首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
毛喉萜对大鼠成骨样细胞内Ca^2+释出的影响   总被引:1,自引:1,他引:0  
毛喉萜是一种二萜类化合物,为细胞中腺苷酸环化酶的激活剂,用毛喉萜处理大发习成骨样细胞,发现它可即时激发细胞内Ca^2+水平的增高,当细胞经毛喉萜长期处理(1-2天)后,其对PTH激发细胞内Ca^2+释出的交应也呈增高反应,但毛喉萜的即刻反应与其长期效应的作用机理可能并不相同,鉴于毛喉萜具有抑制增殖的作用,其对细胞内Ca^2+ 水平的调节作用或与其对细胞的抑增殖促分化有关。  相似文献   

2.
以人胃癌细胞BGC-823为模型,研究了毛喉萜(forskolin)对胃癌细胞中蛋白激酶C活性及其亚类基因表达的作用,同时也观察了毛喉萜对癌基因c-jun及抑癌基因p53表达的影响.结果表明,2×10~(-5)mol/L毛喉萜处理BGC-823细胞72h,细胞质、膜和细胞核PKC活性下降,PKC亚类β,γ基因表达被抑制,癌基因c-jun的表达也明显降低,而抑癌基因p53表达升高,上述变化可能是毛喉萜抑制胃癌细胞增殖等生理效应的重要分子事件。  相似文献   

3.
双歧杆菌粘附体外肠上皮细胞的钙信号传递的研究   总被引:5,自引:1,他引:4  
本文采用钙荧光探剂 Fluo—3/AM染色法,定量研究了双歧杆菌1027株、肠致病性大肠杆菌(EPEC)对体外肠上皮细胞Lovo细胞株粘附的钙信号传递机制。结果表明,双歧杆菌1027株粘附可引起Lovo细胞内Ca~+2随时间延长而梯度升高,但双歧杆菌1027株的作用远不如EPEC明显。同时发现双歧杆菌粘附引起Lovo。细胞内Ca~2+升高主要源于细胞外Ca~2+内流所致,这与EPEC粘附引起宿主细胞内Ca~2+升高主要源于细胞内Ca~2+储池的Ca~2+释放不同。EPEC粘附引起宿主细胞内Ca~2+大幅度升高是其致病的重要信号传递基础;而双歧杆菌粘附仅引起宿主细胞内Ca~2+轻度升高,可能是其作为生理性细菌与肠上皮细胞和谐共生的信号传递基础。  相似文献   

4.
毛喉萜(forskolin)对人胄癌细胞BGC-823增殖有明显抑制作用,具药物剂量和作用时间之依赖性。剂量为2×10~(-5)mol/L之毛喉萜使胃癌细胞在软琼脂中形成集落的能力显著降低;癌基因c-Ha-ras之表达明显被抑制,细胞核中与ras基因上游调控区2.5kb片段结合的三种蛋白结合能力下降。联系到以同样浓度药物处理胃癌细胞72h,细胞质、膜与细胞核中蛋白激酶C(PKC)活性均下降的现象,可能PKC活性下降与Ha-ras基因上游片段2.5kb结合蛋白之结合能力下降存在相关性,PKC可能通过影响DNA结合蛋白的磷酸化作用,导致了Ha-ras基因表达之被阻抑。而ras基因表达下降可能是毛喉萜抑制胃癌细胞增殖的一个重要分子事件。  相似文献   

5.
庞建新  单春文 《生理学报》1996,48(3):293-297
本文将fluo-3和d_i-BA-C4(3)荧光标记的血小板固定于纤维蛋白原表面,以570型粘附式细胞仪(ACAS570)动态观察了凝血酶激活的人单个血小板细胞内游离[Ca~(2+)](钙离子浓度)和膜电位的变化。静息状态时细胞游离[Ca~(2+)]和膜电位荧光较低,波动不明显。当加入0.1U/ml凝血酶激活时,[Ca~(2+)](细胞内游离钙离子浓度)与膜电位迅速升高,随后[Ca~(2+)]出现反复振荡,幅度达约500荧光单位,而膜电位基本上保持峰值水平。[Ca~(2+)]_i升高与膜电位变化在时间和程度上不一致。本文结果提示,凝血酶引起血小板[Ca~(2+)]振荡和膜去极化,后者不是Ca~(2+)内流引起的。  相似文献   

