首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A panel of 25 monoclonal antibodies (MAbs) raised against particles of two heterologous whitefly-transmitted geminiviruses (begomoviruses) was used in triple antibody-sandwich ELISA (TAS-ELISA) to determine the detectability and epitope profiles of 26 Indian isolates of tobacco leaf curl virus (TLCV) and 13 of croton yellow vein mosaic virus (CYVMV). Stock cultures of the two viruses had indistinguishable epitope profiles although they differ in symptomatology and particle stability. Their epitope profiles also strongly resembled those of Indian isolates of bhendi (okra) yellow vein mosaic and Indian cassava mosaic (ICMV) viruses. TLCV isolates from Andhra Pradesh, Gujarat and Karnataka States differed slightly in epitope profile: they reacted with at least eight out of 10 MAbs raised to ICMV but only one to four out of 15 MAbs raised to African cassava mosaic virus (ACMV). Virus isolates serologically indistinguishable from TLCV were detected in symptom-bearing weeds (Acanthospermum hispidum, Ageratum conyzoides, Euphorbia geniculata, Parthenium hysterophorus) found in leaf curl-affected tobacco fields and shown previously to be experimental hosts of TLCV. Indian TLCV isolates had small, consistent differences in epitope profile from Pakistani isolates but large differences from isolates from Burkina Faso, Malawi or Uganda. Isolates from the three African countries reacted with four or five of the ACMV MAbs but only one or two of the ICMV MAbs, and there were small but consistent inter-country differences. CYVMV isolates from three Indian States showed less epitope variation than did Indian isolates of TLCV. TAS-ELISA with MAb SCR 18 was a more sensitive test for detecting Indian TLCV isolates than was double antibody-sandwich ELISA with polyclonal antibodies.  相似文献   

2.
The relationships among fifteen isolates of whitefly-transmitted geminiviruses (WTGs) from North, Central and South America and six from other continents were assessed (a) in nucleic acid hybridisation tests with sulphonated DNA probes for eight of the viruses, and/or (b) in triple-antibody-sandwich ELISA with panels of monoclonal antibodies (MAbs) to particles of African cassava mosaic virus (ACMV) and Indian cassava mosaic virus (ICMV). Probes specific for DNA-A of four American viruses, abutilon mosaic (AbMV), bean golden mosaic (BGMV), squash leaf curl (SLCV) and tomato golden mosaic (TGMV), detected virtually all the American viruses but reacted weakly if at all with ICMV, ACMV or tomato yellow leaf curl virus from Thailand (TYLCV-T). Conversely, the probe for ACMV DNA-A did not detect any of the American viruses, and that for TYLCV-T DNA-A reacted weakly with SLCV and TGMV0020but did not detect the others. In contrast, probes specific for DNA-B of the four American viruses or ACMV detected only the homologous virus, except for slight reactions between the AbMV DNA-B probe and both chino del tomate virus (CdTV)-DNA and SLCV-DNA. However, a probe for DNA-B of bean calico mosaic virus (BCMoV) reacted weakly with BGMV-PR DNA, and a probe for DNA-B of CdTV from Mexico detected several American viruses. Six out of 17 MAbs specific for ACMV and six out of 10 MAbs specific for ICMV reacted with one or other of the 14 American virus isolates tested. Two and-ACMV MAbs reacted with all, and one anti-ACMV MAb and two anti-ICMV MAbs reacted with nearly all the American viruses, one anti-ACMV MAb reacted with about half the American viruses and six other MAbs reacted with only one or two of them. Of the American viruses, CdTV and AbMV were the least closely related to the others. The epitope profiles of BCMoV, BGMV, cotton leaf crumple virus, serrano golden mosaic virus and SLCV were virtually indistinguishable. TGMV, potato yellow mosaic virus (PYMV) and an euphorbia virus had profiles intermediate between those of the BGMV cluster and AbMV-CdTV. In general, the epitope profiles and the results of hybridisation tests with DNA-A probes show that the similarities among the American viruses are greater than those between the American viruses and the viruses from other continents; the hybridisation tests with DNA-B probes show that substantial differences exist between individual American viruses. In America, geminivirus evolution seems to have proceeded convergently from different progenitor viruses, or divergently from one ancestral form, with DNA-B diverging to a greater extent than DNA-A and its particle-protein gene.  相似文献   

