首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High cell density cultivation of Haematococcus pluvialis for astaxanthin production was carried out in batch and fed-batch modes in 3.7-L bioreactors with stepwise increased light intensity control mode. A high cell density of 2.65 g L−1 (batch culture) or 2.74 g L−1 (fed-batch culture) was obtained, and total astaxanthin production in the fed-batch culture (64.36 mg L−1) was about 20.5% higher than in the batch culture (53.43 mg L−1). An unstructured kinetic model to describe the microalga culture system including cell growth, astaxanthin formation, as well as sodium acetate consumption was proposed. Good agreement was found between the model predictions and experimental data. The models demonstrated that the optimal light intensity for mixotrophic growth of H. pluvialis in batch or fed-batch cultures in a 3.7-L bioreactor was 90–360 μmol m−2 s−1, and that the stepwise increased light intensity mode could be replaced by a constant light intensity mode. Received 24 December 1998/ Accepted in revised form 23 April 1999  相似文献   

2.
Phycocyanin production by high cell density cultivation of Spirulina platensis in batch and fed-batch modes in 3.7-L bioreactors with a programmed stepwise increase in light intensity program was investigated. The results showed that the cell density in fed-batch culture (10.2 g L−1) was 4.29-fold that in batch culture (2.38 g L−1), and the total phycocyanin production in the fed-batch culture (0.795 g L−1) was 3.05-fold that in the batch culture (0.261 g L−1). An unstructured kinetic model to describe the microalga culture system including cell growth, phycocyanin formation, as well as glucose consumption was proposed. The data fitted the models well (r 2 > 0.99). Furthermore, based on the kinetic models, the potential effects of light limitation and photoinhibition on cell growth and phycocyanin formation can be examined in depth. The models demonstrated that the optimal light intensity for mixotrophic growth of Spirulina platensis in batch or fed-batch cultures using a 3.7-L bioreactor was 80160 μE m−2 s−1, and the stepwise increase in light intensity can be replaced by a constant light intensity mode. Received 28 July 1998/ Accepted in revised form 8 October 1998  相似文献   

3.
The production of β-galactosidase by an autolytic strain of Streptococcus salivarius subsp thermophilus 11F was investigated in batch and fed-batch 2-L working volume stirred tank bioreactors. β-Galactosidase was released into the medium upon cell lysis within 1–2 h after the maximum biomass quantity was reached. In batch fermentations the highest β-galactosidase activity of 69 U ml−1 was obtained when the temperature was increased to 42°C after a 4-h growth period at 30°C. In fed-batch experiments the highest β-galactosidase activity of 74 U ml−1 was obtained at a constant 37°C. Received 18 December 1997/ Accepted in revised form 03 February 1998  相似文献   

4.
Microbiological synthesis of higher alcohols (1-butanol, isobutanol, 2-methyl-1-butanol, etc.) from plant biomass is critically important due to their advantages over ethanol as a motor fuel. In recent years, the use of branched-chain amino acid (BCAA) biosynthesis pathways together with heterologous Ehrlich pathway enzyme system (Hazelwood et al. in Appl Environ Microbiol 74:2259–2266, 2008) has been proposed by the Liao group as an alternative approach to aerobic production of higher alcohols as new-generation biofuels (Atsumi et al. in Nature 451:86–90, 2008; Atsumi et al. in Appl Microbiol Biotechnol 85:651–657, 2010; Cann and Liao in Appl Microbiol Biotechnol 81:89–98, 2008; Connor and Liao in Appl Environ Microbiol 74:5769–5775, 2008; Shen and Liao in Metab Eng 10:312–320, 2008; Yan and Liao in J Ind Microbiol Biotechnol 36:471–479, 2009). On the basis of these remarkable investigations, we re-engineered Escherichia coli valine-producing strain H-81, which possess overexpressed ilvGMED operon, for the aerobic conversion of sugar into isobutanol. To redirect valine biosynthesis to the production of alcohol, we also—as has been demonstrated previously (Atsumi et al. in Nature 451:86–90, 2008; Atsumi et al. in Appl Microbiol Biotechnol 85:651–657, 2010; Cann and Liao in Appl Microbiol Biotechnol 81:89–98, 2008; Connor and Liao in Appl Environ Microbiol 74:5769–5775, 2008; Shen and Liao in Metab Eng 10:312–320, 2008; Yan and Liao in J Ind Microbiol Biotechnol 36:471–479, 2009)—used enzymes of Ehrlich pathway. In particular, in our study, the following heterologous proteins were exploited: branched-chain 2-keto acid decarboxylase (BCKAD) encoded by the kdcA gene from Lactococcus lactis with rare codons substituted, and alcohol dehydrogenase (ADH) encoded by the ADH2 gene from Saccharomyces cerevisiae. We show that expression of both of these genes in the valine-producing strain H-81 results in accumulation of isobutanol instead of valine. Expression of BCKAD alone also resulted in isobutanol accumulation in the culture broth, supporting earlier obtained data (Atsumi et al. in Appl Microbiol Biotechnol 85:651–657, 2010) that native ADHs of E. coli are also capable of isobutanol production. Thus, in this work, isobutanol synthesis by E. coli was achieved using enzymes similar to but somewhat different from those previously used.  相似文献   