6.
G蛋白在亮啡肽诱导心肌细胞内钙释放中的作用   总被引:1,自引:0,他引:1  
魏振宇  谈世进 《生理学报》1995,47(2):173-178
本实验采用分离的SD大鼠心室肌细胞,以Fura-2AM荧光指示剂负载,检测心肌细胞内游离钙浓度(Ca^2+)变化。探讨亮啡肽(LEK)对(Ca^2+)的作用及其机制。实验结果:LEK(60μmol/L)能升高(Ca^2+)移去细胞外液钙此效应仍能出现,用caffeine (5mmol/L)耗竭细胞内钙池的钙,该效应消失,纳洛酮(100μmol/L),百日咳毒素(200ng/L)处理8-10h及pr  相似文献   

7.
降钙素基因相关肽对缺氧时海马细胞内游离Ca^2+的影响   总被引:21,自引:0,他引:21  
本实验用Fura-2荧光测定技术直接监测了缺氧时大鼠海马细胞内游离Ca2+浓度([Ca2+]i)的变化,并观察了降钙素基因相关肽(CGRP)对这种变化的影响。结果发现,缺氧可使海马细胞[Ca2+]i显著增高;4或8nmol/LCGRP能明显地降低缺氧引起的[Ca2+]i增高,但在无胞外Ca2+的情况下,CGRP的作用消失。结果表明,CGRP的降钙作用是通过抑制缺氧时胞外Ca2+的内流来实现的。  相似文献   

8.
对钙调素(CaM)拮抗剂—三氟拉嗪(trifluoperazine,TFP)在人肺癌细胞PLA801的增殖抑制中的作用和CaM与cAMP信号系统水平的变化进行了研究.用5、10、15和20μmol/LTFP处理人肺癌细胞时观察到TFP在抑制细胞内CaM活性的同时,抑制了细胞的增殖.药物处理的细胞在软琼脂中形成的集落数减少且明显小于对照组细胞.使用流式细胞光度术分析细胞周期的结果表明:10μmol/LTFP处理抑制了G1期细胞向S期的转移.当用10μmol/LTFP作用细胞5min时,细胞内cAMP水平达到正常水平的1.8倍,直到3h仍明显高于正常水平.同时,cAMP依赖的PKA的活性在加药后15min上升到正常水平的2.8倍,直到加药3h.活性仍保持较高水平,结果表明:钙调素功能的抑制,提高了PLA-801细胞内cAMP系统的水平,Ca2+-CaM和cAMP-PKA两个信号系统的协调作用,抑制了细胞的增殖  相似文献   

9.
低频、低压交变电场对成骨细胞增殖的影响   总被引:3,自引:0,他引:3  
低频、低压交变电场能够促进成骨细胞的增殖。成骨细胞受交变电场作用以后,运用MTT方法和流式细胞术,检测细胞的增殖情况。结果表明:电场作用后的细胞,与对照组细胞相比,细胞数目增多,S期细胞百分比增高。运用荧光标记技术检测细胞膜流动性以及胞内游离Ca2+浓度([Ca2+]i)的变化,初步探索电场对细胞增殖影响的作用机制。  相似文献   

10.
神经节苷脂(Gangliosides)是红细胞膜Ca~(2+)-Mg~(2+)ATPase的一种激活剂,这种激活作用也是依赖于Ca~(2+)存在。在200μmol/LCa~(2+)存在的反应体系中,100μg/mLGangliosides对Ca~(2+)-Mg~(2+)ATPase的激活作用最大,为基本酶活性的150%以上。实验还发现CaM拮抗剂三氟拉嗪(TFP)、粉防已碱(Tet)等也同样抑制Gangliosides的这种激活作用。其抑制的IC_(50)值为25μmol/L和30μmo1/L;而此浓度下抑制剂存在的反应体系中,对Ca~(2+)-Mg~(2+)ATPase的基本活性影响不大。  相似文献   

