of the brain. Our findings raise important implications for how neurons and glia may collaborate to maintain homeostasis in the brain.  相似文献   

11.
Increasing evidence supports the idea that spontaneous brain activity may have an important functional role. Cultured neuronal networks provide a suitable model system to search for the mechanisms by which neuronal spontaneous activity is maintained and regulated. This activity is marked by synchronized bursting events (SBEs)--short time windows (hundreds of milliseconds) of rapid neuronal firing separated by long quiescent periods (seconds). However, there exists a special subset of rapidly firing neurons whose activity also persists between SBEs. It has been proposed that these highly active (HA) neurons play an important role in the management (i.e. establishment, maintenance and regulation) of the synchronized network activity. Here, we studied the dynamical properties and the functional role of HA neurons in homogeneous and engineered networks, during early network development, upon recovery from chemical inhibition and in response to electrical stimulations. We found that their sequences of inter-spike intervals (ISI) exhibit long time correlations and a unimodal distribution. During the network's development and under intense inhibition, the observed activity follows a transition period during which mostly HA neurons are active. Studying networks with engineered geometry, we found that HA neurons are precursors (the first to fire) of the spontaneous SBEs and are more responsive to electrical stimulations.  相似文献   

12.
Abstract: Previous studies showed that in cultured chick ciliary ganglion neurons and CNS glia, adenosine can be synthesized by hydrolysis of 5'-AMP and that the accumulation of the adenosine degradative products inosine and hypoxanthine was significantly greater in glial than in neuronal cultures. Furthermore, previous immunochemical and histochemical studies in brain showed that adenosine deaminase and nucleoside phosphorylase are localized in endothelial and glial cells but are absent in neurons; however, adenosine deaminase may be found in a few neurons in discrete brain regions. These results suggested that adenosine degradative pathways may be more active in glia. Thus, we have determined if there is a differential distribution of adenosine deaminase, nucleoside phosphorylase, and xanthlne oxidase enzyme fluxes in glia, comparing primary cultures of central and ciliary ganglion neurons and glial cells from chick embryos. Hypoxanthine-guanine phosphoribosyltransferase and production of adenosine by S-adenosylhomocysteine hydrolase activity were also examined. Our results show that there is a distinct profile of purine metabolizing enzymes for glia and neurons in culture. Both cell types have an S-adenosylhomocysteine hydrolase, but it was more active in neurons than in glia. In contrast, in glia the enzymatic activities of xanthine oxidase (443 ± 61 pmol/min/107 cells), nucleoside phosphorylase (187 ± B pmol/min/107 cells), and adenosine deaminase (233 ± 32 pmol/min/107 cells) were more active at least 100, 20, and five times, respectively, than in ciliary ganglion neurons and 100, 100, and nine times, respectively, than in central neurons.  相似文献   

13.
14.
Action potential (AP) propagation in myelinated nerves requires clustered voltage gated sodium and potassium channels. These channels must be specifically localized to nodes of Ranvier where the AP is regenerated. Several mechanisms have evolved to facilitate and ensure the correct assembly and stabilization of these essential axonal domains. This review highlights the current understanding of the axon intrinsic and glial extrinsic mechanisms that control the formation and maintenance of the nodes of Ranvier in both the peripheral nervous system (PNS) and central nervous system (CNS).Axons conduct electrical signals, called action potentials (APs), among neurons in a circuit in response to sensory input, and between motor neurons and muscles. In mammals and other vertebrates, many axons are myelinated. Myelin, made by Schwann cells and oligodendrocytes in the peripheral nervous system (PNS) and central nervous system (CNS), respectively, is a multilamellar sheet of glial membrane that wraps around axons to increase transmembrane resistance and decrease membrane capacitance. Although myelin is traditionally viewed as a passive contributor to nervous system function, it is now recognized that myelinating glia also play many active roles including regulation of axon diameter, axonal energy metabolism, and the clustering of ion channels at gaps in the myelin sheath called nodes of Ranvier. Together, the active and passive properties conferred on axons by myelin, result in axons with high AP conduction velocities, low metabolic demands, and reduced space requirements as compared with unmyelinated axons. Thus, myelin and the clustering of ion channels in axons permitted the evolution of the complex nervous systems found in vertebrates. This review highlights the current understanding of the axonal intrinsic and glial extrinsic mechanisms that control the formation and maintenance of the nodes of Ranvier in both the PNS and CNS.  相似文献   

