首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cassava (Manihot esculenta Crantz) was grown in the greenhouse and in the field at different levels of phosphorus applied, with or without inoculation with VA mycorrhiza in sterilized or unsterilized soil. When grown in a sterilized soil to which eight levels of P had been applied the non-inoculated plants required the application of 3200 kg P ha−1 to reach near-maximum yield of plant dry matter (DM) at 3 months. Inoculated plants, however, showed only a minor response to applied P. Mycorrhizal inoculation in the P check increased top growth over 80 fold and total P uptake over 100 fold. Relating dry matter produced to the available P concentration in the soil (Bray II), a critical level of 15 ppm P was obtained for mycorrhizal and 190 ppm P for non-mycorrhizal plants. This indicates that the determination of critical levels of P in the soil is highly dependent on the degree of mycorrhizal infection of the root system. In a second greenhouse trial with two sterilized and non-sterilized soils it was found that in both sterilized soils, inoculation was most effective at intermediate levels of applied P resulting in a 15–30 fold increase in DM at 100 kg P ha−1. In the unsterilized soil inoculation had no significant effect in the quilichao soil, but increased DM over 3 fold in the Carimagua soil, indicating that the latter had a native mycorrhizal population less effective than the former. When cassava was grown in the field in plots with 11 levels of P applied, uninoculated plants grown in sterilized soil remained extremely P deficient for 4–5 months after which they recuperated through mycorrhizal infection from unsterilized borders or subsoil. Still, after 11 months inoculation had increased root yields by 40%. In the non-sterilized soil inoculation had no significant effect as the introduced strain was equally as effective as the native mycorrhizal population. These trials indicate that cassava is extremely dependent on an effective mycorrhizal association for normal growth in low-P soils, but that in most natural soils this association is rapidly established and inoculation of cassava in the field can only be effective in soils with a low quantity and quality of native mycorrhiza. In that case, plants should be inoculated with highly effective strains.  相似文献   

2.
Psidium guajava L.) plantlets was determined during acclimatization and plant establishment. Guava plantlets were asexually propagated through tissue culture and grown in a glasshouse for 18 weeks. Half of the plantlets were inoculated with a mixed endomycorrhiza isolate from Mexico, ZAC-19, containing Glomus diaphanum, G. albidum and G. claroides. Plantlets were fertilized with modified Long Ashton nutrient solution that supplied 11 μg P ml−1. Gas exchange measurements were taken at 2, 4, 8, and 18 weeks after inoculation using a portable photosynthesis system. All micropropagated guava plantlets survived transplant shock. After 6 weeks, mycorrhizal plantlets had greater shoot growth rates and leaf production than non-mycorrhizal plantlets. This also corresponded with increased photosynthetic rates and stomatal conductance of mycorrhizal plants. By 18 weeks, mycorrhizal plantlets had greater shoot length, leaf area, leaf, stem, and root dry mass. However, gas exchange was comparable among treatments, in part because the container size was restricting growth of the larger mycorrhizal plantlets. Non-mycorrhizal plantlets had greater leaf area ratios and specific leaf areas than mycorrhizal plantlets. Increased leaf tissue mineral levels of P, Mg, Cu, and Mo also occurred with mycorrhizal plantlets. Roots of inoculated guava plantlets were heavily colonized with arbuscules, vesicles and endospores. Guava plantlets were highly mycotrophic with a mycorrhizal dependency index of 103%. Accepted: 27 December 1999  相似文献   

3.
 We report the effect of ectomycorrhizal fungi (Suillus variegatus, Paxillus involutus) and defoliation on polyamine concentrations in pine (Pinus silvestris) and birch (Betula pendula) foliage and roots. Symbiotic root tips showed consistently higher concentrations of putrescine than non-symbiotic roots. Partial defoliation had no effect on the polyamine levels in mycorrhizal pine or birch roots. The foliage of mycorrhizal pine seedlings had lower putrescine concentrations and higher spermidine than foliage of non-mycorrhizal plants, and defoliation reversed this pattern. The response to partial defoliation differed in birch foliage: mycorrhizal status had no effect and all new growth after defoliation had higher spermidine levels than in non-defoliated birch. The potential role of polyamines in mycorrhizal symbiosis is discussed. Accepted: 26 February 1997  相似文献   

