首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Terminal cell differentiation entails definitive withdrawal from the cell cycle. Although most of the cells of an adult mammal are terminally differentiated, the molecular mechanisms preserving the postmitotic state are insufficiently understood. Terminally differentiated skeletal muscle cells, or myotubes, are a prototypic terminally differentiated system. We previously identified a mid-G(1) block preventing myotubes from progressing beyond this point in the cell cycle. In this work, we set out to define the molecular basis of such a block. It is shown here that overexpression of highly active cyclin E and cdk2 in myotubes induces phosphorylation of pRb but cannot reactivate DNA synthesis, underscoring the tightness of cell cycle control in postmitotic cells. In contrast, forced expression of cyclin D1 and wild-type or dominant-negative cdk4 in myotubes restores physiological levels of cdk4 kinase activity, allowing progression through the cell cycle. Such reactivation occurs in myotubes derived from primary, as well as established, C2C12 myoblasts and is accompanied by impairment of muscle-specific gene expression. Other terminally differentiated systems as diverse as adipocytes and nerve cells are similarly reactivated. Thus, the present results indicate that the suppression of cyclin D1-associated kinase activity is of crucial importance for the maintenance of the postmitotic state in widely divergent terminally differentiated cell types.  相似文献   

2.
3.
4.
It has been suggested that terminally differentiated mammalian cells have a decreased DNA repair capacity, compared with proliferating stem cells. To investigate this hypothesis, we have examined gamma-ray-induced DNA strand breaks and their repair in the murine proadipocyte stem cell line 3T3-T. By exposure to human plasma, 3T3-T cells can be induced to undergo nonterminal and then terminal differentiation. DNA strand breaks were evaluated using the technique of alkaline elution. No difference was detected among stem, nonterminally differentiated, and terminally differentiated cells in the initial levels of radiation-induced DNA strand breaks. Each of the strand break dose response increased as a linear function of gamma-ray dose. The strand breaks induced by 4 Gy rejoined following biphasic kinetics for each cell type. At each time point examined after irradiation, however, the percentage of strand breaks that had not rejoined in terminally differentiated cells was three to six times greater than in stem cells. The rate of strand break rejoining in nonterminally differentiated cells was of an intermediate value between that of the stem and of the terminally differentiated cells. These results indicate that, at least for 3T3-T cells, differentiated cells have a reduced capacity for DNA repair.  相似文献   

5.
Thrombin regulates S-phase re-entry by cultured newt myotubes.   总被引:3,自引:0,他引:3  
BACKGROUND: Adult urodele amphibians such as the newt have remarkable regenerative ability, and a critical aspect of this is the ability of differentiated cells to re-enter the cell cycle and lose their differentiated characteristics. Unlike mammalian myotubes, cultured newt myotubes are able to enter and traverse S phase, following serum stimulation, by a pathway leading to phosphorylation of the retinoblastoma protein. The extracellular regulation of this pathway is unknown. RESULTS: Like their mammalian counterparts, newt myotubes were refractory to mitogenic growth factors such as the platelet-derived growth factor (PDGF), which act on their mononucleate precursor cells. Cultured newt myotubes were activated to enter S phase by purified thrombin in the presence of subthreshold amounts of serum. The activation proceeded by an indirect mechanism in which thrombin cleaved components in serum to generate a ligand that acted directly on the myotubes. The ligand was identified as a second activity present in preparations of crude thrombin and that was active after removal of all thrombin activity. It induced newt myotubes to enter S phase in serum-free medium, and it acted on myotubes but not on the mononucleate precursor cells. Cultured mouse myotubes were refractory to this indirect mechanism of S-phase re-entry. CONCLUSIONS: These results provide a link between reversal of differentiation and the acute events of wound healing. The urodele myotube responds to a ligand generated downstream of thrombin activation and re-enters the cell cycle. Although this ligand can be generated in mammalian sera, the mammalian myotube is unresponsive. These results provide a model at the cellular level for the difference in regenerative ability between urodeles and mammals.  相似文献   

