首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 341 毫秒
1.
We have purified cassava (Manihot esculenta) linamarase to apparent homogeneity using a simplified extraction procedure using low pH phosphate buffer. Three isozymes of cassava linamarase were identified in leaves based on differences in isoelectric point. The enzyme is capable of hydrolyzing a number of β-glycosides in addition to linamarin. The enzyme is unusually stable and has a temperature optimum of 55°C. Immunogold labeling studies indicate that linamarase is localized in the cell walls of cassava leaf tissue. Since linamarin must cross the cell wall following synthesis in the leaf for transport to the root, it is likely that linamarin must cross the cell wall in a nonhydrolyzable form, possibly as the diglucoside, linustatin. In addition, we have quantified the levels of linamarin and linamarase activity in leaves of cassava varieties which differ in the linamarin content of their roots. We observed no substantial differences in the steady state linamarin content or linamarase activity of leaves from high or low (root) cyanogenic varieties. These results indicate that the steady state levels of linamarin and linamarase in leaves of high and low cyanogenic varieties are not correlated with the varietal differences in the steady state levels of linamarin in roots.  相似文献   

2.
Summary An enzyme-bound linamarin indicator paper strip was developed which was based on the hydrolysis of linamarin by cassava leaf linamarase and the detection of the cyanide released by alkaline picrate reagent. The linamarase could be stabilized with gelatin or gelatin in combination with polyvinylpyrrolidone-10 or trehalose. A positive reaction was observed within 15 minutes at 37°C and it could detect linamarin concentration as low as 0.5 to 1 mM. The indicator strip could be used to estimate linamarin content in cassava semiquantitatively.  相似文献   

3.
Whereas high activities of β-glucosidase occur in homogenates of leaves of Hevea brasiliensis Muell.-Arg., this enzyme, which is capable of splitting the cyanogenic monoglucoside linamarin (linamarase), is not present in intact protoplasts prepared from the corresponding leaves. Thus, in leaves of H. brasiliensis the entire linamarase is located in the apoplasmic space. By analyzing the vacuoles obtained from leaf protoplasts isolated from mesophyll and epidermal layers of H. brasiliensis leaves, it was shown that the cyanogenic glucoside linamarin is localized exclusively in the central vacuole. Analyses of apoplasmic fluids from leaves of six other cyanogenic species showed that significant linamarase activity is present in the apoplasm of all plants tested. In contrast, no activity of any diglucosidase capable of hydrolyzing the cyanogenic diglucoside linustatin (linustatinase) could be detected in these apoplasmic fluids. As described earlier, any translocation of cyanogenic glucosides involves the interaction of monoglucosidic and diglucosidic cyanogens with the corresponding glycosidases (Selmar, 1993a, Planta 191, 191–199). Based on this, the data on the compartmentation of cyanogenic glucosides and their degrading enzymes in Hevea are discussed with respect to the complex metabolism and the transport of cyanogenic glucosides.  相似文献   

4.
Several fungi and bacteria, isolated from Ugandan domestic fermented cassava, released HCN from linamarin in defined growth media. In 72 h, a Bacillus sp. decreased the linamarin to 1% of initial concentrations, Mucor racemosus to 7%, Rhizopus oryzae and R. stolonifer to 30%, but Neurospora sitophila and Geotrichum candidum hardly degraded the linamarin. Adding pectolytic and cellulolytic enzymes, but not linamarase, to root pieces under aseptic conditions, led to root softening and significantly lower linamarin contents. Neurospora sitophila showed no linamarase activity, in contrast to M. racemosus and Bacillus sp., both of which were less effective in root softening and decreasing the root linamarin content. The most important contribution of microorganisms to linamarin decrease in the solid-substrate fermentation of cassava is their cell-wall-degrading activity, which enhances the contact between endogenous linamarase and linamarin.A.J.A. Essers and M.H.J. Bennik were and M.J.R. Nout is with the Department of Food Science, Wageningen Agricultural University, Bomenweg 2, 6703HD Wageningen, The Netherlands. A.J.A. Essers is now with the Department of Toxicology, Wageningen Agricultural University, PO Box 8000, 6700EA Wageningen, The Netherlands; M.H.J. Bennik is now with the Agrotechnological Research Institute, PO Box 17, 6700AA Wageningen, The Netherlands.  相似文献   

5.
Summary An enzyme-immobilized microplate for determination of linamarin was prepared by covalently linking cassava leaf linamarase to the microplate. For linamarin determination, cassava roots were homogenised in 0.1 Mo-phosphoric acid and the filtrate adjusted to pH 6 with NaOH prior to adding into the wells. The cyanide released was then determined spectrophotometrically. One nmol linamarin can be detected. The microplate method is suitable for analysis of large number of samples and is useful for screening purposes.  相似文献   

6.
In the leaf tissue of the cyanogenic plant Hevea brasiliensis, which contains large amounts of linamarin, there is no specific linamarase. In Hevea leaves only one β-glucosidase is detectable. It is responsible for the cleavage of all β-glucosides and β-galactosides occurring in Hevea leaf tissue, including the cyanogenic glucoside linamarin. Therefore, the enzyme is referred to as a β-glycosidase instead of the term β-glucosidase. This β-glycosidase has a broad substrate spectrum and occurs in multiple forms. These homo-oligomeric forms are interconvertible by dissociation-association processes. The monomer is a single protein of 64 kilodaltons.  相似文献   

7.

