首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The manufacturing processes used determined the physicochemical properties of the three kinds of rice food, garaeduk, bagsulgi, and cooked rice. The initial rate of hydrolysis by porcine pancreatic α-amylase (PPA) was affected by the food form. The firmer structure of garaeduk was apparently responsible for the difficulty in maceration, resulting in less digestion than with easily digestible food for the same maceration time. The initial rate of hydrolysis of each rice product by PPA increased with increasing maceration time in a Waring Blender for all of the processed rice products. The postprandial glucose and insulin responses to the three processed rice products were also studied in ten patients with type 2 diabetes mellitus (4 men and 6 women aged 56.8±2.3 yr; duration of diabetes, 3.6±1.2 yr; body mass index (BMI), 23.7±2.6 kg/m2; fasting serum glucose, 143.9±5.1 mg/dl; serum insulin, 20.8±2.2 μU/ml). Each subject ingested of the three rice foods after a 12-h overnight fast, and the serum glucose and insulin levels were measured over a 0–240 min period. The postprandial serum glucose and insulin levels at 90 min after ingesting bagsulgi and cooked rice were less than those at 60 min, while the levels at 90 min after ingesting garaeduk were higher than those at 60 min. Garaeduk also significantly decreased the incremental responses of glucose and insulin when compared with bagsulgi and cooked rice. The results suggest that garaeduk would be the most unlikely to increase the postprandial serum glucose and insulin levels among the three rice foods. The food form, which eventually differentiated each food by its specific surface area with the same degree of maceration because of the characteristic physical strength, therefore affected the rate of rice starch hydrolysis both in vitro and in vivo.  相似文献   

2.
Gastric emptying is a determinant of the postprandial glycemic and cardiovascular responses to oral carbohydrate. We evaluated the effects of a solid meal on gastric emptying and the glycemic and cardiovascular responses to oral glucose in healthy older subjects. Ten subjects aged 72.1 +/- 1.9 yr were studied. Each subject had measurements of gastric emptying, blood glucose, serum insulin, blood pressure, and heart rate after ingestion of a 50-g glucose drink (300 ml) with (mixed meal) or without (liquid only) a solid meal (300 g ground beef). Gastric emptying of liquid was initially slightly more rapid (P < 0.05) after the mixed meal compared with liquid only at 5 min (92.0 +/- 1.5 vs. 96.0 +/- 1.3%) and much slower (P < 0.05) after 120 min. The time to peak blood glucose was less (39.0 +/- 4.0 vs. 67.5 +/- 10.3 min; P < 0.01) and blood glucose subsequently lower (P < 0.01) after the mixed meal. The increase in serum insulin was greater (P < 0.001) after the mixed meal. Blood pressure fell (P < 0.05) in the first 30 min, with no difference between the two meals. Increase in heart rate after both meals (P < 0.005), was greater (P < 0.05) after the mixed meal. The presence of a noncarbohydrate solid meal had discrepant effects on early and subsequent emptying of a nutrient liquid, which affects postprandial glycemia and increased heart rate.  相似文献   

3.
The aim in the present study was to assess the effect of small-moderate red wine ingestion on the level of serum insulin and plasma glucose when nutritional status is varied. Twenty nondiabetic males (19-22 years) participated in the study. In the fasting trial, all participants underwent a 6 h fast prior to consuming 4 standard units of red wine (40 g alcohol) or the equivalent amount of placebo as dealcoholized wine (containing <0.5% alcohol, 0% resveratrol) over a 135 min period. Alternatively, in the feeding trial, participants consumed food for 45 min prior to ingesting 4 standard units of red wine (40 g alcohol) or placebo over 135 min. Serum insulin and plasma glucose were assessed at regular 45 min intervals during all trials. The results showed a significant decrease in the level of serum insulin and no significant change in plasma glucose concentration in the fasting trial. Alternatively, a significant alcohol-induced decrease in plasma glucose and no change in serum insulin occurred when red wine alone was consumed after food. It was concluded that red wine can alter the glucose-insulin relationship and ingesting red wine alone (without food) should not be encouraged in nondiabetic individuals.  相似文献   