15.
Multiple sclerosis (MS) is a chronic degenerative disease of the central nervous system that is characterized by myelin abnormalities, oligodendrocyte pathology, and concomitant glia activation. The factors triggering gliosis and demyelination are currently not well characterized. New findings suggest an important role of the innate immune response in the initiation and progression of active demyelinating lesions. Especially during progressive disease, aberrant glia activation rather than the invasion of peripheral immune cells is accountable for progressive neuronal injury. The innate immune response can be induced by pathogen-associated or danger-associated molecular patterns, which are identified by pattern recognition receptors (PRRs), including the Toll-like receptors (TLRs). In this study, we used the cuprizone model in mice to investigate the expression of TLR2 during the course of cuprizone-induced demyelination. In addition, we used TLR2-deficient mice to analyze the functional role of TLR2 activation during cuprizone-induced demyelination and reactive gliosis. We show a significantly increased expression of TLR2 in the corpus callosum and hippocampus of cuprizone-intoxicated mice. The absence of receptor signaling in TLR2-deficient mice resulted in less severe reactive astrogliosis in the corpus callosum and cortex. In addition, microglia activation was ameliorated in the corpus callosum of TLR2-deficient mice, but augmented in the cortex compared to wild-type littermates. Extent of demyelination and loss of mature oligodendrocytes was comparable in both genotypes. These results suggest that the TLR2 orchestrates glia activation during gray and white matter demyelination in the presence of an intact blood-brain barrier. Future studies now have to address the underlying mechanisms of the region-specific TLR2-mediated glia activation.  相似文献   

16.
Cyclin-dependent kinase 5 (Cdk5) plays key roles in normal brain development and function. Dysregulation of Cdk5 may cause neurodegeneration and cognitive impairment. Besides the well demonstrated role of Cdk5 in neurons, emerging evidence suggests the functional requirement of Cdk5 in oligodendroglia (OL) and CNS myelin development. However, whether neurons and OLs employ similar or distinct mechanisms to regulate Cdk5 activity remains elusive. We report here that in contrast to neurons that harbor high levels of two Cdk5 activators, p35 and p39, OLs express abundant p39 but negligible p35. In addition, p39 is selectively up-regulated in OLs during differentiation along with elevated Cdk5 activity, whereas p35 expression remains unaltered. Specific knockdown of p39 by siRNA significantly attenuates Cdk5 activity and OL differentiation without affecting p35. Finally, expression of p39, but not p35, is increased during myelin repair, and remyelination is impaired in p39−/− mice. Together, these results reveal that neurons and OLs harbor distinct preference of Cdk5 activators and demonstrate important functions of p39-dependent Cdk5 activation in OL differentiation during de novo myelin development and myelin repair.  相似文献   

17.
The development of neurons and glia is governed by a multitude of extracellular signals that control protein tyrosine phosphorylation, a process regulated by the action of protein tyrosine kinases and protein tyrosine phosphatases (PTPs). Receptor PTPbeta (RPTPbeta; also known as PTPzeta) is expressed predominantly in the nervous system and exhibits structural features common to cell adhesion proteins, suggesting that this phosphatase participates in cell-cell communication. It has been proposed that the three isoforms of RPTPbeta play a role in regulation of neuronal migration, neurite outgrowth, and gliogenesis. To investigate the biological functions of this PTP, we have generated mice deficient in RPTPbeta. RPTPbeta-deficient mice are viable, are fertile, and showed no gross anatomical alterations in the nervous system or other organs. In contrast to results of in vitro experiments, our study demonstrates that RPTPbeta is not essential for neurite outgrowth and node formation in mice. The ultrastructure of nerves of the central nervous system in RPTPbeta-deficient mice suggests a fragility of myelin. However, conduction velocity was not altered in RPTPbeta-deficient mice. The normal development of neurons and glia in RPTPbeta-deficient mice demonstrates that RPTPbeta function is not necessary for these processes in vivo or that loss of RPTPbeta can be compensated for by other PTPs expressed in the nervous system.  相似文献   