Background

The killer‐suicide system linamarase/linamarin (lis/lin) uses the plant gene linamarase (β‐glucosidase) to convert the cyanogenic glucoside substrate, linamarin, into glucose and cyanide. We have studied the bystander effect associated with this new system mediated by the production of the cyanide ion that diffuses freely across membranes.

Methods

Immunofluorescent staining of cells treated with an anti‐linamarase antibody allowed us to localize the enzyme within the cells. Flow cytometry was used to determine the sensitivity of different mixtures of cells, C6lis and C6gfp (green), to linamarin as a percentage of cell survival.

Results

We demonstrate here that rat glioblastoma C6 cells carrying the linamarase gene (lis), mixed with naive C6 cells and exposed to linamarin, induce generalized cell death. Cells expressing lis efficiently export linamarase, whereas linamarin enters cells poorly by endocytosis; as a result most of the cyanide is produced outside the cells. The study was facilitated by the presence of the green fluorescent protein (gfp) gene in the bystander population. As few as 10% C6lis‐positive cells are sufficient to eliminate the entire cell culture in 96 h.

Conclusions

This bystander mechanism does not preferentially kill toxic metabolite producer cells compared with bystander cells, thus allowing production of sufficient cyanide to cause tumor regression. In this report we confirm the potential of the lis/lin gene therapy system as a powerful tool to eliminate tumors in vivo. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

8.
Kakes  P. 《Planta》1985,166(2):156-160
Linamarase (EC 3.2.1.21) is a specialized -glucosidase that hydrolyses the cyanogenic glucoside linamarin. Two clones of Trifolium repens L. derived from natural populations, of which one clone exhibited linamarase activity, were used in a comparative study to try to establish the localization of linamarase and other -glucosidases. Two methods were used: the first one was vacuum infiltration of intact leaf cells, followed by centrifugation. A significant amount of linamarase and -glucosidase activity could be extracted from intact tissue by a 0.25 M NaCl solution, indicating that these activities are localized in the apoplast. The second method, immuno-cytofluorescense of microtome sections, confirmed this. It was found that linamarase and other -glucosidases are present in the cell walls, especially those of the epidermal cells, and in the cuticle. However their presence in the cell walls of other tissues i.e. walls of the vessels, could not be excluded. No difference in distribution could be detected between linamarase and other -glucosidases.  相似文献   

9.
Summary Six out of ten lactic acid bacteria strains tested displayed linamarase activity.Lactobacillus plantarum strain A6 displayed the greatest activity affecting 36U/g cells on MRS cellobiose. The strain also broke down in less than 2 hours the linamarin extracted from cassava juice. HPLC analysis of the products of the reaction showed that the bacteria converted the linamarin into lactic acid and acetone cyanohydrin.  相似文献   

10.
A new chemiluminescence assay was developed for the quantitative determination of linamarin, a cyanogenic glucoside present in cassava. The assay involved hydrolysis of linamarin by a specific enzyme, linamarase, to release glucose, which was then quantitated by a chemiluminescence system consisting of glucose oxidase-peroxidase-luminol. The new assay was more sensitive than the conventional spectrophotometric method for quantitating linamarin in cassava extracts. However, the following agents were found to interfere with the new assay: Vanadate, Mg2+, and Cu2+, were inhibitory to the luminescence of the H2O2-peroxidase-luminol system used in the coupling reaction, whereas EDTA and EGTA activated the system. In addition, Hg2+, which inhibits glucose oxidase, and Tris ion, which inhibits linamarase, both interfered with the new assay.  相似文献   