11.
The regulation of the cytosolic calcium concentration was investigated in freshly isolated adult bovine tracheal smooth muscle cells using fura 2. These cells contain 1.1 and 1.8 pmol of cGMP kinase and cAMP kinase per mg protein, respectively. Carbachol, histamine, serotonin, isoproterenol, and salbutamol increased the cytosolic calcium in a dose-dependent manner from 79 nM to about 650 nM. Preincubation of these cells for 20 min with isoproterenol, forskolin, 8-Br-cAMP and 8-(4-Cl-phenyl)thio-cAMP did not lower carbachol-induced increases in cytosolic calcium concentration, whereas the phorbol ester 12-O-tetradecanoylphorbol 13-acetate, the atrionatriuretic factor, isobutylmethylxanthine, and 8-Br-cGMP lowered cytosolic calcium. The active fragment of cGMP kinase, but not the catalytic subunit of cAMP kinase lowered carbachol-induced calcium levels. Carbachol released calcium from intracellular stores and increased calcium influx from the extracellular space. The influx was inhibited by preincubation with the calcium channel blockers nitrendipine or gallopamil. Both carbachol-stimulated pathways were suppressed by 8-Br-cGMP. Isoproterenol increased only the influx of calcium from the outside by a channel which was blocked by calcium channel blockers or 8-Br-cGMP. Forskolin and 8-Br-cAMP lowered carbachol- and isoproterenol-stimulated increases in calcium when added shortly before or after the addition of the agonist. In addition, isoproterenol decreased carbachol-stimulated calcium levels when added 10 s after carbachol. The calcium stimulatory effect of isoproterenol was abolished by preincubation of the cells with pertussis toxin or cholera toxin. These results show (a) that the beta 2-adrenoceptor couples in isolated tracheal smooth muscle cells to a dihydropyridine- and pertussis toxin-sensitive calcium channel; (b) that the same channel is opened by carbachol; (c) that cGMP kinase is very effective in decreasing elevated cytosolic calcium concentrations, whereas cAMP-dependent protein kinase has a variable effect on stimulated cytosolic calcium levels.  相似文献   

12.
Sertoli cells are hormonally regulated by follicle-stimulating hormone (FSH) acting upon a G-protein-linked cell surface FSH receptor. FSH increases intracellular cyclic AMP but the involvement of other signal transduction mechanisms including intracellular calcium in FSH action are not proven. Using freshly isolated rat Sertoli cells we measured cytosolic free ionized calcium levels by dual-wavelength fluorescence spectrophotometry using the calcium-sensitive fluorescent dye Fura2-AM. The cytosolic calcium concentration in unstimulated Sertoli cells was 89 +/- 2 nM (n = 151 experiments) and was markedly increased by either calcium channel ionophores (ionomycin, Bay K8644) or plasma membrane depolarization consistent with the presence of voltage-sensitive and -independent calcium channel in Sertoli cell membranes. Ovine FSH stimulated a specific, sensitive (ED50, 5.0 ng of S-16/ml), and dose-dependent (maximal at 20 ng/ml) rise in cytosolic calcium commencing within 60 s to reach levels of 192 +/- 31 nM after 180 s and lasting for at least 10 min. The effect of FSH was replicated by forskolin, cholera toxin, and dibutyryl cyclic AMP, suggesting that cyclic AMP may mediate the FSH-induced rise in cytosolic calcium. The FSH-induced rise in cytosolic calcium required extracellular calcium and was abolished by calcium channel blockers specific for dihydropyridine (verapamil, nicardipine), nonvoltage-gated (ruthenium red) or all calcium channels (cobalt). Thus FSH action on Sertoli cells involves a specific, rapid, and sustained increase in cytosolic calcium which requires extracellular calcium and involves both dihydropyridine-sensitive, voltage-gated calcium channels and voltage-independent, receptor-gated calcium channels in the plasma membranes of rat Sertoli cells. The replication by cyclic AMP of the effects of FSH suggests that calcium may be a signal-amplification or -modulating mechanism rather than an alternate primary signal transduction system for FSH in Sertoli cells.  相似文献   

13.
The role of cytosolic Ca2+ and cytoplasmic calcium movement during the parasitization of HeLa cells by T. cruzi were studied. The level of calcium in parasitized cells increased compared to the control cells. Our experiments demonstrate that this cytosolic calcium originates from the release of the intracellular calcium deposits, especially from the mitochondria of the host cell. The parasitization rates decreased after the cells were treated with drugs to increase the cytosolic Ca2+ levels to inhibit the host-cell calmodulin.  相似文献   