4.
Glucose tolerance declines with age, resulting in a high prevalence of diabetes and impaired glucose tolerance (IGT) in the older population. Hyperglycemia per se can lead to impaired beta-cell function (glucose toxicity). We tested the role of glucose toxicity in age-related beta-cell dysfunction in older people (65 +/- 8 yr) with IGT treated with the alpha-glucosidase inhibitor acarbose (n = 14) or placebo (n = 13) for 6 wk in a randomized, double-blind study. Baseline and posttreatment studies included 1) an oral glucose tolerance test (OGTT), 2) 1-h postprandial glucose monitoring, 3) a frequently sampled intravenous glucose tolerance test (insulin sensitivity, or S(I)), and 4) glucose ramp clamp (insulin secretion rates, or ISR), in which a variable glucose infusion increases plasma glucose from 5 to 10 mM. The treatment groups had similar baseline body mass index; fasting, 2-h OGTT, and 1-h postprandial glucose levels; and S(I). In these carefully matched older people with IGT, both fasting (5.7 +/- 0.2 vs. 6.3 +/- 0.2 mM, P = 0.002) and 1-h postprandial glucose levels (6.9 +/- 0.3 vs. 8.2 +/- 0.4 mM, P = 0.02) were significantly lower in the acarbose than in the placebo group. Despite this reduction of chronic hyperglycemia in the acarbose vs. placebo group, measures of insulin secretion (ISR area under the curve: 728 +/- 55 vs. 835 +/- 81 pmol/kg, P = 0.9) and acute insulin response to intravenous glucose (329 +/- 67 vs. 301 +/- 54 pM, P = 0.4) remained unchanged and impaired. Thus short-term improvement of chronic hyperglycemia does not reverse beta-cell dysfunction in older people with IGT.  相似文献   

5.
The possibility that salt increases plasma glucose and insulin responses to starchy foods was investigated. Six healthy adults took four morning test meals randomly: 50 g carbohydrate as cooked lentils or white bread, with or without 4.25 g of added salt (an amount within the range of salt found in a meal). When salt was added to the lentils the incremental area under the three hour plasma glucose curve was significantly greater than that for lentils alone (43.2 mmol.min/l v 11.1 mmol.min/l (778 mg.min/100 ml v 200 mg.min/100 ml]. When salt was added to bread the peak glucose concentration was significantly higher than that for unsalted bread (6.96 mmol/l v 6.35 mmol/l (125 mg/100 ml v 114 mg/100 ml], and this was followed by relative hypoglycaemia. Plasma insulin concentrations at 45 minutes were higher after a meal of salted lentils and salted bread than after the unsalted foods (p less than 0.05). The high insulin concentration after salted bread was sustained for one hour after the meal, thus the mean area under the three hour curve was 39% greater than that for unsalted bread (p less than 0.05). Salt may increase the postprandial plasma glucose and insulin responses to lentils and bread by accelerating the digestion of starch by stimulating amylase activity or accelerating small intestinal absorption of the liberated glucose, or both. The findings of this preliminary study, if confirmed by others, would support the recommendation that diabetics, as well as the general population, should reduce their intake of salt.  相似文献   