3.
Whitefly-transmitted geminiviruses were found to be associated with four diseases of crop plants in Burkina Faso: cassava mosaic, okra leaf curl, tobacco leaf curl and tomato yellow leaf curl. Tomato yellow leaf curl is an economically serious disease, reaching a high incidence in March, following a peak population of the vector whitefly, Bemisia tabaci, in December. Okra leaf curl is also a problem in the small area of okra grown in the dry season but is not important in the main period of okra production in the rainy season. The geminiviruses causing these four diseases, African cassava mosaic (ACMV), okra leaf curl (OLCV), tobacco leaf curl (TobLCV) and tomato yellow leaf curl (TYLCV) viruses, were each detected in field-collected samples by triple antibody sand-wich-ELISA with cross-reacting monoclonal antibodies (MAbs) to ACMV. Epitope profiles obtained by testing each virus isolate with panels of MAbs to ACMV, OLCV and Indian cassava mosaic virus enabled four viruses to be distinguished. ACMV and OLCV had similar but distinguishable profiles. The epitope profile of TobLCV was the same as that of one form of TYLCV (which may be the same virus) and was close to the profile of TYLCV from Sardinia. The other form of TYLCV reacted with several additional MAbs and had an epitope profile close to that of TYLCV from Senegal. Only minor variations within each of these four types of epitope profile were found among geminivirus isolates from Burkina Faso. Sida acuta is a wild host of OLCV.  相似文献   

4.
Particles resembling those of geminiviruses were found by immunosorbent electron microscopy in extracts of plants infected in India with bhendi yellow vein mosaic, croton yellow vein mosaic, dolichos yellow mosaic, horsegram yellow mosaic, Indian cassava mosaic and tomato leaf curl viruses. All these viruses were transmitted by Bemisia tabaci whiteflies, all reacted with at least one out of ten monoclonal antibodies to African cassava mosaic virus (ACMV), and all reacted with a probe for ACMV DNA-1, but scarcely or not at all with a full-length probe for ACMV DNA-2. Most of the viruses were distinguished by their host ranges when transmitted by whiteflies, and the rest could be distinguished by their pattern of reactions with the panel of monoclonal antibodies. Horsegram yellow mosaic virus was distinguished from Thailand mung bean yellow mosaic virus by its lack of sap transmissibility, ability to infect Arachis hypogaea, failure to react strongly with the probe for ACMV DNA-2 and its pattern of reactions with the monoclonal antibodies. Structures resembling a ‘string of pearls’, but not geminate particles, were found in leaf extracts containing malvastrum yellow vein mosaic virus. Such extracts reacted with two of the monoclonal antibodies, suggesting that this whitefly-transmitted virus too is a geminivirus. All seven viruses from India can therefore be considered whitefly-transmitted geminiviruses.  相似文献   

5.
To determine the occurrence of variants of African cassava mosaic virus, 316 cassava leaf samples were collected from mosaic‐affected cassava plants in 254 farmers. fields in 1997 and 1998, covering the humid forest, coastal/derived, southern Guinea and northern Guinea savannas and arid and semi‐arid agroecologies of Nigeria. The samples were tested in triple antibody sandwich enzyme‐linked immunosorbent assay using a panel of 10 monoclonal antibodies (MAbs) against the virus in which 29 reaction patterns were observed. In cluster analysis, nine serotypes were obtained at 0.80 Jaccard similarity coefficient index in which at least 50% of isolates of each serotype reacted alike. The serotypes ranged between two extremes: serotype 1 with 90% isolates reacting with the 10 MAbs and serotype 8 in which 90% of its isolates failed to react with the antibodies. Isolates of serotypes 1, 2, 4 and 8 were widely distributed while those of the other serotypes were estricted to certain agroecologies. Four representative isolates 227 (serotype 1), 231 (serotype 2), 235 and 283 (serotype 8) elicited different responses in Nicotiana, benthamiana, with isolate 283 not able to infect this and other test plants used. The serological variations did not necessarily reflect the biological variations. In polymerase chain reaction tests, one out of the five pairs of ACMV primers tested distinguished only isolate 283. The humid forest, derived/coastal and southern Guinea savannas where most of the crop is grown in Nigeria had a high number of variants, which makes the agroecologies suitable for the selection of resistant cassava clones against ACMV.  相似文献   