4.
A field study was done to assess the potential benefit of arbuscular mycorrhizal (AM) inoculation of elite strawberry plants on plant multiplication, under typical strawberry nursery conditions and, in particular, high soil P fertility (Mehlich-3 extractible P=498 mg kg−1). Commercially in vitro propagated elite plants of five cultivars (‘Chambly,’ ‘Glooscap,’ ‘Joliette,’ ‘Kent,’ and ‘Sweet Charlie’) were transplanted in noninoculated growth substrate or in substrate inoculated with Glomus intraradices or with a mixture of species (G. intraradices, Glomus mosseae, and Glomus etunicatum) at the acclimation stage and were grown for 6 weeks before transplantation in the field. We found that AM fungi can impact on plant productivity in a soil classified as excessively rich in P. Inoculated mother plants produced about 25% fewer daughter plants than the control in Chambly (P=0.03), and Glooscap produced about 50% more (P=0.008) daughter plants when inoculated with G. intraradices, while the productivity of other cultivars was not significantly decreased. Daughter plant shoot mass was not affected by treatments, but their roots had lower, higher, or similar mass, depending on the cultivar–inoculum combination. Root mass was unrelated to plant number. The average level of AM colonization of daughter plants produced by noninoculated mother plants did not exceed 2%, whereas plants produced from inoculated mothers had over 10% of their root length colonized 7 weeks after transplantation of mother plants and ∼6% after 14 weeks (harvest), suggesting that the AM fungi brought into the field by inoculated mother plants had established and spread up to the daughter plants. The host or nonhost nature of the crop species preceding strawberry plant production (barley or buckwheat) had no effect on soil mycorrhizal potential, on mother plant productivity, or on daughter plant mycorrhizal development. Thus, in soil excessively rich in P, inoculation may be the only option for management of the symbiosis.  相似文献   

5.
 The effect of arbuscular mycorrhiza (AM) on white clover and ryegrass grown together in a soil spiked with polycyclic aromatic hydrocarbons (PAH) was assessed in a pot experiment. The soil was spiked with 500 mg kg–1 anthracene, 500 mg kg–1 chrysene and 50 mg kg–1 dibenz(a,h)anthracene, representing common PAH compounds with three, four and five aromatic rings, respectively. Three treatments and two harvest times (8 and 16 weeks) were imposed on plants grown in spiked soil: no mycorrhizal inoculation, mycorrhizal inoculation (Glomus mosseae P2, BEG 69) and mycorrhizal inoculation and surfactant addition (Triton X-100). Pots without PAH were also included as a control of plant growth and mycorrhizal colonization as affected by PAH additions. The competitive ability of clover vis-à-vis ryegrass regarding shoot and root growth was enhanced by AM, but reduced by PAH and the added surfactant. This was reflected by mycorrhizal root colonization which was moderate for clover (20–40% of total root length) and very low for ryegrass (0.5–5% of total root length). Colonization of either plant was similar in spiked soil with and without the added surfactant, but the PAH reduced colonization of clover to half that in non-spiked soil. P uptake was maintained in mycorrhizal clover when PAH were added, but was reduced in non-mycorrhizal clover and in mycorrhizal clover that received surfactant. Similar effects were not observed on ryegrass. These results are discussed in the context of the natural attenuation of organic pollutants in soils. Accepted: 12 June 2000  相似文献   

6.
Effect of soil pH and sewage sludge on VA mycorrhizal infection of soybeans   总被引:1,自引:0,他引:1  
Summary Small plots were amended in 1976 or 1978 with four kinds of sewage sludge. The sludges represented samples considered to be relatively free of heavy metals as well as sludges highly contaminated with heavy metals. Sludges were added to a silt loam soil at rates of 224 or 448 Mgha−1. The soils were maintained at a high or low pH regime. In 1984, soybeans (Glycine max L. Merril. var. ‘Clark’) were planted and grown to the R4 stage. After harvest, roots were removed from the soil, washed, and examined for VA mycorrhizal infection. It was found that the heavy metal content of the sludge alone was generally not related to determining the extent of mycorrhizal infection. A heat treated sludge, high in heavy metals, exhibited the highest degree of mycorrhizal infection when the soil was maintained at a pH of 6.2. With this treatment, 52% of the root segments examined were infected by mycorrhiza. When the same sludge was added to a soil with a slightly lower pH (5.7) none of the roots examined were infected by mycorrhiza. When soybean roots were examined from soils that received no sludge and were maintained at either a low (5.6) or high (6.2) pH, there was no significant difference in mycorrhizal infection between the pH regimes. These results therefore indicate that sewage sludge may inhibit mycorrhizal infection if the sludge contains a high concentration of heavy metals and the sludge is applied to the soil with a low pH. Scientific Article No. A-4093 and Contribution No 7078 of the Maryland Agric. Exp. Stn., Dept. of Agronomy, University of Maryland, College Park, MD 20742.  相似文献   