6.
The rate of liver glucokinase (GK) translocation from the nucleus to the cytoplasm in response to intraduodenal glucose infusion and the effect of physiological rises of plasma glucose and/or insulin on GK translocation were examined in 6-h-fasted conscious rats. Intraduodenal glucose infusion (28 mg.kg(-1).min(-1) after a priming dose at 500 mg/kg) elevated blood glucose levels (mg/dl) in the artery and portal vein from 90 +/- 3 and 87 +/- 3 to 154 +/- 4 and 185 +/- 4, respectively, at 10 min. At 120 min, the levels had decreased to 133 +/- 6 and 156 +/- 5, respectively. Plasma insulin levels (ng/ml) in the artery and the portal vein rose from 0.7 +/- 0.1 and 1.8 +/- 0.3 to 11.8 +/- 1.5 and 20.2 +/- 2.0 at 10 min, respectively, and 12.4 +/- 3.1 and 18.0 +/- 4.8 at 30 min, respectively. GK was rapidly exported from the nucleus as determined by measuring the ratio of the nuclear to the cytoplasmic immunofluorescence (N/C) of GK (2.9 +/- 0.3 at 0 min to 1.7 +/- 0.2 at 10 min, 1.5 +/- 0.1 at 20 min, 1.3 +/- 0.1 at 30 min, and 1.3 +/- 0.1 at 120 min). When plasma glucose (arterial; mg/dl) and insulin (arterial; ng/ml) levels were clamped for 30 min at 93 +/- 7 and 0.7 +/- 0.1, 81 +/- 5 and 8.9 +/- 1.3, 175 +/- 5 and 0.7 +/- 0.1, or 162 +/- 5 and 9.2 +/- 1.5, the N/C of GK was 3.0 +/- 0.5, 1.8 +/- 0.1, 1.5 +/- 0.1, and 1.2 +/- 0.1, respectively. The N/C of GK regulatory protein (GKRP) did not change in response to the intraduodenal glucose infusion or the rise in plasma glucose and/or insulin levels. The results suggest that GK but not GKRP translocates rapidly in a manner that corresponds with changes in the hepatic glucose balance in response to glucose ingestion in vivo. Additionally, the translocation of GK is induced by the postprandial rise in plasma glucose and insulin.  相似文献   

7.
Ghrelin levels fluctuate rapidly and dynamically with surges before meal times and postprandial troughs, and ghrelin increases appetite and food intake. Circulating ghrelin correlates negatively with body mass index (BMI), but obese individuals have a reduced postprandial decrease in ghrelin levels. Whether this reflects changes in secretion or clearance of ghrelin is uncertain. We therefore studied the pharmacokinetics of ghrelin in relation to anthropometric and biochemical measures. We also studied the effects of ghrelin on hormones and metabolites. In fasting humans, we used a constant infusion rate of ghrelin lasting 180 min at 5 pmol.kg body wt(-1).min(-1) in a randomized, double-blind, placebo-controlled crossover study. Serum ghrelin (s-ghrelin; total levels) was distributed and eliminated according to a two-compartment model. s-Ghrelin initial half-life was 24 +/- 2 min and terminal half-life 146 +/- 36 min, respectively. Mean residence time (MRT) of ghrelin was 93 +/- 16 min. MRT correlated positively with both BMI (r = 0.51, P < 0.001) and high-density cholesterol (HDL) levels (r = 0.75, P < 0.001). Serum insulin levels remained constant during ghrelin infusion, whereas plasma glucose increased 0.3 +/- 0.1 mmol/l (P < 0.01) and free fatty acid levels more than doubled (to 1.03 +/- 0.08 mmol/l, P < 0.001), translating into a significant reduction of insulin sensitivity (P < 0.001). In conclusion, 1) we describe novel pharmacokinetics of ghrelin that are useful when tailoring ghrelin infusion rates in clinical experiments, 2) BMI and HDL correlate positively with MRT of infused ghrelin, and 3) supraphysiological ghrelin levels impair insulin sensitivity.  相似文献   

8.
To test the hypothesis that intrahepatic availability of fatty acid could modify the rate of suppression of endogenous glucose production (EGP), acipimox or placebo was administered before and during a test meal. We used a modified isotopic methodology to measure EGP in 11 healthy subjects, and (1)H magnetic resonance spectroscopic measurement of hepatic triglyceride stores was also undertaken. Acipimox suppressed plasma free fatty acids markedly before the meal (0.05 +/- 0.01 mmol/l at -10 min, P = 0) and throughout the postprandial period (0.03 +/- 0.01 mmol/l at 150 min). Mean peak plasma glucose was significantly lower after the meal on acipimox days (8.9 +/- 0.4 vs. 10.1 +/- 0.5 mmol/l, P < 0.01), as was mean peak serum insulin (653.1 +/- 99.9 vs. 909 +/- 118 pmol/l, P < 0.01). Fasting EGP was similar (11.15 +/- 0.58 micromol.kg(-1).min(-1) placebo vs. 11.17 +/- 0.89 mg.kg(-1).min(-1) acipimox). The rate of suppression of EGP after the meal was almost identical on the 2 test days (4.36 +/- 1.52 vs. 3.69 +/- 1.21 micromol.kg(-1).min(-1) at 40 min). There was a significant negative correlation between the acipimox-induced decrease in peak plasma glucose and liver triglyceride content (r = -0.827, P = 0.002), suggesting that, when levels of liver fat were low, inhibition of lipolysis was able to affect glucose homeostasis. Acute pharmacological sequestration of fatty acids in triglyceride stores improves postprandial glucose homeostasis without effect on the immediate postprandial suppression of EGP.  相似文献   

