共查询到20条相似文献,搜索用时 15 毫秒
1.
Fernandes AT Soares CM Pereira MM Huber R Grass G Martins LO 《The FEBS journal》2007,274(11):2683-2694
The gene, Aquifex aeolicus AAC07157.1, encoding a multicopper oxidase (McoA) and localized in the genome as part of a putative copper-resistance determinant, has been cloned, over-expressed in Escherichia coli and the recombinant enzyme purified to homogeneity. The purified enzyme shows spectroscopic and biochemical characteristics typical of the well-characterized multicopper oxidase family of enzymes. McoA presents higher specificity (k(cat)/K(m)) for cuprous and ferrous ions than for aromatic substrates and is therefore designated as a metallo-oxidase. Addition of copper is required for maximal catalytic efficiency. A comparative model structure of McoA has been constructed and a striking structural feature is the presence of a methionine-rich region (residues 321-363), reminiscent of those found in copper homeostasis proteins. The kinetic properties of a mutant enzyme, McoADeltaP321-V363, deleted in the methionine-rich region, provide evidence for the key role of this region in the modulation of the catalytic mechanism. McoA has an optimal temperature of 75 degrees C and presents remarkable heat stability at 80 and 90 degrees C, with activity lasting for up to 9 and 5 h, respectively. McoA probably contributes to copper and iron homeostasis in A. aeolicus. 相似文献
2.
Leucyl-tRNA synthetase (LeuRS) from Aquifex aeolicus is the only known heterodimer synthetase. It is named LeuRS alphabeta;, and its alpha and beta subunits contain 634 and 289 residues, respectively. Like Thermus thermophilus LeuRS, LeuRS alphabeta has a large extra domain, the leucine-specific domain, inserted into the catalytic domain. The subunit split site is exactly in the middle of the leucine-specific domain and may have a unique function. Here, a series of mutants of LeuRS alphabeta consisting of either mutated alpha subunits and wild-type beta subunits or wild-type alpha subunits and mutated beta subunits were constructed and purified. ATP-PPi exchange and aminoacylation activities and the ability of the mutants to charge minihelix(Leu) were assayed. Interaction of the mutants with the tRNA was assessed by gel shift. Two peptides of eight and nine amino acid residues in the domain located in the alpha subunit were found to be essential for the enzyme's activity. We also showed that the domain in LeuRS alphabeta plays an important role in minihelix(Leu) recognition. Additionally, the domain was found to have little impact on the assembly of the heterodimer, to play a role in the thermal stability of the whole enzyme, and to interact with the cognate tRNA in the predicted manner. 相似文献
3.
Hanna E MacRae IJ Medina DC Fisher AJ Segel IH 《Archives of biochemistry and biophysics》2002,406(2):275-288
ATP sulfurylase from the hyperthermophilic chemolithotroph Aquifex aeolicus is a bacterial ortholog of the enzyme from filamentous fungi. (The subunit contains an adenosine 5'-phosphosulfate (APS) kinase-like, C-terminal domain.) The enzyme is highly heat stable with a half-life >1h at 90 degrees C. Steady-state kinetics are consistent with a random A-B, ordered P-Q mechanism where A=MgATP, B=SO4(2-), P=PP(i), and Q=APS. The kinetic constants suggest that the enzyme is optimized to act in the direction of ATP+sulfate formation. Chlorate is competitive with sulfate and with APS. In sulfur chemolithotrophs, ATP sulfurylase provides an efficient route for recycling PP(i) produced by biosynthetic reactions. However, the protein possesses low APS kinase activity. Consequently, it may also function to produce PAPS for sulfate ester formation or sulfate assimilation when hydrogen serves as the energy source and a reduced inorganic sulfur source is unavailable. 相似文献
4.
Xu MG Chen JF Martin F Zhao MW Eriani G Wang ED 《The Journal of biological chemistry》2002,277(44):41590-41596
In a hyperthermophilic bacterium, Aquifex aeolicus, leucyl-tRNA synthetase (LeuRS) consists of two non-identical polypeptide subunits (alpha and beta), different from the canonical LeuRS, which has a single polypeptide chain. By PCR, using genome DNA of A. aeolicus as a template, genes encoding the alpha and beta subunits were amplified and cloned in Escherichia coli. The alpha subunit could not be expressed stably in vivo, whereas the beta subunit was overproduced and purified by a simple procedure. The beta subunit was inactive in catalysis but was able to bind tRNA(Leu). Interestingly, the heterodimer alphabeta-LeuRS could be overproduced in E. coli cells containing both genes and was purified to 95% homogeneity as a hybrid dimer. The kinetics of A. aeolicus LeuRS in pre-steady and steady states and cross-recognition of LeuRS and tRNA(Leu) from A. aeolicus and E. coli were studied. Magnesium concentration, pH value, and temperature aminoacylation optima were determined to be 12 mm, 7.8, and 70 degrees C, respectively. Under optimal conditions, A. aeolicus alphabeta-LeuRS is stable up to 65 degrees C. 相似文献
5.