6.
Enrichment and terminal differentiation of mammalian striated muscle cells is severely hampered by fibroblast overgrowth, de-differentiation and/or lack of functional differentiation. Herein we report a new, reproducible and simple method to enrich and terminally differentiate muscle stem cells and progenitors from mice and humans. We show that a single gamma irradiation of muscle cells induces their massive differentiation into structurally and functionally intact myotubes and cardiomyocytes and that these cells can be kept in culture for many weeks. Similar results are also obtained when treating skeletal muscle-derived stem cells and progenitors with Mitomycin C.  相似文献   

7.
8.
Permanent silencing of E2F-dependent genes is a hallmark of the irreversible cell cycle exit that characterizes terminally differentiated and senescent cells. The determinant of this silencing during senescence has been proposed to be the binding of the retinoblastoma protein Rb and the consequent methylation of H3K9. During ex vivo skeletal muscle differentiation, while most cells terminally differentiate and form myotubes, a subset of myoblasts remains quiescent and can be reinduced by growth factor stimulation to enter the cell cycle. Thus, differentiating cells are composed of two different populations: one in which E2F-dependent genes are permanently repressed and the other not. We observed that, in a manner reminiscent to senescent cells, permanent silencing of the E2F-dependent cdc6, dhfr, and p107 promoters in myotubes was associated with a specific increase in H3K9 trimethylation. To investigate the role of Rb in this process, we developed a reliable method to detect Rb recruitment by chromatin immunoprecipitation. Surprisingly, we observed that Rb was recruited to these promoters more efficiently in quiescent cells than in myotubes. Thus, our data indicate that during muscle differentiation, permanent silencing and H3K9 trimethylation of some E2F-dependent genes are not directly specified by Rb binding, in contrast to what is proposed for senescence.  相似文献   

9.
10.
Potassium and sodium fluxes believed to be important in the cellular response to serum and growth factors have not been widely investigated in cells which have undergone terminal differentiation. In this study we have analyzed two main K+ transport systems--the ouabain-sensitive Na+/K+ pump and the bumetanide-sensitive transporter--in human muscle in vitro at two developmental stages: proliferating myoblasts and differentiated myotubes. Myoblast differentiation to myotubes was accompanied by a marked decrease in both the ouabain-sensitive and the bumetanide-sensitive K+ (Rb+) influxes. The addition of serum to the terminally differentiated myotubes had no effect on these K+ transporters. However, serum addition to serum-deprived, undifferentiated myoblasts produced a marked stimulation of these K+ fluxes. The bumetanide-sensitive K+ transporter in human myoblasts and myotubes has the following properties: (1) It carries 30% and 40% of the total K+ influx in myoblasts and myotubes, respectively. (2) It performs net efflux of K+ in the undifferentiated myoblasts and zero net flux (self-exchange) in terminally differentiated myotubes. (3) It is dependent on extracellular Na+ and Cl- in addition to K+. (4) In myoblasts, the Km value for K+ is 1.36 mM, similar to the Km for K+ of the Na+/K+ pump. (5) It is resistant to ouabain (up to 2 mM) and sensitive to furosemide (K0.5 = 5 X 10(-6) M) and bumetanide (K0.5 = 10(-7) M). These data indicate that following terminal differentiation of proliferating myoblasts to mitotically inactive myotubes there is an irreversible reduction of K+ fluxes with a change in the net flux of K+ carried by the bumetanide-sensitive transporter.  相似文献   

11.
12.
Cell cycle reentry and dedifferentiation of postmitotic cells are important aspects of the ability of an adult newt and other urodele amphibians to regenerate various tissues and appendages [1]. In contrast to their mammalian counterparts, newt A1 myotubes are able to reenter S phase after serum stimulation of a pathway leading to phosphorylation of the retinoblastoma protein, pRb [2]. The activity in serum is not due to mitogenic growth factors but is generated indirectly by the activation of thrombin and subsequent proteolysis [3]. In this paper we describe the formation of interspecies hybrid (heterokaryon) myotubes by the fusion of mouse C2C12 [4] and newt A1 [5, 6] myogenic cells. The C2C12 nuclei reenter the cell cycle upon serum stimulation of the hybrids, while C2C12 homokaryon myotubes remain arrested under these conditions. These findings indicate that the postmitotic arrest of the mouse nuclei is undermined by the pathway activated in the newt cytoplasm. The hybrid myotubes provide a new model for the manipulation of the postmitotic arrest in both mammalian and newt differentiated cells.  相似文献   

