首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tumor necrosis factor-alpha (TNF-alpha) stimulates expression of endothelial cell (EC) genes that may promote atherosclerosis in part by an activation of mitogen-activated protein (MAP) kinases. Ebselen (2-phenyl-1,2-benzisoselenazol-3[2H]-one), a selenoorganic compound, is effective for acute ischemic stroke; however, its effect on EC has not yet been elucidated. We examined the effect of ebselen on TNF-alpha-induced MAP kinase activation and adhesion molecule expression in cultured human umbilical vein endothelial cells (HUVEC). Extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 were rapidly and significantly activated by TNF-alpha in HUVEC. TNF-alpha-induced JNK activation was inhibited by ebselen, whereas ERK1/2 and p38 were not affected. Apoptosis signal-regulated kinase 1 (ASK1) was suggested to be involved in TNF-alpha-induced JNK activation because transfection of kinase-inactive ASK1 inhibited TNF-alpha-induced JNK activation. Ebselen inhibited TNF-alpha-induced TNF receptor-associated factor 2 (TRAF2)-ASK1 complex formation and phosphorylation of stress-activated protein kinase ERK kinase 1 (SEK1), which is an upstream signaling molecule of JNK. Finally, TNF-alpha-induced activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) activation and resultant intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions were inhibited by ebselen. Specific inhibitors for JNK and NF-kappaB also inhibited TNF-alpha-induced ICAM-1 and VCAM-1 expressions in HUVEC. These findings suggest that ebselen prevents TNF-alpha-induced EC activation through the inhibition of TRAF2-ASK1-SEK1 signaling pathway, which leads to JNK activation. Inhibition of JNK by ebselen may imply its usefulness for the prevention of atherosclerosis relevant to EC activation.  相似文献   

2.
目的研究大肠埃希菌脂多糖对高脂饮食兔血脂和炎性反应的影响。方法给含0.5%胆固醇的饲料,3周后,分别在第4、8、12周采用耳动脉内、颈部、腹股沟处肌肉注射大肠埃希菌脂多糖(LPS),并设立正常组和单纯高脂组。16周后观察兔的一般状态,取血清检查血脂六项、C-反应蛋白和TNF—α,取耳动脉、颈动脉、主动脉弓、胸主动脉、腹主动脉、髂动脉、肝脏,放置4%多聚甲醛中过夜,常规行HE染色,检查血管病变和相关脏器病变情况。结果单纯高脂组血清中胆固醇和LDL-C较正常组增加,复合模型组动物血清中胆固醇和LDL-C均明显高于单纯高脂组,单纯高脂组TNF-α较正常组高,复合模型组TNF-α比单纯高脂组高。病理显示主动脉弓变化明显,复合模型组内膜斑块弥漫,而单纯高脂组内膜只出现单个小斑块,单纯高脂组和复合模型组心脏病变区别不大,均见轻度水肿和小脂肪滴;单纯模型组肝脏细胞轻度水肿,而复合模型组肝脏脂肪滴明显。结论大肠埃希菌脂多糖加重了内膜斑块的形成,加剧了血脂代谢的紊乱和炎性反应。  相似文献   

3.
4.
We examined the effects of exercise training (treadmill running over 9 weeks) on the ability of isolated adipocytes to secrete tumor necrosis factor-alpha (TNF-alpha) and type 1 soluble TNF receptor (sTNFR1) in vitro in Wistar rats. We also examined the effects of exercise training on the expression of membrane bound forms of type 1 TNF receptor (mTNFR1) in adipocyte crude membranes of the same rat subjects. Exercise training significantly increased the secretions of TNF-alpha from isolated adipocytes. Treatment with a cyclooxygenase inhibitor, either indomethacin (100 microM) or eicosatetraynoic acid (100 microM), significantly blocked the release of TNF-alpha from adipocytes in both exercise-trained rat group and sedentary control rat group, suggesting that some cyclooxygenase metabolite(s) acts as a ligand in TNF-alpha synthesis. Decreased amounts of TNF-alpha were found to be significantly greater in both exercise-trained rat group than in sedentary control rat group after incubation with inhibitors. Thus, the inhibitory effect of both indomethacin and eicosatetraynoic acid was significantly greater in adipocytes from exercise-trained rats. Both plasma sTNFR1 levels and adipocytes-derived sTNFR1 were found to be significantly less in the exercise-trained rat group. Western blot analysis revealed that exercise training remarkably increased the expressions of mTNFR1 in adipocyte crude membrane. Thus, exercise training enhanced the ability of isolated adipocytes to secrete TNF-alpha with reduced secretion of sTNFR1, and provoked the greater expressions of mTNFR1 in adipocyte crude membrane. These alterations may induce enhanced the autocrine effects of TNF-alpha within adipocytes in exercise-trained rats.  相似文献   