Leucyl-tRNA synthetase from the ancestral bacterium Aquifex aeolicus contains relics of synthetase evolution
下载免费PDF全文

The editing reactions catalyzed by aminoacyl-tRNA synthetases are critical for the faithful protein synthesis by correcting misactivated amino acids and misaminoacylated tRNAs. We report that the isolated editing domain of leucyl-tRNA synthetase from the deep-rooted bacterium Aquifex aeolicus (alphabeta-LeuRS) catalyzes the hydrolytic editing of both mischarged tRNA(Leu) and minihelix(Leu). Within the domain, we have identified a crucial 20-amino-acid peptide that confers editing capacity when transplanted into the inactive Escherichia coli LeuRS editing domain. Likewise, fusion of the beta-subunit of alphabeta-LeuRS to the E. coli editing domain activates its editing function. These results suggest that alphabeta-LeuRS still carries the basic features from a primitive synthetase molecule. It has a remarkable capacity to transfer autonomous active modules, which is consistent with the idea that modern synthetases arose after exchange of small idiosyncratic domains. It also has a unique alphabeta-heterodimeric structure with separated catalytic and tRNA-binding sites. Such an organization supports the tRNA/synthetase coevolution theory that predicts sequential addition of tRNA and synthetase domains. 相似文献
6.
Guiral M Tron P Aubert C Gloter A Iobbi-Nivol C Giudici-Orticoni MT 《The Journal of biological chemistry》2005,280(51):42004-42015
Aquifex aeolicus is a hyperthermophilic, chemolithoautotrophic, hydrogen-oxidizing, and microaerophilic bacterium growing at 85 degrees C. We have shown that it can grow on an H2/S degrees medium and produce H2S from sulfur in the later exponential phase. The complex carrying the sulfur reducing activity (electron transport from H2 to S degrees ) has been purified and characterized. It is a membrane-bound multiprotein complex containing a [NiFe] hydrogenase and a sulfur reductase connected via quinones. The sulfur reductase is encoded by an operon annotated dms (dimethyl sulfoxide reductase) that we have renamed sre and is composed of three subunits. Sequence analysis showed that it belongs to the Me2SO reductase molybdoenzyme family and is similar to the sulfur/polysulfide/thiosulfate/tetrathionate reductases. The study of catalytic properties clearly demonstrated that it can reduce tetrathionate, sulfur, and polysulfide, but cannot reduce Me2SO and thiosulfate, and that NADPH increases the sulfur reducing activity. To date, this is the first characterization of a supercomplex from a bacterium that couples hydrogen oxidation and sulfur reduction. The distinctive feature in A. aeolicus is the cytoplasmic localization of the sulfur reduction, which is in accordance with the presence of sulfur globules in the cytoplasm. Association of this sulfur-reducing complex with a hydrogen-oxygen pathway complex (hydrogenase I, bc1 complex) in the membrane suggests that subcomplexes involved in respiratory chains in this bacterium are part of supramolecular organization. 相似文献
7.
The stability of the Aquifex aeolicus multicopper oxidase (McoA) was studied by spectroscopy, calorimetry and chromatography to understand its thermophilic nature. The enzyme is hyperthermostable as deconvolution of the differential scanning calorimetry trace shows that thermal unfolding is characterized by temperature values at the mid-point of 105, 110 and 114 degrees C. Chemical denaturation revealed however a very low stability at room temperature (2.8 kcal/mol) because copper bleaching/depletion occur before the unfolding of the tertiary structure and McoA is highly prone to aggregate. Indeed, unfolding kinetics measured with the stopped-flow technique quantified the stabilizing effect of copper on McoA (1.5 kcal/mol) and revealed quite an uncommon observation further confirmed by light scattering and gel filtration chromatography: McoA aggregates in the presence of guanidinium hydrochloride, i.e., under unfolding conditions. The aggregation process results from the accumulation of a quasi-native state of McoA that binds to ANS and is the main determinant of the stability curve of McoA. Kinetic partitioning between aggregation and unfolding leads to a very low heat capacity change and determines a flat dependence of stability on temperature. 相似文献
8.