6.
The Indian cassava mosaic virus (ICMV) was transmitted by the whitefly Bemisia tabaci and sap inoculation. ICMV was purified from cassava and from systemically infected Nicotiana benthamiana leaves. Geminate particles of 16–18 × 30 nm in size were observed by electron microscopy. The particles contained a single major protein of an estimated molecular weight of 34,000. Specific antiserum trapped geminate particles from the extracts of infected cassava and N. benthamiana plants in ISEM test. The virus was detected in crude extracts of infected cassava, ceara rubber, TV. benthamiana and N. tabacum cv. Jayasri plants by ELISA. ICMV appeared serologically related to the gemini viruses of Acalypha yellow mosaic, bhendi yellow vein mosaic, Croton yellow vein mosaic, Dolichos yellow mosaic, horsegram yellow mosaic, Malvastrum yellow vein mosaic and tobacco leaf curl.  相似文献   

7.
Virus content of leaves of cassava infected by African cassava mosaic virus   总被引:1,自引:0,他引:1  
African cassava mosaic virus (ACMV) was detected in cassava leaves by ELISA. Some normal constituents of cassava leaves interfered with virus detection but leaf extracts of Nicotiana benthamiana did not. The symptom pattern was determined early in the growth of a leaf and subsequently changed little. ACMV was found only in the yellow or yellow green areas of the mosaic pattern. Virus content of the leaves increased with increasing symptom intensity, but decreased with leaf age and ACMV was not detected in mature leaves. Most whiteflies were found on young growing cassava leaves and the number decreased progressively with leaf age. This distribution will aid both the acquisition and inoculation of the virus.  相似文献   

8.
During field surveys, three peanut green mosaic virus isolates differing in symptomatology on groundnut and a few other hosts were collected. Ultrathin sections of infected groundnut leaflets showed cytoplasmic inclusions with pin wheels and scrolls. In enzyme-linked immunosorbent assay they reacted strongly with antisera to peanut green mosaic and soybean mosaic virus antisera, and moderately with adzuki bean mosaic and peanut stripe virus antisera. All isolates also reacted positively with antisera to peanut eye spot, blackeye cowpea mosaic, pea seed-borne mosaic, potato virus Y and tobacco etch viruses, and did not react with antisera to peanut mottle, bean yellow mosaic, bean common mosaic, clover yellow vein and sugarcane mosaic viruses. SDS-PAGE analysis of purified virus preparations of the three isolates showed a single polypeptide with mol. wt. of 34,500 daltons. Based on these results, the three isolates are identified as biologically distinct strains of peanut green mosaic virus.  相似文献   

9.
Complete nucleotide sequences of the infectious cloned DNA components (DNA 1 and DNA 2) of mung bean yellow mosaic virus (MYMV) were determined. MYMV DNA 1 and DNA 2 consists of 2,723 and 2,675 nucleotides respectively. DNA 1 and DNA 2 have little sequence similarity except for a region of approximately 200 bases which is almost identical in the two molecules. Analysis of open reading frames revealed nine potential coding regions for proteins of mol. wt. > 10,000, six in DNA 1 and three in DNA 2. The nucleotide sequence of MYMV DNA was compared with that of bean golden mosaic virus (BGMV), tomato golden mosaic virus (TGMV) and African cassava mosaic virus (ACMV). The 200-base region common to the two DNAs of each virus had little sequence similarity, except for a highly conserved 33-36 base sequence potentially capable of forming a stable hairpin structure. The potential coding regions in the MYMV DNAs had counterparts in the BGMV, TGMV and ACMV, suggesting an overall similarity in genome organization, except for absence of 1L3 in MYMV DNA 1. The most highly conserved ORFs, MYMV 1R1, BGMV 1R1, TGMV 1R1 and ACMV 1R1, are the putative genes for the coat proteins of MYMV, BGMV, TGMV and ACMV, respectively. MYMV 1L1 has also a high degree of sequence similarity with BGMV 1L1, TGMV 1L1 and ACMV 1L1.  相似文献   

10.
DNA probes, made by cloning double-stranded forms of each of the genome parts (DNA-1 and DNA-2) of the Kenyan type isolate of African cassava mosaic virus (ACMV-T), reacted strongly with extracts from Nicotiana benthamiana plants infected with ACMV-T, or with Angolan or Nigerian isolates that are closely serologically related to the type isolate. However, only the DNA-1 probes reacted with extracts of TV. benthamiana infected with a Kenyan coast isolate (ACMV-C), which is serologically less closely related to ACMV-T. DNA-1 and DNA-2 probes also reacted with extracts of mosaic-affected Angolan cassava plants, including some which have not yielded ACMV particles detectable by immunosorbent electron microscopy and from which virus isolates have not been transmitted to TV. benthamiana. These anomalous plants, unlike other naturally infected cassava plants, showed mosaic symptoms on all their leaves which, however, contained only traces of virus particle antigen detectable by enzyme-linked immunosorbent assay. They contain isolates of ACMV that are probably defective for particle production. ACMV-T particles accumulated optimally in N. benthamiana at 20–25°C. At 30°C fewer particles, which apparently had a slightly greater specific infectivity, were produced. At 15°C, considerable quantities of virus particle antigen, virus DNA and virus particles were produced but the particles were poorly infective, and the few that could be purified contained an abnormally large proportion of polydisperse linear DNA molecules, and fewer circular molecules than usual. Angolan isolates, whether particle-producing or not, likewise replicated better in cassava plants at 23 °C than at 30 °C. In contrast, ACMV-C attained only very low concentrations in N. benthamiana, but these were greater at 30 °C than at 23°C.  相似文献   