18.
The glia–neuron interactions were analyzed in the sensory-motor cortex of guinea pigs and ground squirrels (Spermophilus undulatus) during the active summer months. The glial cells were more concentrated in close proximity (15–25 μm) to neurons (38% in guinea pigs and 22.4% in ground squirrels). A more concentrated distribution of glial cells might be very necessary for spontaneous inactive nerve cells (37.2% in guinea pigs and 23% in ground squirrels), since these neurons are associated with the highest energy demand during their functioning and are most susceptible to disturbances of ion homeostasis. The network structure of glia and the close contact between glial cells and brain capillaries provide additional energy for neurons and stabilize the ion balance in the extracellular medium. Glial density in the sensory-motor cortex of ground squirrels is 3 times higher than that in the cortex of guinea pigs. The high content of glial cells in the ground-squirrel cortex is the most important protective factor for survival of animals during long-term hibernation, when the diffusion of K+ ions from nerve cells drastically increases due to the high temperature sensitivity of the M-cholinergic response.  相似文献   

19.
beta-Thymosins are polypeptides that bind monomeric actin and thereby function as actin buffers in many cells. We show that during zebrafish development, &bgr;-thymosin expression is tightly correlated with neuronal growth and differentiation. It is transiently expressed in a subset of axon-extending neurons, essentially primary neurons that extend long axons, glia and muscle. Non-neuronal expression in the brain is restricted to a subset of glia surrounding newly forming axonal tracts. Skeletal muscle cells in somites, jaw and fin express beta-thymosin during differentiation, coinciding with the time of innervation. Injection of beta-thymosin antisense RNA into zebrafish embryos results in brain defects and impairment of the development of beta-thymosin-associated axon tracts. Furthermore, irregularities in somite formation can be seen in a subset of embryos. Compared to wild-type, antisense-injected embryos show slightly weaker and more diffuse engrailed staining at the midbrain-hindbrain boundary and a strong reduction of Isl-1 labeling in Rohon Beard and trigeminal neurons. The decreased expression is not based on a loss of neurons indicating that beta-thymosin may be involved in the maintenance of the expression of molecules necessary for neuronal differentiation. Taken together, our results strongly indicate that beta-thymosin is an important regulator of development.  相似文献   

20.
Previous studies have shown that Müller glia are closely related to retinal progenitors; these two cell types express many of the same genes and after damage to the retina, Müller glia can serve as a source for new neurons, particularly in non-mammalian vertebrates. We investigated the period of postnatal retinal development when progenitors are differentiating into Müller glia to better understand this transition. FACS purified retinal progenitors and Müller glia from various ages of Hes5-GFP mice were analyzed by Affymetrix cDNA microarrays. We found that genes known to be enriched/expressed by Müller glia steadily increase over the first three postnatal weeks, while genes associated with the mitotic cell cycle are rapidly downregulated from P0 to P7. Interestingly, progenitor genes not directly associated with the mitotic cell cycle, like the proneural genes Ascl1 and Neurog2, decline more slowly over the first 10-14 days of postnatal development, and there is a peak in Notch signaling several days after the presumptive Müller glia have been generated. To confirm that Notch signaling continues in the postmitotic Müller glia, we performed in situ hybridization, immunolocalization for the active form of Notch, and immunofluorescence for BrdU. Using genetic and pharmacological approaches, we found that sustained Notch signaling in the postmitotic Müller glia is necessary for their maturation and the stabilization of the glial identity for almost a week after the cells have exited the mitotic cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号