5.
Heart failure is generally believed to begin with myocyte damage caused by a variety of insults, including ischemia, toxin or myocardial infection. The proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha), has been hypothesized to play a pathogenetic role in the transition from compensated to decompensated heart failure. Interleukin-18 (IL-18), a recently cloned cytokine synthesized by Kupffer cells, activates macrophages. We examined the therapeutic effect of IL-18 on the modulation of TNF-alpha gene expression in failing heart in a murine model of heart failure caused by viral myocarditis. The heart weight (HW)/ body weight (BW) ratio in IL-18 treated mice 7 days after viral inoculation was significantly lower (P<0.01) than in the untreated controls. Myocardial necrosis and inflammatory cell infiltration were significantly lower in IL-18 treated mice than untreated mice 5 and 7 days after inoculation. The expression of TNF-alpha mRNA in the myocardium was significantly lower on days 5 and 7 in IL-18 treated mice than in infected untreated mice. We conclude that concurrent systemic administration of IL-18 is beneficial in mice with myocarditis, and may be mediated through reduced expression of TNF-alpha in the heart.  相似文献   

6.
Tumors depend on a vascular supply for their growth. Tumor blood vessels, which are derived from normal tissue vasculature, display a markedly abnormal phenotype. Tumor endothelial properties are highly varied in space and time. An important goal is to delineate the range of phenotypes in tumor endothelium and to identify tumor endothelial-specific molecular signatures. This information should lead to a more complete understanding of the mechanisms of tumor growth, the discovery of new therapeutic targets, and the development of biomarkers for diagnosis and surveillance. The goals of this review are to outline recent advances in dissecting tumor endothelial-cell-specific gene expression, to address mechanisms of phenotypic heterogeneity in tumor vascular beds, and to discuss the therapeutic implications of these findings.  相似文献   

7.
Koo HN  Hong SH  Song BK  Kim CH  Yoo YH  Kim HM 《Life sciences》2004,74(9):1149-1157
Taraxacum officinale (TO) has been frequently used as a remedy for women's disease (e.g. breast and uterus cancer) and disorders of the liver and gallbladder. Several earlier studies have indicated that TO exhibits anti-tumor properties, but its mechanism remains to be elucidated. In this study, we investigated the effect of TO on the cytotoxicity and production of cytokines in human hepatoma cell line, Hep G2. Our results show that TO decreased the cell viability by 26%, and significantly increased the tumor necrosis factor (TNF)-alpha and interleukin (IL)-1alpha production compared with media control (about 1.6-fold for TNF-alpha, and 2.4-fold for IL-1alpha, P < 0.05). Also, TO strongly induced apoptosis of Hep G2 cells as determined by flow cytometry. Increased amounts of TNF-alpha and IL-1alpha contributed to TO-induced apoptosis. Anti-TNF-alpha and IL-1alpha antibodies almost abolished it. These results suggest that TO induces cytotoxicity through TNF-alpha and IL-1alpha secretion in Hep G2 cells.  相似文献   

8.
Proprotein convertases (PCs) have been proposed to play a role in tumor necrosis factor-alpha converting enzyme (TACE) processing/activation. Using the furin-deficient LoVo cells, as well as the furin-proficient synoviocytes and HT1080 cells expressing the furin inhibitor alpha(1)-PDX, we demonstrate that furin activity alone is not sufficient for effective maturation and activation of the TACE enzyme. Data from in vitro and in vivo cleavage assays indicate that PACE-4, PC5/PC6, PC1 and PC2 can directly cleave the TACE protein and/or peptide. PC inhibition in macrophages reduced the release of soluble TNF-alpha from transmembrane pro-TNF-alpha. We therefore conclude that furin, in addition to other candidate PCs, is involved in TACE maturation and activation.  相似文献   