11.
Selected monoclonal antibodies (MAbs), prepared to particles of African cassava mosaic or Indian cassava mosaic geminiviruses, detected three geminiviruses that occur in Europe: abutilon mosaic virus in Abutilon pictum ‘Thompsonii’, tobacco leaf curl virus in Lonicera japonica var. aureo-reticulata and tomato yellow leaf curl virus in Lycopersicon esculentum. All three viruses were detected in indirect ELISA by MAbs SCR 17 and SCR 20 but they were differentiated by their reactions with SCR 18 and SCR 23. Tobacco leaf curl virus was detected only when reducing agents were included in the leaf extraction medium. Inclusion of sodium sulphite slightly improved detection of tomato yellow leaf curl virus but reducing agents were not needed for detection of abutilon mosaic virus.  相似文献   

12.
Horsegram yellow mosaic disease was shown to be caused by a geminivirus; horsegram yellow mosaic virus (HYMV). The virus could not be transmitted by mechanical sap inoculation. Leaf dip and purified virus preparations showed geminate virus particles, measuring 15-18 * 30 nm. An antiserum for HYMV was produced and in enzyme-linked immunosorbent assay (ELISA) and immunosorbent electron microscopy (ISEM) tests HYMV was detected in leaf extracts of fieldinfected bambara groundnut, french bean, groundnut, limabean, mungbean, pigeonpea and soybean showing yellow mosaic symptoms. Bemisia tabaci fed on purified HYMV through a parafilm membrane transmitted the virus to all the hosts listed above but not to Ageratum conyzoides, okra, cassava, cowpea, Croton bonplandianus, Lab-lab purpureus, Malvastrum coromandalianum and tomato. No reaction was obtained in ELISA and ISEM tests between HYMV antibodies and extracts of plants diseased by whitefly-transmitted agents in India such as A. conyzoides yellow mosaic, okra yellow vein mosaic, C. bonplandianus, yellow vein mosaic, M. coromandalianum yellow vein mosaic, tomato leaf curl and cassava mosaic. HYMV was also not found to be related serologically to bean golden mosaic, virus.  相似文献   

13.
Several begomovirus species and strains causing Cassava mosaic disease (CMD) have been reported from cassava in Africa. In Nigeria, African cassava mosaic virus (ACMV) was the predominant virus in this important crop, and East African cassava mosaic virus (EACMV), first reported from eastern Nigeria in 1999, was also found occasionally. A survey was conducted in 2002 to resolve the diversity of the virus types present in cassava in Nigeria and to further understand the increasing complexity of the viruses contributing to CMD. A total of 234 leaf samples from cassava with conspicuous CMD symptoms were collected in farmers’ fields across different agroecological zones of Nigeria and subjected to polymerase chain reaction (PCR) with type‐specific primers. In addition and, to provide a full characterization of the viruses present, DNA‐A genome components of several viruses and informative genome fragments were sequenced. In Nigeria, ACMV proved to be the dominant virus with 80% of all samples being positive for ACMV. The East African cassava mosaic Cameroon virus (EACMCV) prevalent in Cameroon and Ivory Coast was detected in single infections (2%) and in mixed infections (18%) with ACMV. There was no indication for other virus strains of EACMV present in the country. The EACMCV samples collected showed a high nucleotide sequence identity >98% and resembled the described sequence of a Cameroon isolate (EACMCV‐CM) more than an Ivory Coast isolate, EACMCV‐CM[CI]. Evidence is provided that the EACMCV has reached epidemiological significance in Nigeria.  相似文献   