C Chatelet J Gaillard Y Pétillot M Louwagie J Meyer 《Biochemical and biophysical research communications》1999,261(3):885-889
Overexpression in Escherichia coli of the fdx4 gene from Aquifex aeolicus has allowed isolation and characterization of the first hyperthermophilic [2Fe-2S](Scys)(4) protein, a homodimer of M = 2 x 12.4 kDa with one [2Fe-2S] cluster per subunit. This protein is undamaged by heating to 100 degrees C for at least three hours. The primary structure, in particular the characteristic distribution of the four cysteine ligands of the metal site, and the spectroscopic properties of the A. aeolicus protein relate it to well characterized [2Fe-2S] proteins from Clostridium pasteurianum and Azotobacter vinelandii. These proteins are also homologous to subunits or domains of hydrogenases and NADH-ubiquinone oxidoreductase (Complex I) of respiratory chains. The A. aeolicus [2Fe-2S] protein is thus representative of a presumably novel protein fold involved in a variety of functions in very diverse cellular backgrounds. 相似文献
9.
Aquifex aeolicus is the only hyperthermophile that is known to contain a plant- and mammalian-type [2Fe-2S] ferredoxin (Aae Fd1). This unique protein contains two cysteines, in addition to the four that act as ligands of the [2Fe-2S] cluster, which form a disulfide bridge. We have investigated the stability of Aae Fd1 with (wild-type) and without (C87A variant) the disulfide bond, with respect to pH, thermal and chemical perturbation, and compared the results to those for the mesophilic [2Fe-2S] ferredoxin from spinach. Unfolding reactions of all three proteins are irreversible due to cluster decomposition in the unfolded state. Wild-type and C87A Aae Fd1 proteins are extremely stable: unfolding at 20 degrees C requires high concentrations of the chemical denaturant and long incubation times. Moreover, their thermal-unfolding midpoints are 40-50 degrees higher than that for spinach ferredoxin (pH 7). The stability of the Aae Fd1 protein is significantly lower at pH 2.5 than pH 7 and 10, suggesting that ionic interactions play a role in structural integrity. Interestingly, the iron-sulfur cluster in C87A Aae Fd1 rearranges into a transient species with absorption bands at 520 and 610 nm, presumably a linear three-iron cluster, in the high-pH unfolded state. 相似文献
10.
Giuliani MC Tron P Leroy G Aubert C Tauc P Giudici-Orticoni MT 《The FEBS journal》2007,274(17):4572-4587
Sulfur is a functionally important element of living matter. Rhodanese is involved in the enzymatic production of the sulfane sulfur which has been suggested as the biological relevant active sulfur species. Rhodanese domains are ubiquitous structural modules occurring in the three major evolutionary phyla. We characterized a new single-domain rhodanese with a thiosulfate : cyanide transferase activity, Aq-477. Aq-477 can also use tetrathionate and polysulfide. Thermoactivity and thermostability studies show that in solution Aquifex sulfurtranferase exists in equilibrium between monomers, dimers and tetramers, shifting to the tetrameric state in the presence of substrate. We show that oligomerization is important for thermostability and thermoactivity. This is the first characterization of a sulfurtransferase from a hyperthermophilic bacterium, which moreover presents a tetrameric organization. Oligomeric Aq-477 may have been selected in hyperthermophiles because subunit association provides extra stabilization. 相似文献
11.
12.