11.
Dirk Selmar 《Planta》1993,191(2):191-199
The 14C-labelled cyanogenic glucosides linustatin (diglucoside of acetone cyanohydrin) and linamarin (monoglucoside of acetone cyanohydrin), prepared by feeding [14C]valine to plants of Linum usitatissimum L., were applied to cotyledons of Hevea brasiliensis Muell.-Arg. in order to study their transport. Both [14C]-linustatin and [14C]linamarin were efficiently taken up by the cotyledons. Whereas 14C was recovered completely when [14C]linustatin was applied to the seedling, only about one-half of the radioactivity fed as [14C]linamarin could be accounted for after incubation. This observation is in agreement with the finding that apoplasmic linamarase hydrolyzes linamarin but not the related diglucoside linustatin. These data prove that, in vivo, linamarin does not occur apoplasmically and that linustatin, which is exuded from the endosperm, is taken up by the cotyledons very efficiently. Thus, these findings confirm the linustatin pathway (Selmar et al. 1988, Plant Physiol. 86, 711–716), which describes mobilization and transport of the cyanogenic glucoside linamarin, initiated by the glucosylation of linamarin to yield linustatin. When linustatin is metabolized to non-cyanogenic compounds, in Hevea this cyanogenic diglucoside is hydrolyzed by a diglucosidase which splits off both glucose molecules simultaneously as one gentiobiose moiety (Selmar et al. 1988). In contrast, [14C]linustatin, which is taken up by the cotyledon, is not metabolized but is reconverted in high amounts to the monoglucosidic [14C]linamarin, which then is temporarily stored in the cotyledons. These data demonstrate that in Hevea, besides the simultaneous diglucosidase, there must be present a further diglucosidase which is able to hydrolyze cyanogenic diglucosides sequentially by splitting off only the terminal glucose moiety from linustatin to yield linamarin. From this, it is deduced that the metabolic fate of linustatin, which is transported into the source tissues, depends on the activities of the different diglucosidases. Whereas sequential cleavage — producing linamarin — is purely a part of the process of linamarin translocation (using linustatin as the transport vehicle), simultaneous cleavage, producing acetone cyanohydrin, is part of the process of linamarin metabolization in which the nitrogen from cyanogenic glucosides is used to synthesize non-cyanogenic compounds.  相似文献   

12.
When cassava (Manihot esculenta Crantz) root was cut into blocks and incubated under laboratory conditions, the blocks showed more widespread and more even symptoms of physiological deterioration than those under natural conditions. Thus, the tissue block system has potential for biochemical studies of natural deterioration of cassava root. The changes in cyanide content and linamarase (linamarin β-d-glucoside glucohydrolase; EC 3.2.1.21) activity in various tissues during physiological deterioration were investigated. Total cyanide content increased in all parts of block tissue after 3-day incubation. The degree of increase in cyanide was most pronounced in white parenchymal tissue, 2 to 3 millimeters thick, next to the cortex (A-part tissue), where no physiological symptoms appeared. On the other hand, linamarase activity was decreased in all parts of block tissue after a 3-day incubation. A time course analysis of A-part tissue indicated a clear reciprocal relationship between changes in total cyanide and linamarase activity; total cyanide increased, while linamarase activity decreased. Free cyanide constituted a very small portion of the total cyanide and did not change markedly.  相似文献   

13.
The straightforward production and dose-controlled administration of protein therapeutics remain major challenges for the biopharmaceutical manufacturing and gene therapy communities. Transgenes linked to HIV-1-derived vpr and pol-based protease cleavage (PC) sequences were co-produced as chimeric fusion proteins in a lentivirus production setting, encapsidated and processed to fusion peptide-free native protein in pseudotyped lentivirions for intracellular delivery and therapeutic action in target cells. Devoid of viral genome sequences, protein-transducing nanoparticles (PTNs) enabled transient and dose-dependent delivery of therapeutic proteins at functional quantities into a variety of mammalian cells in the absence of host chromosome modifications. PTNs delivering Manihot esculenta linamarase into rodent or human, tumor cell lines and spheroids mediated hydrolysis of the innocuous natural prodrug linamarin to cyanide and resulted in efficient cell killing. Following linamarin injection into nude mice, linamarase-transducing nanoparticles impacted solid tumor development through the bystander effect of cyanide.  相似文献   

14.
Cassava is the most agronomically important of the cyanogeniccrops. Linamarin, the predominant cyanogenic glycoside in cassava,can accumulate to concentrations as high as 500 mg kg–1fresh weight in roots and to higher levels in leaves. Recently,the pathway of linamarin synthesis and the cellular site oflinamarin storage have been determined. In addition, the cyanogenicenzymes, linamarase and hydroxynitrile lyase, have been characterizedand their genes cloned. These results, as well as studies onthe organ- and tissue-specific localization of linamarase andhydroxy-nitrile lyase, allow us to propose models for the regulationof cyanogenesis in cassava. There remain, however, many unansweredquestions regarding the tissue-specific synthesis, transport,and accumulation of cyanogenic glycosides. The resolution ofthe sequestions will facilitate the development of food processing,biochemical and transgenic plant approaches to reducing thecyanogen content of cassava foods. Key words: Cyanide, cyanogenic glycosides, linamarin, cyanogens  相似文献   