9.
目的:探讨TNF-α诱导人胎盘胎儿来源间充质干细胞(hfPMSCs)发生凋亡和自噬的作用,以及自噬对细胞凋亡的调控作用。方法:利用流式细胞术检测无血清培养hfPMSCs中CD73、CD90、CD105、CD14、CD34、CD45的表达;用终浓度20μg/L的TNF-α处理hfPMSCs 24h,以未处理细胞作为对照组。Annexin V/PI双染色检测TNF-α对hfPMSCs凋亡程度的影响;分别提取各组总蛋白,Western blot检测自噬标志基因LC3Ⅰ/Ⅱ的表达;利用mRFP-GFP-LC3腺病毒感染细胞,观察胞内点状聚集形成的情况;利用Atg5干扰慢病毒(si-Atg5)及阴性对照慢病毒(si-NC)感染hfPMSCs,Annexin V/PI双染色检测TNF-α对慢病毒感染后hfPMSCs凋亡程度的影响。结果:所培养细胞具有典型的MSCs形态,呈CD73~+CD90~+CD105~+/CD14~-CD34~-CD45~-细胞; Annexin V/PI染色结果显示,TNF-α作用24 h后,hfPMSCs凋亡数和凋亡率均高于对照组(P 0. 05);Western blot检测自噬标志蛋白表达结果表明,TNF-α可增加LC3Ⅱ的表达(P 0. 05);荧光共聚焦显微境观察到TNF-α可显著提高细胞中的点状聚集。利用si-Atg5感染细胞,抑制hfPMSCs自噬的发生,与对照慢病毒si-NC感染细胞比较,可显著促进TNF-α诱导hfPMSCs凋亡的发生(P 0. 05)。结论:TNF-α诱导的自噬抑制人胎盘胎儿来源MSCs凋亡的发生,具有一定的保护性作用。  相似文献   

10.
Tumor necrosis factor (TNF)-α is one of the major proinflammatory mediators of rheumatic arthritis (RA); the regulatory factors for TNF-α release is not fully understood. This study aims to investigate the role of prolactin receptor (PRLR) activation in regulating the expression and release of TNF-α from CD14+ monocytes. The results showed that the expression of PRLR was detectable in CD14+ monocytes of healthy subjects, which was markedly increased in RA patients. Exposure to PRL in the culture increased the expression and release of TNF-α from CD14+ monocytes, which was abolished by the PRLR gene silencing or blocking the mitogen activated protein (MAPK) pathway. We conclude that exposure to PRL increases TNF-α release from CD14+ monocytes of RA patients, which can be abolished by PRLR gene silencing or treating with MAPK inhibitor.  相似文献   

11.
12.
Kupffer cells (KC) are the resident macrophages of the liver and represent about 80% of the total fixed macrophage population. They are involved in disease states such as endotoxin shock, alcoholic liver diseases and other toxic-induced liver injury. They release physiologically active substances such as eicosanoids and inflammatory cytokines (IL-1, IL-6, TNFalpha), and produce free radical species. Thus, KC are attractive targets for anti-inflammatory therapies and potential candidates responsible for differences in inflammation in liver disease seen between different individuals. However, to perform parallel in vitro experiments with KC from different donors a suitable method for conservation of KC would be necessary. Therefore, the present study evaluated, whether rat and human KC can be frozen, stored and recovered without losing their functional integrity. Rat and human KC were isolated and either cultured under standard conditions (fresh KC) or cryopreserved in special freezing medium (cryopreserved KC). At least 24 h later, cryopreserved KC were thawed, brought into suspension and seeded in the same density as fresh cells for subsequent experiments. Viability of cultured KC was analyzed by trypan blue exclusion. LPS (or PBS as control) stimulation was performed at different time points and cytokine release was analyzed with IL-6 and TNFalpha ELISAs, respectively. Phagocytic capacity was investigated by using a specific phagocytosis assay and FACS analysis. The recovery rate after thawing was around 57% for rat and around 65% for human cryopreserved KC. The results indicate, that KC can successfully be cryopreserved with an adequate recovery rate of viable cells. The properties of fresh and frozen KC can also be compared after thawing. Freshly isolated and cryopreserved cultured KC showed near-normal morphology and did not differ in the cultivation profiles over a period of 72 h. One to three days after seeding, frozen rat or human KC also retained inducible functions such as the production of TNFalpha or IL-6 after LPS challenge. Finally, regardless if they were cryopreserved or not, no differences in the phagocytic activities of the cells were obtained. Taken together, it is concluded that cryopreservation of KC does not change the physiological characteristics of the cells in vitro. Therefore, the method used here for cryopreservation of especially human KC allows the accumulation of KC from several donors for parallel in vitro experiments.  相似文献   