7.
The effect of the fungicide, chlorothalonil, on vesicular-arbuscular mycorrhizal (VAM) symbiosis was studied in a greenhouse using Leucaena leucocephala as test plant. Chlorothalonil was applied to soil at 0, 50, 100 and 200 μg g−1. The initial soil solution P levels were 0.003 μg mL−1 (sub-optimal) and 0.026 μg mL−1 (optimal). After 4 weeks, the sub-optimal P level was raised to 0.6 μg mL−1 (high). The soil was either uninoculated or inoculated with the VAM fungus, Glomus aggregatum. The fungicide reduced mycorrhizal colonization of roots, development of mycorrhizal effectiveness, shoot P concentration and uptake and dry matter yields at all concentrations tested, although the highest inhibitory effect was noted as the concentration of the fungicide was increased from 50 to 100 μg g−1. Phosphorus applied after four weeks tended to partially offset the deleterious effects of chlorothalonil in plants grown in the inoculated and uninoculated soil which suggests that the fungicide was interfering with plant P uptake. The results suggest that the use of chlorothalonil should be restricted to levels below 50 μg g−1 if the benefits of mycorrhizal symbiosis are to be expected. Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3464. Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3464.  相似文献   

8.
Summary Knowledge of the effect of pesticides on the formation of forest tree mycorrhizae is important as pesticides are nowadays used in forestry. The effect of the fungicide Dithane M-45 and the herbicide Gramoxone on the growth ofPinus sylvestris L. seedlings and on the development of their mycorrhizae was studied. Investigations involved seedlings inoculated with pure cultures of mycorrhizal fungi in flasks with perlite under aseptic conditions, in Mitscherlich pots filled with perlite under semi-aseptic conditions, and on peat substrate in outdoor beds. No change in seedling growth and the mycorrhiza formation occurred when water suspension of the fungicide Dithane M-45 was used at the recommended dose. The highest rates of this fungicide had no phytotoxic effect although the growth of treated seedlings was reduced due to complete or partial inhibition of mycorrhizal formation. In contrast, even low doses of Gramoxone reduced the growth of the inoculated and non-inoculated seedlings which were more sensitive than their mycorrhizal fungi. The soil sterilization of outdoor beds with an application of a water suspension of Dithane M-45 at recommended doses reduced mycorrhizal development and seedling growth. Seedlings inoculated simultaneously with pure cultures ofSuillus granulatus showed a slightly better growth than untreated controls.  相似文献   

9.
 The experiments aimed to determine the relationship between density of propagules in soil and initiation and spread of an arbuscular mycorrhizal fungus in the cotton roots. As few as 10 propagules of Glomus mosseae in approximately 95 g soil located in a band 25 cm below the soil surface established mycorrhizas in more than 80% of cotton roots at the point of inoculation within 36 days. Secondary spread was initiated 10–13 days after primary colonisation in treatments inoculated with one, 10 or 100 propagules. Spread of mycorrhizas within the root system was rapid from 100 propagules and was slower with fewer propagules. Accepted: 26 August 1999  相似文献   

10.
Interactions between the arbuscular mycorrhizal fungus Glomus intraradices and the powdery mildew fungus Podosphaera xanthii were examined with cucumber as the host plant in pot experiments under greenhouse conditions. Plants were inoculated with mildew two weeks after seedling emergence. Plants were mycorrhizal or not, prior to mildew infection and were harvested two weeks after mildew inoculation. We found no influence of the cucumber — G. intraradices symbiosis on development of cucumber mildew in terms of numbers of colonies per unit area. Similarly, biomass and amount of energy reserves of G. intraradices as examined with signature fatty acids were unaffected by mildew. Both biotrophs caused growth depressions of the host plant. Plant carbon allocation is discussed in relation to biotrophs as sinks.  相似文献   