5.
The principal objective of this study was to assess the effects of culture modes including batch culture, pulse fed-batch culture, constant feeding rate fed-batch culture, and exponential fed-batch culture on the production of hyaluronic acid (HA) by Streptococcus zooepidemicus. Batch cultures had the highest levels of HA productivity, whereas fed-batch cultures were more favorable with regard to cell growth, and exponential fed-batch cultures evidenced the highest cell concentrations. A two-step culture model was proposed to enhance HA production: an exponential fed-batch culture was conducted prior to 8 h and then sucrose supplementation was applied for 8 h to start the batch fermentation of S. zooepidemicus. HA production and productivity were increased by 36 and 37% in the proposed two-step culture process as compared with that observed in the batch culture, respectively. The proposed two-step culture model can be applied in the production of secondary metabolites, and particularly of the exopolysaccharides.  相似文献   

6.
Hydrogen exchange experiments (Krishna et al. in J. Mol. Biol. 359:1410, 2006) reveal that folding–unfolding of cytochrome c occurs along a defined pathway in a sequential, stepwise manner. The simplified zipper-like model involving nonadditive coupling is proposed to describe the classical “on pathway” folding–unfolding behavior of cytochrome c. Using free energy factors extracted from HX experiments, the model can predict and explain cytochrome c behavior in spectroscopy studies looking at folding equilibria and kinetics. The implications of the proposed model are discussed for such problems as classical pathway vs. energy landscape conceptions, structure and function of a native fold, and interplay of secondary and tertiary interactions.  相似文献   

7.
Enhanced 2,3-butanediol (BD) production was carried out by Klebsiella pneumoniae SDM. The nutritional requirements for BD production by K. pneumoniae SDM were optimized statistically in shake flask fermentations. Corn steep liquor powder and (NH4)2HPO4 were identified as the most significant factors by the two-level Plackett–Burman design. Steepest ascent experiments were applied to approach the optimal region of the two factors and a central composite design was employed to determine their optimal levels. The optimal medium was used to perform fed-batch fermentations with K. pneumoniae SDM. BD production was then studied in a 5-l bioreactor applying different fed-batch strategies, including pulse fed batch, constant feed rate fed batch, constant residual glucose concentration fed batch, and exponential fed batch. The maximum BD concentration of 150 g/l at 38 h with a diol productivity of 4.21 g/l h was obtained by the constant residual glucose concentration feeding strategy. To the best of our knowledge, these results were new records on BD fermentation. Cuiqing Ma and Ailong Wang contributed equally to this work.  相似文献   

8.
By the optimization of nitrogen source for coenzyme Q10 (ubiquinone, CoQ10) production in Agrobacterium tumefaciens KCCM 10413 culture, the highest CoQ10 production was achieved in medium containing corn steep powder (CSP). Components for a stimulatory effect on the production of CoQ10 in CSP were screened, and lactate was found to increase dry cell weight (DCW) and the specific CoQ10 content. In a fed-batch culture of A. tumefaciens, supplementation with 1.5 g of lactate l−1 further improved DCW, the specific CoQ10 content, and CoQ10 production by 16.0, 5.8, and 22.8%, respectively. It has been reported that lactate stimulates cell growth and acts as an accelerator driving the tricarboxylic acid (TCA) cycle (Roberto et al. 2002, Biotechnol Let 24:427–431; Matsuoka et al. 1996, Biosci Biotechnol Biochem 60:575–579). In this study, lactate supplementation increased DCW and the specific CoQ10 content in A. tumefaciens culture, probably by accelerating TCA cycle and energy production as reported previously, leading to the increase of CoQ10 production.  相似文献   