13.
CXCR4 expression is important for cell migration and recruitment, suggesting that the expression levels of CXCR4 may be correlated with functional activity of implanted cells for therapeutic neovascularization. Here, we examined differences between umbilical cord blood (CB) donors in the CXCR4 levels of endothelial colony forming cells (ECFCs), which are a subtype of endothelial progenitor cells (EPCs). We investigated the relationships between CXCR4 expression level and SDF-1α-induced vascular properties in vitro, and their in vivo contributions to neovascularization. We found that ECFCs isolated from different donors showed differences in CXCR4 expression that were linearly correlated with SDF-1α-induced migratory capacity. ECFCs with high CXCR4 expression showed enhanced ERK and Akt activation in response to SDF-1α. In addition, SDF-1α-induced migration and ERK1/2, Akt, and eNOS activation were reduced by AMD3100, a CXCR4-specific peptide antagonist, or by siRNA-CXCR4. Administration of high-CXCR4-expressing ECFCs resulted in a significant increase in therapeutic potential for blood flow recovery, tissue healing and capillary density compared to low-CXCR4-expressing ECFCs in hindlimb ischemia. Taken together, the functional differences among ECFCs derived from different donors depended on the level of CXCR4 expression, suggesting that CXCR4 expression levels in ECFCs could be a predictive marker for success of ECFC-based angiogenic therapy.  相似文献   

14.
Hepatocyte growth factor (HGF) was recently reported to ameliorate renal inflammation in a rat model of chronic renal failure. HGF exerted its action through suppression of RANTES expression in renal tubules. In the present study, we utilized an in vitro model of human kidney proximal tubule epithelial cells (HKC) to elucidate the mechanisms of RANTES suppression by HGF. HGF significantly suppressed basal and TNF-alpha-induced mRNA and protein expression of RANTES in a time and dose dependent fashion. HGF elicited PI3K-Akt activation and inhibited GSK3, a downstream transducer of PI3K-Akt, by inhibitory phosphorylation at Ser-9. When the PI3K-Akt pathway was blocked by wortmannin, HGF inhibition of RANTES was abrogated, demonstrating that the PI3K-Akt pathway is necessary for HGF action. In addition, specific inhibition of GSK3 activity by lithium ion suppressed basal and TNF-alpha-induced RANTES expression, reminiscent of the action of HGF. To further investigate the role of GSK3 in modulating RANTES expression, we examined the effect of forced expression of wild type GSK3beta or an uninhibitable mutant GSK3beta, in which the regulatory Ser-9 residue is changed to alanine (S9A-GSK3beta) in HKC. Overexpression of wild type GSK3beta did not alter the inhibitory action of HGF on RANTES. In contrast, expression of S9A-GSK3beta abolished HGF inhibition of basal and TNF-alpha stimulated RANTES expression. These findings suggest that PI3K-Akt activation and subsequent inhibitory phosphorylation of GSK3beta are required for HGF-induced suppression of RANTES in HKC.  相似文献   

15.
Penicillium marneffei (P. marneffei) is a human pathogen which persists in macrophages and threatens the immunocompromised patients. To elucidate the mechanisms involved, we investigated the role of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 mitogen-activated protein kinase (p38) pathways in cytokine expression, phagosome–lysosome fusion and replication of P. marneffei in P. marneffei-infected human macrophages. Analysis of both ERK1/2 and p38 showed rapid phosphorylation in response to P. marneffei. Using specific inhibitors of p38 (SB203580) and MAP kinase kinase-1 (PD98059), we found that ERK1/2 and p38 were essential for P. marneffei-induced tumor necrosis factor-α production, whereas p38, but not that of ERK, was essential for IL-10 production. Furthermore, the presence of PD98059 always decreased phagosomal acidification and maturation and increased intracellular multiplication of P. marneffei, whereas the use of SB203580 always increased phagosomal acidification and maturation and decreased intracellular replication. These data suggest that a proper balance of between ERK1/2 and p38 may play an important role in controlling the replication of P. marneffei. Our findings further indicate a novel therapeutic avenue for treating P. marneffei by stimulating ERK1/2 or activating ERK1/2-dependent mechanisms.  相似文献   