15.
Summary An enzyme electrode was constructed using cassava leaf linamarase covalently linked via polyethyleneimine to Hybond-N nylon. The nylon-enzyme electrode response was Nerstian for linamarin range of 0.1 to 20 mM. A steady state reading could be obtained within 4 to 6 mins. The nylon-enzyme discs could be reused. Compared to the previously reported enzyme electrode prepared by entrappment of linamarase in ENT-4000 prepolymer resins, the nylon-enzyme electrode gave faster response and could save analysis time by 60%.  相似文献   

16.
The relationships between organogenesis of oil flax (Linum usitatissimum L., cv. ‘Szafir’) in vitro, cyanogenic potential (HCN-p) of these tissues and light were investigated. Shoot multiplication obtained on Murashige and Skoog medium containing 0.05 mg L?1 2,4-dichloro-phenoxyacetic acid and 1 mg L?1 6-benzyladenine (BA), was about twice higher in light-grown cultures than those in darkness. Light-grown explants showed also higher rate of roots regeneration (in medium containing 1 mg L?1 α-naphtaleneacetic acid and 0.05 mg L-1 BA) than dark-grown ones. The cyanogenic potential (expressed both as linamarin and lotaustralin content and linamarase activity) of flax cultured in vitro was tissue-specific and generally was higher under light conditions than in darkness. The highest concentration of linamarin and lotaustralin was detected in light-regenerated shoots, and its amount was twice as high as in roots, and about threefold higher than in callus tissue. The activities of linamarase and β-cyanoalanine synthase in light-regenerated organs were also higher than those in darkness. Thus, higher frequency of regeneration of light-grown cultures than dark-grown ones seems to be correlated with higher HCN-p of these tissues. We suggest that free HCN, released from cyanoglucosides potentially at higher level under light conditions, may be involved in some organogenetic processes which improve regeneration efficiency.  相似文献   

17.
The beta-glucosidase, linamarase, which specifically hydrolyzes cyanogenic substrates, linamarin and lotaustralin, in white clover, is synthesized in the early stages of leaf and seedling development in genetically competent plants. Plants, from natural populations, possessing at least one Li allele synthesize linamarase but plants with only li alleles do not, nor do they produce inactive but antigenically related linamarase. Linamarase is known to be a mannosyl glycoprotein, which in its active form is a dimer, with a subunit size of 62,000 Mr. We demonstrate that the antibiotic tunicamycin, which prevents N-acetyl-asparagine linked glycosylation, reduces in vivo synthesis of linarmarase. In vitro translation of mRNA from a Li Li plant yields a 59,000 Mr immunoprecipitated linamarase polypeptide which is modified to a 62,000 Mr product by the addition of dog pancreas microsomes. No anti-linamarase immunoprecipitable product is obtained from the in vitro translation products of mRNA from a li li plant.  相似文献   

18.
Cassava (Manihot esculenta Crantz) is a known source of linamarin, but difficulties associated with its isolation have prevented it from being exploited as a major source. A batch adsorption process using activated carbon proved successful in its isolation, with ultrafiltration playing a pivotal role in its purification. Thirty-two minutes of contact time was required for 60 g of extract, yielding 1.7 g of purified product. Picrate paper, infra-red and 1HNMR analysis confirmed the presence and structure of linamarin. Cytotoxic effects of linamarin on MCF-7, HT-29 and HL-60 cells were determined using the MTT assay. Cytotoxic effects were significantly increased in the presence of linamarase (β-glucosidase), with a 10–fold decrease in the IC50 values obtained for HL-60 cells. This study thus describes a method for the isolation and purification of linamarin from cassava, as well as its cytotoxicity potential.  相似文献   

19.
20.
Linamarase (EC. 3.2.1.21) was purified from different tissues of cassava (leaf, rind and tuber) to compare the kinetic properties and characteristics of the enzyme in these tissues. Purified enzyme preparation appeared as single band of average molecular size 70 kD in SDS-PAGE gels. The kinetic properties of linamarase with respect to pH and temperature indicated that tuber linamarase possessed a broader pH optimum and higher temperature stability as compared to leaf and rind enzymes. Differences in Km values for linamarin were observed with leaf linamarase having the highest Km value (500 μM) followed by rind (400 μM) and then tuber (250 μM) linamarases. Rind enzyme appeared to be less susceptible to urea denaturation than the leaf enzyme. Comparison of elution profiles from DEAE-Cellulose indicated that the relative amounts of the various ionic forms of the enzyme differed in the case of each tissue. Elution patterns of the enzyme from Con A-Sepharose also differed, suggesting difference in glycosylation among leaf, rind and tuber enzymes. This was confirmed by carbohydrate analysis which showed that the tuber linamarase contained significantly higher amount of protein bound carbohydrate. These results suggest the possible occurrence of different forms of linamarase in cassava.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号