9.
dl-Alanine was produced from glucose in an Escherichia coli pfl pps poxB ldhA aceEF pTrc99A-alaD strain which lacked pyruvate-formate lyase, phosphoenolpyruvate (PEP) synthase, pyruvate oxidase, lactate dehydogenase, components of the pyruvate dehydogenase complex and over-produced alanine dehydrogenase (ALD). A two-phase process was developed with cell growth under aerobic conditions followed by alanine production under anaerobic conditions. Using the batch mode, cells grew to 5.3 g/l in 9 h with the accumulation of 6–10 g acetate/l, and under subsequent anaerobic conditions achieved 34 g alanine/l in 13 h with a yield of 0.86 g/g glucose. Using the fed-batch mode at μ = 0.15 h−1, only about 1 g acetate/l formed in the 25 h required for the cells to reach 5.6 g/l, and 88 g alanine/l accumulated during the subsequent 23 h. This fed-batch process attained an alanine volumetric productivity of 4 g/lh during the production phase, and a yield that was essentially 1 g/g.  相似文献   

10.
Wang Z  Chen S  Sun M  Yu Z 《Biotechnology letters》2007,29(5):779-784
The production of α-ketoglutarate, adenine, thuringiensin production rate and thuringiensin yield on glucose consumed increased by 22%, 36%, 40% and 40%, respectively, in presence of 2 g citrate/l. However, citrate decreased pyruvate production, poly-β-hydroxybutyrate (PHB) production rate and PHB yield by 62%, 31% and 45%, respectively. The activities of pyruvate kinase and glucose-6-phosphate dehydrogenase were 36%–45% lower and 50%–120% higher than those of the control, respectively. The results suggest that citrate regulated the carbon flux to synthesis of adenine present in thuringiensin with a higher efficiency of utilization of glucose by decreasing PHB synthesis.  相似文献   

11.
Chlorella is a promising alternative resource of lutein (xanthophyll) production as it can be cultivated heterotrophically in fermentors. In this paper, a kinetic model for lutein production by heterotrophic Chlorella pyrenoidosa was developed based on batch cultivations in 250-ml flasks and a 19-l fermentor. The model was validated by experimental data from two fed-batch cultivations performed in the same fermentor. The dynamic behavior of lutein production by C. pyrenoidosa with various concentrations of glucose and nitrogen was analyzed based on the kinetic model. Model-based analyses suggested that glucose concentrations between 5 and 24 g/l and nitrogen concentrations between 0.7 and 12 g/l during the cultivation were favorable for lutein production by heterotrophic C. pyrenoidosa. It also showed that fed-batch cultivations are more suitable for efficient production of lutein than batch ones. The results obtained in this study may contribute to commercial lutein production by heterotrophic Chlorella.  相似文献   

12.
Invasive species trigger biodiversity losses and alter ecosystem functioning, with life history shaping invasiveness (Sakai et al., Annu Rev Ecol Syst 32:305–332, 2001). However, pinpointing the relation of a specific life history to invasion success is difficult. One approach may be comparing congeners. The two Palearctic pavement ants, Tetramorium sp.E (widely known as T. caespitum, Schlick-Steiner et al., Mol Phylogenet Evol 40:259–273, 2006) and T. tsushimae have invaded North America (Steiner et al., Biol Invasions 8:117–123, 2006). Their life histories differ in that T. sp.E has separate single-queened colonies but T. tsushimae multi-queened colonies scattered over large areas (Sanada-Morimura et al., Insect Soc 53:141–148, 2006; Schlick-Steiner et al., Mol Phylogenet Evol 40:259–273, 2006; Steiner et al., Biol Invasions 8:117–123, 2006). Comparison of the genetic diversity in the entire native and non-native ranges will elucidate the invasion histories. Here, we present 13 and 11 microsatellites, developed for T. sp.E and T. tsushimae, respectively, and characterize all for both species. Florian M. Steiner, Wolfgang Arthofer and Birgit C. Schlick-Steiner contributed equally to this work.  相似文献   