14.
Cassava mosaic disease, caused by cassava mosaic geminiviruses are transmitted by Bemisia tabaci. The B. tabaci adults from colonies reared on virus free cassava plant produced from apical meristem culture was studied to determine their ability to transmit Indian cassava mosaic virus (ICMV) and Sri Lankan cassava mosaic virus (SLCMV) from cassava to cassava. Virus free plants were confirmed by polymerase chain reaction (PCR) using geminivirus degenerate primers. The virus acquisition access period (AAP) of 48 h on virus infected cassava leaves and 48 h virus inoculation access periods on virus free healthy leaves were investigated. Both ICMV and SLCMV were absolutely transmitted by whiteflies reared on cassava. Virus specific primers were designed in the replicase region and used to detect virus in B. tabaci after different AAP. The PCR amplified replicase genes from virus transmitted cassava leaves were cloned the plasmid DNA was isolated from a recombinant colony of E. coli DH5α after their confirmation by colony PCR and sequenced them. The nucleotide sequences obtained from automated DNA sequencing were confirmed as ICMV and SLCMV replicase gene after homology searching by BLAST and found to be a new isolates. The nucleotide sequences of new isolates were submitted in GenBank (accession number JN652126 and JN595785).  相似文献   

15.
A virus found in cassava from the north-west of the Ivory Coast was transmitted by inoculation with sap extracts to herbaceous species in six plant families. Chenopodium quinoa was used as a propagation host and C. murale was used for local lesion assays. The virus particles are bacilliform, c. 18 nm in diameter, with predominant lengths of 42,49 and 76 nm and a structure apparently similar to that found in alfalfa mosaic virus. Purified preparations of virus particles had A260/A280 of 1.7 ±0.05, contained one protein of Mrc. 22 000, and yielded three species of RNA with Mr (× 10-6) of c. 0.7, 0.8 and 1.2. Although the virus particles were poorly immunogenic, an antiserum was produced and the virus was detected by enzyme-linked immunosorbent assay (DAS-ELISA) in leaf extracts at concentrations down to c. 6 ng/ml. Four other field isolates were also detected, including a strain which caused only mild systemic symptoms in C. quinoa instead of necrosis. The naturally infected cassava source plants were also infected with African cassava mosaic virus (ACMV) but when the new virus was cultured in Nicotiana benthamiana, either separately or together with ACMV, its concentration was the same. The new virus did not react with antisera to several plant viruses with small bacilliform or quasi-bacilliform particles, and alfalfa mosaic virus reacted only weakly and inconsistently with antiserum to the cassava virus. The new virus, for which the name cassava Ivorian bacilliform virus is proposed, is tentatively classified as the second member of the alfalfa mosaic virus group.  相似文献   

16.
The cassava mosaic geminiviruses (CMGs) isolated from cassava plants expressing mild and severe symptoms of cassava mosaic disease (CMD) in 2002 in Uganda were investigated using the polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) molecular techniques and DNA sequencing. Two previously described cassava mosaic geminiviruses: African cassava mosaic virus (ACMV) said East African cassava mosaic virus - Uganda variant (EACMV-UG2) were detected in Uganda. The RFLP technique distinguished two polymorphic variants of ACMV (ACMV-UG1 and ACMV-UG2) and three of EACMV-UG2 (EACMV-UG2[1], EACMV-UG2[2] and EACMV-UG2[3]). ACMV-UG1 produced the fragments predicted for the published sequences of ACMV-[KE]/UGMld/ UGSvr, while ACMV-UG2, which produced the RFLP fragments predicted for the West African ACMV isolates ACMV-[NG], ACMV-[CM], ACMV-[CM/DO2] and ACMV-[CI], was shown to be ACMV-UGMld/UGSvr after DNA sequencing. EACMV-UG2[1] produced the RFLP fragments predicted for the published sequences of EACMV-UG2/UG2Mld/UG2Svr. However, both EACMV-UG2[2] and EACMV-UG2[3], which produced East African cassava mosaic vzras-[Tanzania]-like polymorphic fragments with RFLP analysis, were confirmed to be isolates of EACMV-UG2 after DNA sequencing. Thus, this study emphasises the importance of DNA sequence analysis for the identification of CMG isolates. EACMV-UG2 was the predominant virus and occurred in all the surveyed regions. It was detected in 73% of the severely and 53% of the mildly diseased plants, while ACMV was less widespread and occurred most frequently in the mildly diseased plants (in 27% of these plants). Mixed infections of ACMV and EACMV-UG2 were detected in only 18% of the field samples. Unlike previously reported results the mixed infection occurred almost equally in plants exhibiting mild or severe disease symptoms (21% and 16%, respectively). The increasing frequency of mild forms of EACMV-UG2 together with the continued occurrence of severe forms in the field warrants further studies of virus-virus and virus-host interactions.  相似文献   