16.
Cobalamin (Cbl), epidermal growth factor (EGF), and prions (PrPs) are key molecules for myelin maintenance in the central and peripheral nervous systems. Cbl and EGF increase normal prion (PrPC) synthesis and PrPC levels in rat spinal cord (SC) and elsewhere. Cbl deficiency increases PrPC levels in rat SC and cerebrospinal fluid (CSF), and decreases PrPC-mRNA levels in rat SC. The administration of anti-octapeptide repeat PrPC region antibodies (Abs) to Cbl-deficient (Cbl-D) rats prevents SC myelin lesions and a local increase in tumor necrosis factor (TNF)-α levels, whereas anti-TNF-α Abs prevent SC myelin lesions and the increase in SC and CSF PrPC levels. As it is known that both Cbl and EGF regulate SC PrPC synthesis independently, and that Cbl regulates SC EGF synthesis, EGF may play both Cbl-independent and Cbl-dependent roles. When Cbl-D rats undergo Cbl replacement therapy, SC PrPC levels are similar to those observed in Cbl-D rats. In rat frontal cortex (which is marginally affected by Cbl deficiency in histological terms), Cbl deficiency decreases PrPC levels and the increase induced by Cbl replacement leads to their normalization. Increased nerve PrPC levels are detected in the myelin lesions of the peripheral neuropathy of Cbl-D rats, and CSF PrPC levels are also increased in Cbl-D patients (but not in patients with Cbl-unrelated neurological diseases). Various common steps in the downstream signaling pathway of Cbl, EGF, and PrPC underlines the close relationship between the three molecules in keeping myelin normal.  相似文献   

17.
A novel and sensitive immunoassay method has been developed in which the conventional sandwich immunoassay and the highly sensitive DNA detection method, the Invader method, are combined. The signal amplification function of the latter method has been successfully used to enhance the sensitivity of the sandwich immunoassay. The new assay method may be called the Immuno-Invader assay. The assay format involves three important steps: (1) a target antigen is captured and flagged with a biotin-conjugated detection antibody by the sandwich method, (2) streptavidin and a biotin-conjugated oligonucleotide are added to form a complex with the detection antibody, and (3) the oligonucleotide in the complex is detected using the Invader method. The method was applied to the assay of human tumor necrosis factor-α (hTNF-α). Detection limits obtained were 0.1 pg/ml hTNF-α when a luminescent europium chelate was used with a time-resolved measurement mode, and 0.8 pg/ml when fluorescein was used with a normal prompt fluorescence measurement mode. On the other hand, the detection limit of a commercially available hTNF-α enzyme-linked immunosorbent assay that uses horseradish peroxidase was 3.5 pg/ml. These results demonstrate the feasibility and potential of the new assay method for highly sensitive immunoassay.  相似文献   