13.
Beauvericin (BEA) is a cyclic hexadepsipeptide mycotoxin with notable phytotoxic and insecticidal activities. Fusarium redolens Dzf2 is a highly BEA-producing fungus isolated from a medicinal plant. The aim of the current study was to develop a simple and valid kinetic model for F. redolens Dzf2 mycelial growth and the optimal fed-batch operation for efficient BEA production. A modified Monod model with substrate (glucose) and product (BEA) inhibition was constructed based on the culture characteristics of F. redolens Dzf2 mycelia in a liquid medium. Model parameters were derived by simulation of the experimental data from batch culture. The model fitted closely with the experimental data over 20–50 g l−1 glucose concentration range in batch fermentation. The kinetic model together with the stoichiometric relationships for biomass, substrate and product was applied to predict the optimal feeding scheme for fed-batch fermentation, leading to 54% higher BEA yield (299 mg l−1) than in the batch culture (194 mg l−1). The modified Monod model incorporating substrate and product inhibition was proven adequate for describing the growth kinetics of F. redolens Dzf2 mycelial culture at suitable but not excessive initial glucose levels in batch and fed-batch cultures.  相似文献   

14.
Large-conductance calcium and voltage-activated potassium channels, termed SLO-1 (or BK), are pivotal players in the regulation of cell excitability across the animal phyla. Furthermore, emerging evidence indicates that these channels are key mediators of a number of neuroactive drugs, including the most recent new anthelmintic, the cyclo-octadepsipeptide emodepside. Detailed reviews of the structure, function and pharmacology of BK channels have recently been provided (Salkoff et al. in Nat Rev Neurosci 7:921–931, 2006; Ghatta et al. in Pharmacol Ther 110:103–116, 2006) and therefore these aspects will only briefly be covered here. The purpose of this review is to discuss how SLO-1 channels might function as regulators of neural transmission and network activity. In particular, we focus on the role of SLO-1 in the regulation of Caenorhabditis elegans behaviour and highlight the role of this channel as an effector for pleiotropic actions of neuroactive drugs, including emodepside. On the premise that C. elegans is a ‘model nematode’ with respect to many aspects of neural function, the intention is that this might inform a broader understanding of the role of these channels in the nematodes and their potential as novel anthelmintic targets.  相似文献   

15.
The biopharmaceutical industry continuously seeks to optimize the critical quality attributes to maintain the reliability and cost-effectiveness of its products. Such optimization demands a scalable and optimal control strategy to meet the process constraints and objectives. This work uses a model predictive controller (MPC) to compute an optimal feeding strategy leading to maximized cell growth and metabolite production in fed-batch cell culture processes. The lack of high-fidelity physics-based models and the high complexity of cell culture processes motivated us to use machine learning algorithms in the forecast model to aid our development. We took advantage of linear regression, the Gaussian process and neural network models in the MPC design to maximize the daily protein production for each batch. The control scheme of the cell culture process solves an optimization problem while maintaining all metabolites and cell culture process variables within the specification. The linear and nonlinear models are developed based on real cell culture process data, and the performance of the designed controllers is evaluated by running several real-time experiments.  相似文献   

16.
A model that predicts cell growth, lipid accumulation and substrate consumption of oleaginous fungi in chemostat cultures (Meeuwse et al. in Bioproc Biosyst Eng. doi:, 2011) was validated using 12 published data sets for chemostat cultures of oleaginous yeasts and one published data set for a poly-hydroxyalkanoate accumulating bacterial species. The model could describe all data sets well with only minor modifications that do not affect the key assumptions, i.e. (1) oleaginous yeasts and fungi give the highest priority to C-source utilization for maintenance, second priority to growth and third priority to lipid accumulation, and (2) oleaginous yeasts and fungi have a growth rate independent maximum specific lipid production rate. The analysis of all data showed that the maximum specific lipid production rate is in most cases very close to the specific production rate of membrane and other functional lipids for cells growing at their maximum specific growth rate. The limiting factor suggested by Ykema et al. (in Biotechnol Bioeng 34:1268–1276, 1989), i.e. the maximum glucose uptake rate, did not give good predictions of the maximum lipid production rate.  相似文献   