17.
Cassava mosaic disease is a major constraint for cassava production in Africa, resulting in significant economic losses. We have engineered transgenic cassava with resistance to African cassava mosaic virus (ACMV), by expressing ACMV AC1-homologous hairpin double-strand RNAs. Transgenic cassava lines with high levels of AC1-homologous small RNAs have ACMV immunity with increasing viral load and different inoculation methods. We report a correlation between the expression of the AC1-homologous small RNAs and the ACMV resistance of the transgenic cassava lines. Characterization of the small RNAs revealed that only some of the hairpin-derived small RNAs fall into currently known small interfering RNA classes in plants. The method is scalable to stacking by targeting multiple virus isolates with additional hairpins. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
To study the cause of the current epidemic of severe mosaic in Ugandan cassava, PCR analysis was used to detect and identify African cassava mosaic virus (ACMV), East African cassava mosaic virus (EACMV) and the recently reported recombinant geminivirus (UgV), which is derived from ACMV and EACMV, in leaf extracts from cassava plants grown from cuttings in the glasshouse at Dundee. The cuttings were collected from plants showing symptoms of different severities and growing at different sites in Uganda inside, at the periphery of, and outside, the area affected by the epidemic. ACMV occurred throughout the nine districts sampled but UgV was detected only in the area affected by the epidemic. EACMV was not found in Uganda. Most plants containing ACMV alone expressed mild or moderate mosaic, whereas very severe mosaic developed in most plants containing UgV plus ACMV and a few of those containing UgV only. Very severe mosaic in cassava from southern Sudan was likewise associated with co-infection by UgV and ACMV. The very severe disease was reproduced by graft-inoculating geminivirus-free cassava with UgV plus ACMV; plants inoculated with either UgV or ACMV developed severe or moderate symptoms, respectively. Unlike ACMV, Malawian EACMV did not enhance the severity of symptoms induced by UgV. However, a very severely affected plant from Ukerewe Island, Tanzania, contained ACMV and EACMV but not UgV. UgV attained a much greater concentration in cassava than did ACMV but the opposite occurred in Nicotiana benthamiana. In neither host was total virus antigen concentration affected by co-infection. Factors affecting the genesis, selection and spread of UgV are discussed. The evidence indicates that UgV is probably of relatively recent origin, that such variants do not appear often, and that the current epidemic has resulted from the rapid spread of UgV to infect plants and to invade regions in which ACMV already occurred. The novel type of virus complex so produced, consisting of an interspecific recombinant virus (UgV) and one of its parents (ACMV), typically has even more severe effects than UgV alone.  相似文献   

19.
A stock culture of cotton leaf curl virus from Pakistan (CLCuV-PK), was transmitted by whiteflies (Bemisia tabaci) to seven plant species, including French bean, okra, tobacco and tomato, and caused vein thickening and leaf curl symptoms. It was readily detected in triple antibody sandwich ELISA (TAS-ELIS A) by 11 out of 31 monoclonal antibodies raised against the particles of three other geminiviruses: African cassava mosaic, Indian cassava mosaic and okra leaf curl viruses. Reaction strength was enhanced when the tissue extraction fluid contained sodium sulphite. Minor variations in epitope profile were found among virus isolates from cotton (Gossypium hirsutum) collected from different districts in Pakistan over a 5-year period. These epitope profiles were distinguishable from that of cotton leaf curl virus from G. barbadense in southern India but indistinguishable from the profiles of viruses causing yellow vein disease of okra in India or Pakistan, or leaf curl of okra {Abelmoschus esculentus), Hibiscus tiliaceus, radish or sunflower in Pakistan, suggesting that these plants are putative natural hosts of CLCuV-PK. The viruses in cotton, and in okra with leaf curl or yellow vein symptoms, were also detected by PCR with three pairs of CLCuV-PK-specific primers. Five additional whitefly-transmitted geminiviruses were found among isolates from 11 other naturally-infected species in Pakistan, and were distinguished by their epitope profiles. These viruses were associated, respectively, with tobacco leaf curl, squash yellow blotch, tomato yellow leaf curl, watermelon leaf crinkle and soybean yellow mosaic diseases. The first four of these viruses were detected readily by PCR with geminivirus general primers but only weakly, if at all, with two pairs of CLCuV-PK-specific primers. Pakistani crops are infected with a range of distinguishable but relatively closely related whitefly-transmitted geminiviruses, some of which resemble those found in India.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号