13.
14.
Urodele amphibians are exceptional in their ability to regenerate complex body structures such as limbs. Limb regeneration depends on a process called dedifferentiation. Under an inductive wound epidermis terminally differentiated cells transform to pluripotent progenitor cells that coordinately proliferate and eventually redifferentiate to form the new appendage. Recent studies have developed molecular models integrating a set of genes that might have important functions in the control of regenerative cellular plasticity. Among them is Msx1, which induced dedifferentiation in mammalian myotubes in vitro. Herein, we screened for interaction partners of axolotl Msx1 using a yeast two hybrid system. A two hybrid cDNA library of 5-day-old wound epidermis and underlying tissue containing more than 2×10? cDNAs was constructed and used in the screen. 34 resulting cDNA clones were isolated and sequenced. We then compared sequences of the isolated clones to annotated EST contigs of the Salamander EST database (BLASTn) to identify presumptive orthologs. We subsequently searched all no-hit clone sequences against non redundant NCBI sequence databases using BLASTx. It is the first time, that the yeast two hybrid system was adapted to the axolotl animal model and successfully used in a screen for proteins interacting with Msx1 in the context of amphibian limb regeneration.  相似文献   

15.
Terminal cell differentiation involves permanent withdrawal from the cell division cycle. The inhibitors of cyclin-dependent kinases (CDKs) are potential molecules functioning to couple cell cycle arrest and cell differentiation. In murine C2C12 myoblast cells, G1 CDK enzymes (CDK2, CDK4, and CDK6) associate with four CDK inhibitors: p18INK4c, p19INK4d, p21, and p27Kip1. During induced myogenesis, p21 and its associated CDK proteins underwent an initial increase followed by a decrease as cells became terminally differentiated. The level of p27 protein gradually increased, but the amount of total associated CDK proteins remained unchanged. p19 protein decreased gradually during differentiation, as did its associated CDK4 protein. In contrast, p18 protein increased 50-fold, from negligible levels in proliferating myoblasts to clearly detectable levels within 8-12 h of myogenic induction. This initial rise was followed by a precipitous increase between 12 and 24 h postinduction, with p18 protein finally accumulating to its highest level in terminally differentiated cells. Induction of p18 correlated with increased and sequential complex formation--first increasing association with CDK6 and then with CDK4 over the course of myogenic differentiation. All of the CDK6 and half of the CDK4 were complexed with p18 in terminally differentiated C2C12 cells as well as in adult mouse muscle tissue. Finally, kinase activity of CDK2 and CDK4 decreases as C2C12 cells differentiate, whereas the CDK6 kinase activity is low in both proliferating myoblasts and differentiated myotubes. Our results indicate that p18 may play a critical role in causing and/or maintaining permanent cell cycle arrest associated with mature muscle formation.  相似文献   

16.
17.
18.
19.
20.
It is known that differentiated cells can be reprogrammed to an undifferentiated state in oocyte cytoplasm after nuclear transfer. Recently, some reports suggested that Xenopus egg extracts have the ability to reprogram mammalian somatic cells. Reprogramming events of mammalian cells after Xenopus egg extract treatment and after cell culture of extract-treated cells have not been elucidated. In this experiment, we examined reprogramming events in reversibly permeabilized or nonpermeabilized porcine fibroblast cells after Xenopus egg extract treatment. The Xenopus egg-specific histone B4 was assembled on porcine chromatin and nuclear lamin LIII was incorporated into nuclei. Deacetylation of histone H3 at lysine 9 in extract-treated cells was detected in nonpermeabilized cells, suggesting that a part of reprogramming may be induced even in nonpermeabilized cells. Following culture of extract-treated cells, the cells began to express the pluripotent marker genes such as POU5F1 (OCT4) and SOX2 and to form colonies. Reactivation of the OCT4 gene in extract-treated cells was also confirmed in bovine fibroblasts transformed with an OCT4-EGFP construct. These results suggest that nuclei of mammalian cells can be partially reprogrammed to an embryonic state by Xenopus egg extracts and the remodeled cells partly dedifferentiate after cell culture. A system using egg extracts may be useful for understanding the mechanisms and processes of dedifferentiation and reprogramming of mammalian somatic cells after nuclear transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号