17.
An unstructured model based on mass balance equations for a recombinant methylotrophic yeast Pichia pastoris MutS (Methanol Utilization Slow) strain expressing the mini-proinsulin (MPI), was successfully established in quasi-steady state fed-batch fermentations with varying total quantity of biomass in a 7 l fermenter. The model describes the relationships between the total biomass and induction time, both in the batch and fed-batch phases. In addition, good correlations were obtained when the total quantity of MPI was correlated with the total biomass, demonstrating that the product of interest is associated with growth in the methanol phase. The parameters of the fermentation model obtained are similar to those reported by other researchers.  相似文献   

18.
Fed-batch culture can offer significant improvement in recombinant protein production compared to batch culture in the baculovirus expression vector system (BEVS), as shown by Nguyen et al. (1993) and Bedard et al. (1994) among others. However, a thorough analysis of fed-batch culture to determine its limits in improving recombinant protein production over batch culture has yet to be performed. In this work, this issue is addressed by the optimisation of single-addition fed-batch culture. This type of fed-batch culture involves the manual addition of a multi-component nutrient feed to batch culture before infection with the baculovirus. The nutrient feed consists of yeastolate ultrafiltrate, lipids, amino acids, vitamins, trace elements, and glucose, which were added to batch cultures of Spodoptera frugiperda (Sf9) cells before infection with a recombinant Autographa californica nuclear polyhedrosis virus (AcNPV) expressing beta-galactosidase (beta-Gal). The fed-batch production of beta-Gal was optimised using response surface methods (RSM). The optimisation was performed in two stages, starting with a screening procedure to determine the most important variables and ending with a central-composite experiment to obtain a response surface model of volumetric beta-Gal production. The predicted optimum volumetric yield of beta-Gal in fed-batch culture was 2.4-fold that of the best yields in batch culture. This result was confirmed by a statistical analysis of the best fed-batch and batch data (with average beta-Gal yields of 1.2 and 0.5 g/L, respectively) obtained from this laboratory. The response surface model generated can be used to design a more economical fed-batch operation, in which nutrient feed volumes are minimised while maintaining acceptable improvements in beta-Gal yield.  相似文献   

19.
Erysipelothrix rhusiopathiae, the causative agent of swine erysipelas, was cultivated in a 5-L stirred and aerated bioreactor under different dissolved oxygen tensions (0%, 5%, and 30% of saturation) for evaluation of the influence of oxygen on cell growth as well as on the production of the main antigenic component of the vaccine against erysipelas, a 64–69 kDa protein (SpaA). The microorganism presented different growth profiles for different aeration conditions. However, at the end of the batch cultivations, similar cell concentrations were obtained under the studied conditions. In order to maximize biomass titers and antigen production, the microorganism was cultivated in fed-batch operation mode under aerobic conditions. Under this condition, there was a fivefold increase in biomass production in comparison to the results attained in batch cultivations. To follow up antigen expression, samples collected during batch cultivations were concentrated and treated with choline for antigen extraction. Antigen expression was then assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and by murine immunization tests. It was observed a direct influence of oxygen availability upon antigen expression, which is favored in the presence of oxygen. Analysis of the samples collected throughout the fed-batch process also revealed that antigen production is growth associated.  相似文献   

20.
A kinetic model of cellulosic biomass conversion to ethanol via simultaneous saccharification and fermentation (SSF) developed previously was validated experimentally using paper sludge as the substrate. Adsorption parameters were evaluated based on the data obtained at various values for fractional cellulose conversion. The adsorption model was then combined with batch SSF data to evaluate the cellulose hydrolysis parameters. With the parameters evaluated for the specific substrate, the discrete model was able to predict SSF successfully both with discrete addition of cellulase only and with discrete feeding of substrate, cellulase, and media. The model tested in this study extends the capability of previous SSF models to semi-continuous feeding configurations, and invites a mechanistic interpretation of the recently observed trend of increasing conversion with decreasing feeding frequency [Fan et al. (2007a) Bioprocess Biosyst Eng 30(1):27-34]. Our results also support the feasibility and utility of determining adsorption parameters based on data obtained at several conversions, particularly when the model is to be applied to extended reaction times rather than only initial hydrolysis rates. The revised model is considerably more computationally efficient than earlier models, and appears for many conditions to be within the capability of simulation using computational fluid dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号