首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The testis is an immunologically privileged site of the body where Sertoli cells work on to favor local immune tolerance by testicular autoantigens segregation and immunosuppressive factors secretion. Fas/Fas Ligand (FasL) system, expressed prevalently in Sertoli cells, has been considered to be one of the central mechanisms in testis immunological homeostasis. In different cell lines it has been reported that the proapoptotic protein FasL is regulated by 17-beta estradiol (E2). Thus, using as experimental model mouse Sertoli cells TM4, which conserve a large spectrum of functional features present in native Sertoli cells, like aromatase activity, we investigated if estradiol "in situ" production may influence FasL expression. Our results demonstrate that an aromatizable androgen like androst-4-ene-3,17-dione (Delta4) enhanced FasL mRNA, protein content and promoter activity in TM4 cells. The treatment with N(6),2'-O-dibutyryladenosine-3'-5'-cyclic monophosphate [(Bu)(2)cAMP] (simulating FSH action), that is well known to stimulate aromatase activity in Sertoli cells, amplified Delta4 induced FasL expression. Functional studies of mutagenesis, electrophoretic mobility shift (EMSA) and chromatin immunoprecipitation (ChIP) assays revealed that the Sp-1 motif on FasL promoter was required for E2 enhanced FasL expression in TM4 cells. These data let us to recruit FasL among those genes whose expression is up-regulated by E2 through a direct interaction of ERalpha with Sp-1 protein. Finally, evidence that an aromatizable androgen is able to increase FasL expression suggests that E2 production by aromatase activity may contribute to maintain the immunoprivilege status of Sertoli cells.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
Sertoli cells have long been considered to be involved in the regulation of the immune response in the testis. More recently, the Fas system has been implicated in the maintenance of the immune privilege in the testis as well as in the regulation of germ cell apoptosis. However, the control of Fas and Fas ligand (FasL) expression in the testis remains unknown. In the present study, we demonstrate that cultured mouse Sertoli cells constitutively express a low level of membrane-bound Fas protein, but not a soluble form of Fas. Sertoli cells stimulated with TNF-alpha and IFN-gamma markedly increase the expression of both soluble and membrane-bound Fas in a dose-dependent manner. The up-regulated membrane-bound Fas protein is functionally active because it induces a significant level of Sertoli cell death in the presence of Neuro-2a FasL+ effector cells. Interestingly, the soluble form of Fas, which is induced by the same cytokines but has an antiapoptotic effect, is also functional. In fact, conditioned media from TNF-alpha-stimulated Sertoli cell cultures inhibit Neuro-2a FasL+-induced cell death. Taken together, our data suggest a possible regulatory role of TNF-alpha and IFN-gamma on Fas-mediated apoptosis in the testis through disruption of the balance between different forms of Fas.  相似文献   

13.
14.
15.
16.
17.
Fas ligand (FasL) has been well characterized as a death factor. However, recent studies revealed that FasL possesses inflammatory activity. Here we found that FasL induces production of the inflammatory chemokine IL-8 without inducing apoptosis in HEK293 cells. Reporter gene assays involving wild-type and mutated IL-8 promoters and NF-kappaB- and AP-1 reporter constructs indicated that an FasL-induced NF-kappaB and AP-1 activity are required for maximal promoter activity. FasL induced NF-kappaB activation with slower kinetics than did TNF-alpha, yet this response was cell autonomous and not mediated by secondary paracrine factors. The death domain of Fas, FADD, and caspase-8 were required for NF-kappaB activation by FasL. A dominant-negative mutant of IKKgamma inhibited the FasL-induced NF-kappaB activation. However, TRADD and RIP, which are essential for the TNF-alpha-induced NF-kappaB activation, were not involved in the FasL-induced NF-kappaB activation. Moreover, CLARP/FLIP inhibited the FasL- but not the TNF-alpha-induced NF-kappaB activation. These results show that FasL induces NF-kappaB activation and IL-8 production by a novel mechanism, distinct from that of TNF-alpha. In addition, we found that mouse FADD had a dominant-negative effect on the FasL-induced NF-kappaB activation in HEK293 cells, which may indicate a species difference between human and mouse in the FasL-induced NF-kappaB activation.  相似文献   

18.
19.
20.
Phthalates have been shown to elicit contrasting effects on the testis and the liver, causing testicular degeneration and promoting abnormal hepatocyte proliferation and carcinogenesis. In the present study, we compared the effects of phthalates on testicular and liver cells to better understand the mechanisms by which phthalates cause testicular degeneration. In vivo treatment of rats with di-(2-ethylhexyl) phthalate (DEHP) caused a threefold increase of germ cell apoptosis in the testis, whereas apoptosis was not changed significantly in livers from the same animals. Western blot analyses revealed that peroxisome proliferator-activated receptor (PPAR) alpha is equally abundant in the liver and the testis, whereas PPAR gamma and retinoic acid receptor (RAR) alpha are expressed more in the testis. To determine whether the principal metabolite of DEHP, mono-(2-ethylhexyl) phthalate (MEHP), or a strong peroxisome proliferator, 4-chloro-6(2,3-xylindino)-2-pyrimidinylthioacetic acid (Wy-14,643), have a differential effect in Sertoli and liver cells by altering the function of RAR alpha and PPARs, their nuclear trafficking patterns were compared in Sertoli and liver cells after treatment. Both MEHP and Wy-14,643 increased the nuclear localization of PPAR alpha and PPAR gamma in Sertoli cells, but they decreased the nuclear localization of RAR alpha, as previously shown. Both PPAR alpha and PPAR gamma were in the nucleus and cytoplasm of liver cells, but RAR alpha was predominant in the cytoplasm, regardless of the treatment. At the molecular level, MEHP and Wy-14,643 reduced the amount of phosphorylated mitogen-activated protein kinase (activated MAPK) in Sertoli cells. In comparison, both MEHP and Wy-14,643 increased phosphorylated MAPK in liver cells. These results suggest that phthalates may cause contrasting effects on the testis and the liver by differential activation of the MAPK pathway, RAR alpha, PPAR alpha, and PPAR gamma in these organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号