The sulfide-dependent reduction of exogenous ubiquinone by membranes of the hyperthermophilic chemotrophic bacterium Aquifex aeolicus (VF5), the sulfide-dependent consumption of oxygen and the reduction of cytochromes by sulfide in membranes were studied. Sulfide reduced decyl-ubiquinone with a maximal rate of up to 3.5 micromol (mg protein)(-1) min(-1) at 20 degrees C. Rates of 220 nmol (mg protein)(-1) min(-1)] for the sulfide-dependent consumption of oxygen and 480 nmol (mg protein)(-1) min(-1) for the oxidation of sulfide at 20 C were estimated. The reactions were sensitive towards 2-n-nonyl-4-hydroxyquinoline-N-oxide, but insensitive towards cyanide. Both reduction of decyl-ubiquinone and consumption of oxygen by sulfide rapidly increased with increasing temperature. For the sulfide-dependent respiratory activity, a sulfide-to-oxygen ratio of 2.3+/-0.2 was measured. This indicates that sulfide was oxidized to the level of zero-valent sulfur. Reduction of cytochromes by sulfide was monitored with an LED-array spectrophotometer. Reduction of cytochrome b was stimulated by 2-n-nonyl-4-hydroxyquinoline-N-oxide in the presence of excess sulfide under oxic conditions. This oxidant-induced reduction of cytochrome b suggests that electron transport from sulfide to oxygen in A. aeolicus employs the cytochrome bc complex via the quinone pool. Comparison of the amino acid sequence with the sequence of the sulfide:quinone oxidoreductase from Rhodobacter capsulatus and of the flavocytochrome c from Allochromatium vinosum revealed that the sulfide:quinone oxidoreductase from A. aeolicus belongs to the glutathione reductase family of flavoproteins. 相似文献
13.
Xiaojun Luo Myriam Brugna Pascale Tron-Infossi Marie Thérèse Giudici-Orticoni Élisabeth Lojou 《Journal of biological inorganic chemistry》2009,14(8):1275-1288
The electrochemistry of membrane-bound [NiFe] hydrogenase I ([NiFe]-hase I) from the hyperthermophilic bacterium Aquifex aeolicus was investigated at gold and graphite electrodes. Direct and mediated H2 oxidation were proved to be efficient in a temperature range of 25–70 °C, describing a potential window for H2 oxidation similar to that of O2-tolerant hydrogenases. Search for enhancement of current densities and enzyme stability was achieved by the use of carbon
nanotube coatings. We report high catalytic currents for H2 oxidation up to 1 mA cm−2, 10 times higher than at the bare electrode. Interestingly, high stability of the direct catalytic process was observed when
encapsulating A. aeolicus [NiFe]-hase I into a carboxylic functionalized single walled carbon nanotube network. This suggests a peculiar interaction
between the enzyme and the electrode material. The parameters that governed the orientation of the enzyme before electron
transfer were thus investigated using self-assembled-monolayer gold electrodes. No control of the orientation by the charge
or the hydrophobicity of the interface was demonstrated. This behavior was explained on the basis of a structural comparison
between A. aeolicus [NiFe]-hase I and Desulfovibrio fructosovorans [NiFe] hydrogenase, which revealed the absence of acidic residues and an additional loop in the environment of the [4Fe–4S]
distal cluster in A. aeolicus [NiFe]-hase I. Finally, the effect of inhibitors on the direct oxidation of H2 by A. aeolicus [NiFe]-hase I encapsulated in a single walled carbon nanotube network was investigated. No inhibition by CO and tolerance
toward O2 were observed. Discussion of the reasons for such tolerance was undertaken on the basis of structural comparison with hydrogenases
from aerobic bacteria. 相似文献
14.
6,7-dimethyl-8-ribityllumazine synthase (lumazine synthase) catalyzes the condensation of 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione and 3,4-dihydroxy-2-butanone 4-phosphate. Presteady state kinetic experiments using the enzyme from the hyperthermophilic bacterium Aquifex aeolicus were monitored by multiwavelength photometry. An early optical transient absorbing around 330 nm is interpreted as a Schiff base intermediate obtained by reaction of the position 5 amino group of the heterocyclic substrate with the carbonyl group of 3,4-dihydroxy-2-butanone 4-phosphate. A second transient with an absorption maximum at 445 nm represents an intermediate resulting from the elimination of orthophosphate from the Schiff base. The rate-determining step is the subsequent formation of the 7-exomethylene type anion of 6,7-dimethyl-8-ribityllumazine. The rate constants for the three partial reactions identified by the stopped flow experiments show linear Arrhenius relations in the temperature range of 15-70 degrees C. 相似文献
15.