14.
A mouse spleen-derived mast cell line (PT-18) was employed to examine the mechanisms of adenosine 3':5'-monophosphate (cAMP)-mediated inhibition of antigen-induced lipid mediator biosynthesis. Specifically, we tested the hypothesis that increasing cAMP in mast cells inhibits lipid mediator biosynthesis by a mechanism independent of effects on histamine release (degranulation) or changes in cytosolic calcium concentration. Forskolin inhibited antigen-induced prostaglandin D2 (PGD2), leukotriene C4 (LTC4), and leukotriene B4 (LTB4) production by 30-50%. In contrast, forskolin had no inhibitory effect on antigen-induced increases in cytosolic calcium concentration, as monitored by the calcium indicator fura-2, or histamine release from the cells. The combination of the phosphodiesterase inhibitor isobutylmethylxanthine with forskolin inhibited the antigen-induced production of PGD2 and LTC4 by 90-100% and histamine release by about 60%. These responses were accompanied by a virtual abolition of the antigen-induced increase in cytosolic calcium. To test further the hypothesis that increasing cAMP can lead to inhibition of lipid mediator biosynthesis in the absence of effects on cytosolic calcium, we employed the calcium ionophores A23187 and ionomycin. Forskolin alone or in combination with isobutylmethylxanthine had no effect on ionophore-induced increases in cytosolic calcium but effectively inhibited leukotriene biosynthesis. In addition, increasing cyclic AMP led to an inhibition of ionophore-induced production of platelet-activating factor and liberation of arachidonic acid. These data suggest that a relatively modest increase in cAMP-dependent protein kinase activity in mast cells leads to inhibition of the lipase-catalyzed cleavage of arachidonic acid from membrane phospholipids in the absence of measurable effects on either histamine release or changes in cytosolic calcium concentration. This effect results in a selective inhibition of the biosynthesis of lipid mediators including LTC4, LTB4, PGD2, and platelet-activating factor.  相似文献   

15.
In order to monitor changes in cytosolic Ca2+ levels, brown-fat cells were incubated with the fluorescent Ca2+-indicator fura-2 and the fluorescence intensity ratio followed. The addition of norepinephrine led to a rapid and persistent increase in the cytosolic Ca2+ level, which was dose-dependent with a maximal effect at about 1 microM. The response was diminished in the absence of extracellular Ca2+ and was inhibited more efficiently by phentolamine and prazosin than by propranolol or yohimbine, indicating alpha 1-adrenergic mediation. Accordingly, selective alpha 1-adrenergic stimulation also increased the cytosolic Ca2+ level. However, selective beta-adrenergic stimulation, as well as the adenylate cyclase activator forskolin, were also able to increase the cytosolic Ca2+ level in these cells to a certain extent. It was concluded that the major part of the increase in cytosolic Ca2+ was mediated, as in other cell types, via alpha 1-adrenergic receptors, but that Ca2+ levels were also positively modulated by a cAMP-mediated process. These observations are discussed in relation to known alpha 1/beta synergisms in brown adipose tissue.  相似文献   

16.
It was previously shown that cells die with increased cytosolic ATP after stimulation with apoptotic inducers including staurosporine (STS). To identify the source of apoptotic ATP elevation, we monitored, in real time, the cytosolic ATP level in luciferase-expressing HeLa cells. A mitochondrial uncoupler or a respiration chain inhibitor was found to decrease cytosolic ATP by about 50%. However, even when mitochondrial ATP synthesis was suppressed, STS induced a profound elevation of intracellular ATP. In contrast, the STS-induced ATP increase was prevented by any of three inhibitors of the glycolytic pathway: 2-deoxyglucose, iodoacetamide, and NaF. The STS effect strongly depended on intracellular calcium and was mimicked by a calcium ionophore. We conclude that Ca(2+)-dependent activation of anaerobic glycolysis, but not aerobic mitochondrial oxidative phosphorylation, is responsible for the STS-induced elevation of ATP in apoptotic HeLa cells.  相似文献   

17.
The digitalic glicoside ouabain induces potentiation of rat mast cell histamine release in response to several stimuli, which is mediated by Na+/Ca2+ exchanger. In this work, we studied the effect of ouabain on cytosolic calcium, intracellular pH and histamine release with Ca2+ ionophore A23187 in conditions designed to maximize ouabain-induced potentiation of rat mast cells response. The effect of protein kinase C (PKC), cAMP and phosphatase inhibition was also tested. Ouabain induced an enhancement in histamine release, cytosolic calcium and intracellular pH. The adenylate cyclase activator forskolin reduced the effect of ouabain on histamine release and intracellular pH, but enhanced the effect on cytosolic calcium. PKC activator PMA enhanced the effect of ouabain on histamine release and cytosolic calcium, without affecting intracellular pH. A PKC inhibitor, GF-109203X, reduced ouabain-induced enhancement of histamine release and intracellular pH, but increased the enhancement on cytosolic calcium. Finally, inhibition of protein phosphatases 1 and 2A with okadaic acid, increased the effect of ouabain on histamine release and intracellular pH, but reduced cytosolic calcium in presence of ouabain. This result suggest that ouabain-induced potentiation of rat mast cell histamine release with A23187 is modulated by kinases, and this modulation may be carried out by changes in intracellular alkalinization. However, the mechanism underlying cellular alkalinization remains to be elucidated.  相似文献   