18.
摘要 目的:探究血根碱(SAN)对肿瘤坏死因子-α(TNF-α)处理的人牙周膜干细胞(hPDLSCs)成骨分化的影响及机制。方法:将hPDLSCs分为6组:Control组、TNF-α组、0.1SAN组、1SAN组、10SAN组和100SAN组,所有hPDLSCs均用成骨诱导培养液培养。除Control组外,其他组细胞培养液中均添加10 ng/mL的TNF-α。0.1SAN组、1SAN组、10SAN组和100SAN组细胞培养液中分别添加0、0.1、1、10和100 μmol/L的血根碱。各组hPDLSCs均在37℃、5% CO2条件下培养21 d。通过可见光比色法检测碱性磷酸酶(ALP)活性。通过茜素红染色观察钙化结节形成,并统计OD562 nm (代表钙化结节形成量)。通过qRT-PCR检测Runt相关转录因子2(RUNX2)、骨钙素(OCN)、osterix(OSX)、牙骨质附着蛋白(CAP)、Smad4转录水平。通过Western blot检测核因子-κB(NF-κB)p65磷酸化水平。结果:与Control组比较,TNF-α组细胞的相对ALP活性降低和钙化结节形成量以及RUNX2、OCN、OSX、CAP和Smad4的mRNA相对表达量降低(P<0.05),p-NF-κB p65/NF-κB p65升高(P<0.05)。与TNF-α组比较,1SAN组、10SAN组和100SAN组的相对ALP活性和钙化结节形成量以及RUNX2、OCN、OSX、CAP和Smad4的mRNA相对表达量升高(P<0.05),p-NF-κB p65/NF-κB p65降低(P<0.05)。结论:血根碱可促进TNF-α处理的hPDLSCs的成骨分化,其机制可能与抑制NF-κB的激活有关,血根碱可能是促进炎性微环境中hPDLSCs成骨分化的候选药物。  相似文献   

19.
Inflammation and abnormal calcium homeostasis play important roles in atrial fibrillation. Tumor necrosis factor-alpha (TNFalpha), a proinflammatory cytokine, can induce cardiac arrhythmias. Pulmonary veins (PVs) are critical in initiating paroxysmal atrial fibrillation. This study was designed to investigate whether TNFalpha may change the calcium handling and arrhythmogenic activity of PV cardiomyocytes. We used whole-cell patch clamp and indo-1 fluorimetric ratio technique to investigate the action potentials, ionic currents and intracellular calcium in isolated rabbit single PV cardiomyocytes with and without (control) incubation with TNFalpha (25 ng/ml) for 7-10 h. The expression of sarcoplasmic reticulum ATPase in the control and TNFalpha-treated PV cardiomyocytes was evaluated by confocal micrographs and Western blot. We found that the spontaneous beating rates were similar between the control (n=45) and TNFalpha-treated (n=28) PV cardiomyocytes. Compared with the control PV cardiomyocytes, the TNFalpha-treated PV cardiomyocytes had significantly a larger amplitude of the delayed afterdepolarizations (6.0+/-1.7 vs. 2.6+/-0.8 mV, P<0.05), smaller L-type calcium currents, larger transient inward currents, larger Na(+)-Ca(2+) exchanger currents, a smaller intracellular calcium transient, smaller sarcoplasmic reticulum calcium content, larger diastolic intracellular calcium, a longer decay portion of the calcium transient (Tau), and a decreased sarcoplasmic reticulum ATPase expression. In conclusion, TNFalpha can increase the PV arrhythmogenicity and induce an abnormal calcium homeostasis, thereby causing inflammation-related atrial fibrillation.  相似文献   

20.
Ma ZC  Gao Y  Wang J  Zhang XM  Wang SQ 《Life sciences》2006,79(2):175-181
Ginsenoside Rg1 (derived from ginseng root) has been found to have many vasoprotective activities. The present study was undertaken to examine effect of ginsenoside Rg1 on the secretion of nitric oxide (NO) in human umbilical vein endothelial cells (HUVECs) stimulated with or without tumor necrosis factor-alpha (TNF-alpha). We showed here that ginsenoside Rg1 can increase the basal and TNF-alpha-attenuated NO production in a dose-dependent manner. As little is known regarding the vascular molecular mechanism of ginsenoside Rg1 on HUVECs and proteomic technique has more advantages in molecular identification, we attempted to use proteomic analysis to explain vascular molecular mechanism of ginsenoside Rg1 on HUVECs. Proteomic analytical result showed that 21 protein spots were changed in TNF-alpha stimulated HUVECs, including 9 up-regulated spots, 11 down-regulated spots, and 1 spot detected in TNF-alpha stimulated group only. The expression level of proteins such as MEKK3, phosphoglycerate mutase was increased, and nitric-oxide synthase, mineralocorticoid receptor were decreased in TNF-alpha stimulated HUVECs, while ginsenoside Rg1 could prevent this change or reverse to some degree. This study suggested that NO production increased via ginsenoside Rg1 played an important role in the protective effect on TNF-alpha stimulated HUVECs and was helpful to deeply understand the active mechanism of ginsenoside Rg1 to HUVECs at the molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号