Khan AR Nirasawa S Kaneko S Shimonishi T Hayashi K 《Enzyme and microbial technology》2000,27(1-2):83-88
A leucine aminopeptidase gene of Aquifex aeolicus, a hyperthermophilic bacterium, was cloned and expressed in Escherichia coli, and its expression product was purified and characterized. The expressed protein was purified to homogeneity by using heat to denature contaminating proteins followed by ion-exchange chromatography to purify the heat-stable product. The purified enzyme gave a single band on SDS-PAGE with a molecular weight of 54 kDa. Kinetic studies on the purified enzyme confirmed that it was a leucine aminopeptidase. The optimum temperature for its activity was around 80 degrees C and the optimum pH was in the range from 8.0 to 8.5. It was stable at high temperatures and 27% of its activity was retained after heating at 115 degrees C for 30 min. The purified enzyme had a pH stability range between 4.0 and 11.0. This aminopeptidase was highly resistant to organic solvents such as methanol, ethanol, tetrahydrofuran, dimethyl sulfoxide, acetone, acetonitrile, dimethyl formamide, 1-propanol, 2-propanol, and dioxane. 相似文献
16.
Meyer J Clay MD Johnson MK Stubna A Münck E Higgins C Wittung-Stafshede P 《Biochemistry》2002,41(9):3096-3108
A [2Fe-2S] ferredoxin (Fd1) from the hyperthermophilic bacterium Aquifex aeolicus has been obtained by heterologous expression of the encoding gene in Escherichia coli. Sequence comparisons show that this protein belongs to the extended family of plant- and mammalian-type [2Fe-2S] ferredoxins but also indicate that it is not closely similar to either the plant-type or mammalian-type subfamilies. Instead, it appears to bear some similarity to novel members of this family, in particular the Isc-type ferredoxins involved in the assembly of iron-sulfur clusters in vivo. The two redox levels of the [2Fe-2S](2+/+) metal site of A. aeolicus ferredoxin have been studied by UV-visible, resonance Raman, EPR, variable temperature magnetic circular dichroism, and M?ssbauer spectroscopies. A full-spin Hamiltonian analysis is given for the M?ssbauer spectra. In aggregate, the spectroscopic data reveal differences with both the plant-type and mammalian-type ferredoxins, in keeping with the sequence comparisons. The midpoint potential of the [2Fe-2S](2+/+) couple, at -375 mV versus the normal hydrogen electrode, is more negative than those of mammalian-type ferredoxins and at the upper end of the range covered by plant-type ferredoxins. A. aeolicus ferredoxin contains two cysteines in addition to the four that are committed as ligands of the [2Fe-2S] cluster. These two residues have been shown by chemical modification and site-directed mutagenesis to form a disulfide bridge in the native protein. While that cystine unit plays a significant role in the exceptional thermostability of A. aeolicus ferredoxin (T(m) = 121 degrees C at pH 7 versus T(m) = 113 degrees C in a molecular variant where the disulfide bridge has been removed), it does not bear on the properties of the [2Fe-2S](2+/+) chromophore. This observation is consistent with the large distance (ca. 20 A) that is predicted to separate the iron-sulfur chromophore from the disulfide bridge. 相似文献
17.
《BBA》2020,1861(11):148279
The microaerophilic bacterium Aquifex aeolicus is a chemolitoautotroph that uses sulfur compounds as electron sources. The model of oxidation of the energetic sulfur compounds in this bacterium predicts that sulfite would probably be a metabolic intermediate released in the cytoplasm. In this work, we purified and characterized a membrane-bound sulfite dehydrogenase, identified as an SoeABC enzyme, that was previously described as a sulfur reductase. It is a member of the DMSO-reductase family of molybdenum enzymes. This type of enzyme was identified a few years ago but never purified, and biochemical data and kinetic properties were completely lacking. An enzyme catalyzing sulfite oxidation using Nitro-blue tetrazolium as artificial electron acceptor was extracted from the membrane fraction of Aquifex aeolicus. The purified enzyme is a dimer of trimer (αβγ)2 of about 390 kDa. The KM for sulfite and kcat values were 34 μM and 567 s−1 respectively, at pH 8.3 and 55 °C. We furthermore showed that SoeABC reduces a UQ10 analogue, the decyl-ubiquinone, as well, with a KM of 2.6 μM and a kcat of 52.9 s−1. It seems to specifically oxidize sulfite but can work in the reverse direction, reduction of sulfur or tetrathionate, using reduced methyl viologen as electron donor. The close phylogenetic relationship of Soe with sulfur and tetrathionate reductases that we established, perfectly explains this enzymatic ability, although its bidirectionality in vivo still needs to be clarified. Oxygen-consumption measurements confirmed that electrons generated by sulfite oxidation in the cytoplasm enter the respiratory chain at the level of quinones. 相似文献
18.