9.
We examined the extent to which priming the liver with a pulse of Humulin or the insulin analog hexyl-insulin monoconjugate 2 (HIM2) reduces postprandial hyperglycemia. Somatostatin (0.5 microg.kg(-1).min(-1)) was given with basal intraportal insulin and glucagon for 4.5 h into three groups of 42-h-fasted conscious dogs. From 0-5 min, group 1 (BI, n = 6) received saline, group 2 (HI, n = 6) received a Humulin pulse (10 mU.kg(-1).min(-1)), and group 3 (HIM2, n = 6) received a HIM2 pulse (10 mU.kg(-1).min(-1)). Duodenal glucose was infused (5.0 mg.kg(-1).min(-1)) from 15 to 270 min. Arterial insulin in BI remained basal (6 +/- 1 microU/ml) and peaked at 52 +/- 15 (HI) and 164 +/- 44 microU/ml (HIM2) and returned to baseline by 30 and 60 min, respectively. Arterial plasma glucose plateaued at 265 +/- 20, 214 +/- 15, and 193 +/- 14 mg/dl in BI, HI, and HIM2. Glucose absorption was similar in all groups. Significant net hepatic glucose uptake occurred at 85, 55, and 25 min in BI, HI, and HIM2, respectively. Nonhepatic glucose clearance at 270 min differed among groups (BI, HI, HIM2): 0.62 +/- 0.11, 0.76 +/- 0.26, and 1.61 +/- 0.29 ml.kg(-1).min(-1) (P < 0.05). A brief (5-min) insulin pulse improved postprandial glycemia, stimulating hepatic glucose uptake and prolonging enhancement of nonhepatic glucose clearance. HIM2 was more effective than Humulin, perhaps because its lowered clearance caused higher levels at the liver and periphery and its biological activity was not reduced proportionally to its decreased clearance.  相似文献   

10.
We determined whether insulin therapy changes liver fat content (LFAT) or hepatic insulin sensitivity in type 2 diabetes. Fourteen patients with type 2 diabetes (age 51+/-2 yr, body mass index 33.1+/-1.4 kg/m2) treated with metformin alone received additional basal insulin for 7 mo. Liver fat (proton magnetic resonance spectroscopy), fat distribution (MRI), fat-free and fat mass, and whole body and hepatic insulin sensitivity (6-h euglycemic hyperinsulinemic clamp combined with infusion of [3-(3)H]glucose) were measured. The insulin dose averaged 75+/-10 IU/day (0.69+/-0.08 IU/kg, range 24-132 IU/day). Glycosylated hemoglobin A1c (Hb A1c) decreased from 8.9+/-0.3 to 7.4+/-0.2% (P<0.001). Whole body insulin sensitivity increased from 2.21+/-0.38 to 3.08+/-0.40 mg/kg fat-free mass (FFM).min (P<0.05). This improvement could be attributed to enhanced suppression of hepatic glucose production (HGP) by insulin (HGP 1.04+/-0.28 vs. 0.21+/-0.19 mg/kg FFM.min, P<0.01). The percent suppression of HGP by insulin increased from 72+/-8 to 105+/-11% (P<0.01). LFAT decreased from 17+/-3 to 14+/-3% (P<0.05). The change in LFAT was significantly correlated with that in hepatic insulin sensitivity (r=0.56, P<0.05). Body weight increased by 3.0+/-1.1 kg (P<0.05). Of this, 83% was due to an increase in fat-free mass (P<0.01). Fat distribution and serum adiponectin concentrations remained unchanged while serum free fatty acids decreased significantly. Conclusions: insulin therapy improves hepatic insulin sensitivity and slightly but significantly reduces liver fat content, independent of serum adiponectin.  相似文献   