11.
Using an exclosure experiment in the willow stage of primary succession on the floodplain of the Tanana River, we tested the hypothesis that browsing can reduce mycorrhizal infection. We measured the effects winter browsing by moose (Alcesalces) and snowshoe hare (Lepusamericanus) had on mycorrhizal infection and fine root biomass of willow (Salix spp.) and balsam poplar (Populusbalsamifera). We found that protection from winter browsing increased ectomycorrhizal infection by 10% in the top 5 cm of the soil profile, by 23% at 5–10 cm, and by 42% at the 10–15 cm depth. Mammal browsing in taiga forests is now recognized as a major cause of the shift from palatable deciduous species such as willow and balsam poplar to less palatable species such as alder and spruce. We suggest that browsing-induced reduction in ectomycorrhizal infection of salicaceous species plays a central role in this shift in plant community composition. Received: 26 March 1996 / Accepted: 26 September 1996  相似文献   

12.
Bryla  David R.  Duniway  John M. 《Plant and Soil》1997,197(1):95-103
The influence of arbuscular mycorrhizal fungi on drought tolerance and recovery was studied in safflower (Carthamus tinctorius L.) and wheat (Triticum aestivum L.). Plants were grown with and without the mycorrhizal fungus, Glomus etunicatum Becker & Gerd., in nutrient-amended soil under environmentally-controlled conditions to yield mycorrhizal and nonmycorrhizal with similar leaf areas, root length densities, dry weights, and adequate tissue phosphorus. When drought stress was induced, mycorrhizal infection did not affect changes in leaf water, osmotic or pressure potentials, or osmotic potentials of leaf tissue rehydrated to full turgor in either safflower or wheat. Furthermore, in safflower, infection had little effect on drought tolerance as indicated by the level of leaf necrosis. Mycorrhizal wheat plants, however, had less necrotic leaf tissue than uninfected plants at moderate levels of drought stress (but not at severe levels) probably due to enhanced phosphorus nutrition. To determine the effects of infection on drought recovery, plants were rewatered at a range of soil water potentials from –1 to –4 MPa. We found that although safflower tended to recover more slowly from drought after rewatering than wheat, mycorrhizal infection did not directly affect drought recovery in either plant species. Daily water use after rewatering was reduced and was correlated to the extent that leaves were damaged by drought stress in both plant species, but was not directly influenced by the mycorrhizal status of the plants.  相似文献   

13.
 Slow arbuscular mycorrhizal colonisation is characteristic of a growth disorder of cotton occurring in crops in northern New South Wales, Australia. To determine whether or not slow colonisation is caused by poor survival of mycorrhizal fungi between crops, we examined colonisation of cotton in field crops and in a series of pot bioassays. Cotton roots were sampled at sites with or without severe symptoms of the growth disorder in each of three fields in 1991 and two fields in 1993. The bioassays were at intervals over the winter fallow prior to the crops in both years. In each bioassay, soil was collected from the field sites and sown with cotton in pots in a controlled environment cabinet. Colonisation was assessed at 14, 28 and 42 days after sowing. In the bioassay series, colonisation at 14 days, which was representative of primary infections of roots and hence propagule density in soil, tended to decline over the winter fallow. In contrast, colonisation at 42 days, which included secondary spread of infection, first declined and then returned to its original level or higher. In the field, plants affected by the growth disorder were colonised slowly, while healthy plants were colonised rapidly. In the bioassays, however, colonisation in the soil from sites with the growth disorder equalled or surpassed that in soil from sites with healthier cotton. Thus, the slow colonisation and growth of field-grown cotton did not result from a lack of mycorrhizal inoculum and was most likely caused by soil factors. Accepted: 21 August 1998  相似文献   

14.
Mycorrhizal and non-mycorrhizal (NM) maize plants were grown for 4 or 7 weeks in an autoclaved quartz sand-soil mix. Half of the NM plants were supplied with soluble P (NM-HP) while the other half (NM-LP), like the mycorrhizal plants, received poorly soluble Fe and Al phosphate. The mycorrhizal plants were inoculated with Glomus mosseae or G. intraradices. Soil bacteria and those associated with the mycorrhizal inoculum were reintroduced by adding a filtrate of a low P soil and of the inocula. At 4 and 7 weeks, plants were harvested and root samples were taken from the root tip (0-1 cm), the subapical zone (1-2 cm) and the mature root zone at the site of lateral root emergence. DNA was extracted from the roots with adhering soil. At both harvests, the NM-HP plants had higher shoot dry weight than the plants grown on poorly soluble P. Mycorrhizal infection of both fungi ranged between 78% and 93% and had no effect on shoot growth or shoot P content. Eubacterial community compositions were examined by polymerase chain reaction-denaturing gradient gel electrophoresis of 16 S rDNA, digitisation of the band patterns and multivariate analysis. The community composition changed with time and was root zone specific. The differences in bacterial community composition in the rhizosphere between the NM plants and the mycorrhizal plants were greater at 7 than at 4 weeks. The two fungi had similar bacterial communities after 4 weeks, but these differed after 7 weeks. The observed differences are probably due to changes in substrate composition and amount in the rhizosphere.  相似文献   