F Baymann P Tron B Schoepp-Cothenet C Aubert P Bianco K O Stetter W Nitschke M Schütz 《Biochemistry》2001,40(45):13681-13689
Two distinct class I (monoheme) c-type cytochromes from the hyperthermophilic bacterium Aquifex aeolicus were studied by biochemical and biophysical methods (i.e., optical and EPR spectroscopy, electrochemistry). The sequences of these two heme proteins (encoded by the cycB1 and cycB2 genes) are close to identical (85% identity in the common part of the protein) apart from the presence of an N-terminal stretch of 62 amino acid residues present only in the cycB1 gene. A soluble cytochrome was purified and identified by N-terminal sequencing as the cycB2 gene product. It showed an alpha-peak at 555 nm, an E(m) value of +220 mV, and electron paramagnetic resonance parameters of gz = 2.89, gy = 2.287, and gx = 1.52. A firmly membrane-bound cytochrome characterized by nearly identical properties was detected and attributed to the cycB1 gene product. The very high degree of homology of its N-terminal part to cytochrome c553 from Heliobacterium gestii strongly suggests it to be anchored to the membrane via N-terminally attached lipid molecules. The two heme proteins were named cytochrome c555s (soluble) and cytochrome c555m (membranous). Electron paramagnetic resonance on partially ordered membrane multilayers suggests that the solvent-exposed heme domain of cytochrome c555m is flexible with respect to the membrane plane. Possible functional roles for both cytochromes are discussed. 相似文献
19.
Cloning and characterization of thermostable endoglucanase (Cel8Y) from the hyperthermophilic Aquifex aeolicus VF5 总被引:1,自引:0,他引:1
Kim JO Park SR Lim WJ Ryu SK Kim MK An CL Cho SJ Park YW Kim JH Yun HD 《Biochemical and biophysical research communications》2000,279(2):420-426
Aquifex aeolicus is the hyperthermophilic bacterium known, with growth-temperature maxima near 95 degrees C. The cel8Y gene, encoding a thermostable endoglucanase (Cel8Y) from Aquifex aeolicus VF5, was cloned into a vector for expression and expressed in Escherichia coli XL1-Blue. A clone of 1.7 kb fragment containing endoglucanase activity, designated pKYCY100, was sequenced and found to contain an ORF of 978 bp encoding a protein of 325 amino acid residues, with a calculated molecular mass of 38,831 Da. This endoglucanase was designated cel8Y gene. The endoglucanase has an 18-amino-acid signal peptide but not cellulose-binding domain. The endoglucanase of A. aeolicus VF5 had significant amino acid sequence similarities with endoglucanases from glycosyl hydrolase family 8. The predicted amino acid sequence of the Cel8Y protein was similar to that of CMCase of Cellulomonas uda, BcsC of Escherichia coli, CelY of Erwinia chrysanthemi, and CMCase of Acetobacter xylinum. The molecular mass of Cel8Y was calculated to be 36,750 Da, which is consistent with the value obtained from result of CMC-SDS-PAGE of the purified enzyme. Cel8Y was thermostable, exhibiting maximal activity at 80 degrees C and pH optima of 7.0 and with half-lives of 2 h at 100 degrees C, 4 h at 90 degrees C. 相似文献
20.
Jae-Hwan Lim Juhyun Choi Soo-Jin Han Sung Kim Hye-Zin Hwang Dong-Kyu Jin Byung-Yoon Ahn Ye Han 《Extremophiles : life under extreme conditions》2001,5(3):161-168
A DNA ligase gene from the hyperthermophilic bacterium Aquifex pyrophilus (Ap) was cloned and sequenced. An open reading frame of 2,157 bp that codes for a 82-kDa protein showed 40%-60% homology with a series of NAD+-dependent DNA ligases from different organisms. The recombinant enzyme Ap DNA ligase expressed in Escherichia coli was purified to homogeneity and characterized. The activity of Ap DNA ligase gradually increased in proportion to the concentration of monovalent salt up to 200 mM NaCl, 150 mM KCl, 200 mM NH4Cl, and 350 mM potassium glutamate. The optimum temperature and pH of Ap DNA ligase were greater than 65 degrees C and 8.0-8.6, respectively, for nick-closing activity. More than 75% of the ligation activity was retained after incubation at 95 degrees C for 60 min, whereas the half-lives of Thermus aquaticus and Escherichia coli DNA ligases at 95 degrees C were < or =15 min and 5 min, respectively. Thermostable Ap DNA ligase was applied to repeat expansion detection (RED) and could be a useful enzyme in DNA diagnostics. 相似文献