11.
The aims of this study were to evaluate the effects of dietary glucose supplementation on gastric emptying (GE) of both glucose and fat, postprandial blood glucose homeostasis, and appetite in eight older subjects (4 males, 4 females, aged 65--84 yr). GE of a drink (15 ml olive oil and 33 g glucose dissolved in 185 ml water), blood glucose, insulin, gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), and appetite (diet diaries, visual analog scales, and food intake at a buffet meal consumed after the GE study) were evaluated twice, after 10 days on a standard or a glucose-supplemented diet (70 g glucose 3 times a day). Glucose supplementation accelerated GE of glucose (P < 0.05), but not oil; there was a trend for an increase in GIP (at 15 min, P = 0.06), no change in GLP-1, an earlier insulin peak (P < 0.01), and a subsequent reduction in blood glucose (at 75 min, P < 0.01). Glucose supplementation had no effect on food intake during each diet so that energy intake was greater (P < 0.001) during the glucose-supplemented diet. Appetite ratings and energy intake at the buffet meal were not different. We conclude that, in older subjects, glucose supplementation 1) accelerates GE of glucose, but not fat; 2) modifies postprandial blood glucose homeostasis; and 3) increases energy intake.  相似文献   

12.
To understand the day-to-day pathophysiology of impaired muscle glycogen storage in type 2 diabetes, glycogen concentrations were measured before and after the consumption of sequential mixed meals (breakfast: 190.5 g carbohydrate, 41.0 g fat, 28.8 g protein, 1253 kcal; lunch: 203.3 g carbohydrate, 48.1 g fat, 44.0 g protein, 1497.5 kcal) by use of natural abundance (13)C magnetic resonance spectroscopy. Subjects with diet-controlled type 2 diabetes (n = 9) and age- and body mass index-matched nondiabetic controls (n = 9) were studied. Mean fasting gastrocnemius glycogen concentration was significantly lower in the diabetic group (57.1 +/- 3.6 vs. 68.9 +/- 4.1 mmol/l; P < 0.05). After the first meal, mean glycogen concentration in the control group rose significantly from basal (97.1 +/- 7.0 mmol/l at 240 min; P = 0.005). After the second meal, the high level of muscle glycogen concentration in the control group was maintained, with a further rise to 108.0 +/- 11.6 mmol/l by 480 min. In the diabetic group, the postprandial rise was markedly lower than that of the control group (65.9 +/- 5.2 mmol/l at 240 min, P < 0.005, and 70.8 +/- 6.7 mmol/l at 480 min, P = 0.01) despite considerably greater serum insulin levels (752.0 +/- 109.0 vs. 372.3 +/- 78.2 pmol/l at 300 min, P = 0.013). This was associated with a significantly greater postprandial hyperglycemia (10.8 +/- 1.3 vs. 5.3 +/- 0.2 mmol/l at 240 min, P < 0.005). Basal muscle glycogen concentration correlated inversely with fasting blood glucose (r = -0.55, P < 0.02) and fasting serum insulin (r = -0.57, P < 0.02). The increment in muscle glycogen correlated with initial increment in serum insulin only in the control group (r = 0.87, P < 0.002). This study quantitates for the first time the subnormal basal muscle glycogen concentration and the inadequate glycogen storage after meals in type 2 diabetes.  相似文献   