15.
 We determined the effects of phosphorus (P) concentration and mycorrhizal colonization on ethylene production by flowers of snapdragons (Antirrhinum majus L.). Mycorrhizal colonization in a soil-less medium did not significantly affect the total number of flowers per spike or flower P concentration, but it significantly increased flower vase-life and significantly decreased flower ethylene production. This demonstrates for the first time that mycorrhizal colonization can have a non-localized effect on host ethylene production. The reduction in ethylene production caused by mycorrhizal colonization was as large as the variation in ethylene production among snapdragon cultivars. Thus, mycorrhizal colonization may be a viable alternative to toxic ethylene inhibitors such as silver thiosulfate. Increased fertilizer P concentration (15 versus 3 μg P ml–1) significantly increased plant fresh weight and the total number of flowers per spike. In contrast to mycorrhizal colonization, increased fertilizer P concentration resulted in an increase in ethylene production. There was no significant effect of fertilizer P concentration on vase-life. This suggests that factors other than ethylene have at least partial control over vase-life. Postharvest amendment of individual flowers with phosphate also significantly increased flower ethylene production. Phosphorus apparently does not mediate the mycorrhizal effect because mycorrhizal colonization decreased ethylene production without significantly influencing flower P concentration. Moreover, treatment with phosphate increased flower ethylene production. Mycorrhizal colonization did not significantly influence response to exogenous ethylene. Accepted: 14 June 1999  相似文献   

16.
The current study investigated the effect of 1-methylcyclopropene (1-MCP), an ethylene inhibiting compound, in alleviating the detrimental effect of drought on cotton plants. The experiment was conducted in a growth chamber in 2006 and 2007. Treatments consisted of (T1) an untreated control well-watered, (T2) 1-MCP at 10 g ai/ha well-watered, (T3) an untreated control water-stressed, and (T4) 1-MCP at 10 g ai/ha water-stressed. Water-stress treatment consisted of withholding water from the pots until stomatal closure. The water-stress regime and the 1-MCP treatments were imposed at the pinhead-square stage, approximately 4 weeks after planting. Water-stressed plants treated with 1-MCP had a higher stomatal resistance, less negative water potential, higher activity of antioxidant enzymes, and better maintenance of membrane integrity. The greatest effects on stomatal resistance were observed at 5 days after treatment initiation, in which water-stressed 1-MCP-treated plants exhibited stomatal resistance of 0.079 m2 s mmol−1, whereas water-stressed untreated plants exhibited only 0.047 m2 s mmol−1. There was no significant effect of 1-MCP on water-use efficiency, transpiration, and dry matter production. These results indicated that application of 1-MCP to water-stressed cotton may have the potential to lower levels of stress in treated plants.  相似文献   

17.
 Twelve nodulation mutants (seven non-nodulating and five supernodulating) of soybean [Glycine max (L.) Mirr.] were screened for arbuscular mycorrhizal colonization in the presence of either Glomus etunicatum Becker and Gerdemann or Gigaspora margarita Becker and Hall. The cultivars showed variation in colonization parameters. The two supernodulating mutants En6500 and NOD1–3 had higher frequencies of colonization with 2.5–4.5 times higher arbuscular abundance than the respective wild types. The enhanced mycorrhization resulted in significant enhancement of P uptake by En6500. The non-nodulating mutants showed decreases in mycorrhizal parameters. Mutants En1282 and Harosoyexhibited aborted infection after formation of typical appressorium-like structures at some sites. However, none of these had the non-mycorrhizal phenotype. Growth and nutrient-uptake parameters should be considered while studying plant mutants for mycorrhization. Accepted: 7 July 2000  相似文献   