18.
The aim of the present study was to investigate the effect of cAMP on calcium fluxes in Fura 2 loaded thyroid FRTL-5 cells. Preincubating the cells with the phosphodiesterase inhibitor Ro-201724 decreased the ATP-stimulated entry of calcium, while having no effect on the release of sequestered calcium. Pretreatment with forskolin decreased both the release of sequestered calcium and the entry of calcium in response to ATP. We then incubated the cells with phenylisopropyl adenosine (PIA), a P21-receptor agonist earlier shown to decrease cAMP in FRTL-5 cells. Although we did not observe a decrease in cellular cAMP after PIA, the ATP-evoked calcium response was enhanced. Forskolin decreased calcium entry induced by thapsigargin a Ca2?-ATPase inhibitor, but forskolin had no effect on the thapsigargin-evoked release of sequestered calcium. Addition of calcium to cells stimulated with ATP in a calcium-free buffered resulted in a rapid influx of calcium. This response in [Ca2+]i was decreased in cells pretreated with forskolin. In cells stimulated with thapsigargin, the increase in [Ca2+]i after addition of calcium was inhibited in part by forskolin and enhanced by PIA. The results suggest that cAMP may regulate calcium fluxes in FRTL-5 cells Furthermore, PIA increased agonist-induced calcium entry through a presently unknown mechanism. © 1993 Wiley-Liss, Inc.  相似文献   

19.
Ca2+/calmodulin-dependent protein kinase III (Ca2+/CaM kinase III) phosphorylates a protein of Mr = 100,000 (the 100-kDa protein), a major substrate for Ca2+/CaM-dependent protein phosphorylation found in many mammalian tissues and cell lines (Nairn, A.C., Baghat, B., and Palfrey, H.C. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 7939-7943). Treatment of PC12 cells with nerve growth factor (NGF) or forskolin resulted in a decrease in the depolarization-dependent phosphorylation of the 100-kDa protein in intact cells and in a decrease in the Ca2+/CaM-dependent phosphorylation of the 100-kDa protein in cytosolic extracts. In experiments using cytosolic extracts, the initial effect of NGF on the phosphorylation of the 100-kDa protein was observed in less than 1 h, was maximal (70% decrease) after 12 h, and began to recover after 24 h. The effect of forskolin was more rapid and the maximal effect was greater (90-95% decrease). Decreased Ca2+/CaM kinase III activity was also found in PC12 cells treated with epidermal growth factor, 2-chloroadenosine plus isobutylmethylxanthine, or dibutyryl cAMP. The effect of forskolin did not reverse unless it was removed. Cycloheximide blocked the recovery of Ca2+/CaM kinase III activity observed following the removal of forskolin but did not affect the ability of forskolin to reduce kinase activity. Short-term treatment with phorbol ester had little effect on Ca2+/CaM kinase III activity; long-term treatment with phorbol ester, which results in the disappearance of enzymatically detectable protein kinase C, had no effect on the ability of NGF or 2-chloroadenosine to reduce Ca2+/CaM kinase III activity. The level of the 100-kDa protein as determined by immunological techniques was not changed by any treatment. These results suggested that the effect of treatment of PC12 cells with NGF or forskolin was to reduce the level of Ca2+/CaM kinase III per se.  相似文献   

20.
Abstract: The effects of forskolin, an adenylate cyclase activator, were investigated on adrenocorticotropin (ACTH) secretion from AtT-20/D16-16 mouse pituitary tumor cells. Forskolin increased adenylate cyclase activity in these cells in the absence of added guanyl nu-cleotide, an effect blocked by somatostatin. Cyclic AMP synthesis and ACTH secretion increased in a concentration-dependent manner, not only in the clonal cells, but in primary cultures of rat anterior pituitary as well. Somatostatin inhibited cyclic AMP synthesis and ACTH secretion in response to forskolin. When forskolin was coapplied with corticotropin releasing factor, cyclic AMP synthesis was potentiated and ACTH secretion additive. The calcium channel blocker, nifedipine, inhibited forskolin, and 8-bromocyclic AMP stimulated ACTH secretion. These data suggest that ACTH secretion may be regulated at the molecular level by changes in cyclic AMP formation, which in turn regulate a calcium gating mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号