18.
The purpose of this study was to determine how a plant's responseto colonization by mycorrhizal fungi relates to its abilityto acquire and utilize phosphorus for growth and reproduction.Two tomato genotypes previously found to be either responsive(‘LA1709’) or unresponsive (‘large cherry’)to mycorrhizal colonization during early vegetative growth wereexamined in detail. Plants were grown at four levels of addedphosphate or with mycorrhizal inoculum. Vegetative and reproductivegrowth, phosphorus uptake and root length density were measuredduring the course of plant development. Mycorrhizal symbiosissignificantly increased above-ground dry mass, root length,phosphorus content and yield under low phosphorus conditionsin ‘LA1709’, while it had less effect on these characteristicsin ‘large cherry’. When uninfected, however, ‘LA1709’grew and reproduced poorly unless high amounts of phosphoruswere added to the soil, while ‘large cherry’ grewwell under very low phosphorus conditions. This was because‘large cherry’ had significantly higher root lengthdensities than ‘LA1709’, enabling plants from thisgenotype to explore more soil volume and acquire greater amountsof phosphorus when grown without mycorrhizal fungi in low phosphorussoil. ‘Large cherry’ also had higher phosphorususe efficiency and allocated a greater proportion of phosphorusto reproduction when uninfected than ‘LA1709’. Itappears traits that affect a plant's ability to acquire andutilize phosphorus efficiently for growth and reproduction canalso affect its response to mycorrhizal colonization in tomato.Copyright1998 Annals of Botany Company. Tomato,Lycopersicon esculentum,mycorrhiza,Glomus etunicatum,phosphorus, reproduction, lifespan.  相似文献   

19.
A pot experiment was conducted to examine the effect of arbuscular mycorrhizal fungus, Glomus fasciculatum, and salinity on the growth of Acacia nilotica. Plants were grown in soil under different salinity levels (1.2, 4.0, 6.5, and 9.5 dS m−1). In saline soil, mycorrhizal colonization was higher at 1.2, 4.0, and 6.5 dS m−1 salinity levels in AM-inoculated plants, which decreased as salinity levels further increased (9.5 dS m−1). Mycorrhizal plants maintained greater root and shoot biomass at all salinity levels compared to nonmycorrhizal plants. AM-inoculated plants had higher P, Zn, and Cu concentrations than uninoculated plants. In mycorrhizal plants, nutrient concentrations decreased with the increasing levels of salinity, but were higher than those of the nonmycorrhizal plants. Mycorrhizal plants had greater Na concentration at low salinity levels (1.2, 4.0 dS m−1), which lowered as salinity levels increased (6.5, 9.5 dS m−1), whereas Na concentration increased in control plants. Mycorrhizal plants accumulated a higher concentration of K at all salinity levels. Unlike Na, the uptake of K increased in shoot tissues of mycorrhizal plants with the increasing levels of salinity. Our results indicate that mycorrhizal fungus alleviates deleterious effects of saline soils on plant growth that could be primarily related to improved P nutrition. The improved K/Na ratios in root and shoot tissues of mycorrhizal plants may help in protecting disruption of K-mediated enzymatic processes under salt stress conditions.  相似文献   

20.
NaCl胁迫下AM真菌对棉花生长和叶片保护酶系统的影响   总被引:24,自引:4,他引:24  
利用盆栽实验研究了 Na Cl胁迫条件下 AM真菌对棉花生长和叶片保护酶系统的影响。结果表明 :在土壤中加入 0、0 .1%、0 .2 %、0 .3%浓度 Na Cl条件下 ,Na Cl胁迫对 AM真菌的接种效果有显著影响。接种 AM真菌提高了棉花根系菌根侵染率 ,增加了棉株的生物产量 ,以 0~ 0 .2 % Na Cl浓度时 AM真菌接种效果最好。 AM真菌对棉株生理参数和保护酶活性的影响因生育期和 Na Cl浓度不同而异 ,现蕾期和低盐浓度 (0~ 0 .1% )下叶片叶绿素含量明显增加 ;中高盐水平 (0 .2 %~ 0 .3% )和生育后期叶片可溶性蛋白质含量和 SOD、POD、CAT等保护酶活性显著提高 ,MDA含量明显降低 ;棉株 K、Ca、Mg含量因植株部位和盐浓度不同而变化。 AM真菌增强宿主植物的耐盐性可能源于促进宿主根系对土壤矿质元素吸收的直接作用和改善植物体内离子平衡和生理代谢活动、提高保护酶活性的间接作用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号