13.
We examined the contributions of insulin secretion, glucagon suppression, splanchnic and peripheral glucose metabolism, and delayed gastric emptying to the attenuation of postprandial hyperglycemia during intravenous exenatide administration. Twelve subjects with type 2 diabetes (3 F/9 M, 44 +/- 2 yr, BMI 34 +/- 4 kg/m2, Hb A(1c) 7.5 +/- 1.5%) participated in three meal-tolerance tests performed with double tracer technique (iv [3-3H]glucose and oral [1-14C]glucose): 1) iv saline (CON), 2) iv exenatide (EXE), and 3) iv exenatide plus glucagon (E+G). Acetaminophen was given with the mixed meal (75 g glucose, 25 g fat, 20 g protein) to monitor gastric emptying. Plasma glucose, insulin, glucagon, acetaminophen concentrations and glucose specific activities were measured for 6 h post meal. Post-meal hyperglycemia was markedly reduced (P < 0.01) in EXE (138 +/- 16 mg/dl) and in E+G (165 +/- 12) compared with CON (206 +/- 15). Baseline plasma glucagon ( approximately 90 pg/ml) decreased by approximately 20% to 73 +/- 4 pg/ml in EXE (P < 0.01) and was not different from CON in E+G (81 +/- 2). EGP was suppressed by exenatide [231 +/- 9 to 108 +/- 8 mg/min (54%) vs. 254 +/- 29 to189 +/- 27 mg/min (26%, P < 0.001, EXE vs. CON] and partially reversed by glucagon replacement [247 +/- 15 to 173 +/- 18 mg/min (31%)]. Oral glucose appearance was 39 +/- 4 g in CON vs. 23 +/- 6 g in EXE (P < 0.001) and 15 +/- 5 g in E+G, (P < 0.01 vs. CON). The glucose retained within the splanchnic bed increased from approximately 36g in CON to approximately 52g in EXE and to approximately 60g in E+G (P < 0.001 vs. CON). Acetaminophen((AUC)) was reduced by approximately 80% in EXE vs. CON (P < 0.01). We conclude that exenatide infusion attenuates postprandial hyperglycemia by decreasing EGP (by approximately 50%) and by slowing gastric emptying.  相似文献   

14.
Metabolic changes during the transition from post-feeding to fasting were studied in Brycon cephalus, an omnivorous teleost from the Amazon Basin in Brazil. Body weight and somatic indices (liver and digestive tract), glycogen and glucose content in liver and muscle, as well as plasma glucose, free fatty acids (FFA), insulin and glucagon levels of B. cephalus, were measured at 0, 12, 24, 48, 72, 120, 168 and 336 h after the last feeding. At time 0 h (the moment of food administration, 09.00 h) plasma levels of insulin and glucagon were already high, and relatively high values were maintained until 24 h post-feeding. Glycemia was 6.42+/-0.82 mM immediately after food ingestion and 7.53+/-1.12 mM at 12 h. Simultaneously, a postprandial replenishment of liver and muscle glycogen reserves was observed. Subsequently, a sharp decrease of plasma insulin occurred, from 7.19+/-0.83 ng/ml at 24 h of fasting to 5.27+/-0.58 ng/ml at 48 h. This decrease coincided with the drop in liver glucose and liver glycogen, which reached the lowest value at 72 h of fasting (328.56+/-192.13 and 70.33+/-14.13 micromol/g, respectively). Liver glucose increased after 120 h and reached a peak 168 h post-feeding, which suggests that hepatic gluconeogenesis is occurring. Plasma FFA levels were low after 120 and 168 h and increased again at 336 h of fasting. During the transition from post-feeding to fast condition in B. cephalus, the balance between circulating insulin and glucagon quickly adjust its metabolism to the ingestion or deprivation of food.  相似文献   

15.
The influence of i.m. administration to the mother of hydrocortisone acetate (doses of 0.4, 0.8 or 2.0 mg/100 g body weight/day) during the first 15 days of lactation on milk protein and lactose composition and serum levels of protein, glucose and insulin in dams and pups is studied. Total serum proteins and albumin/globulin ratio in dams were unchanged by treatment. The daily injection of 0.4 or 0.8 mg/100 g body weight failed to alter serum levels of glucose or insulin in dams, whereas a dose of 2.0 mg/100 g body weight led to a rise in glucemia (from 118 +/- 3.2 to 133 +/- 5.3) which was accompanied by a sharp change in insulinemia (from 40.7 +/- 4.1 to 83.6 +/- 6.9). All three doses raised protein levels in milk. The smallest increase was recorded with 2.0 mg/100 g body weight; this dose also reduced milk lactose content. Total serum proteins in pups rose slightly but nonsignificantly, and no significant effects were noted on albumin/globulin ratio or serum glucose and insulin levels.  相似文献   

16.
THE AIM: of the present study was to evaluate serum concentrations of adrenal and ovarian androgens and sex hormone-binding globulin in obese women without additional diseases and in obese women with polycystic ovary syndrome with and without insulin resistance. MATERIAL AND METHODS: The study group involved 73 obese women (39 with PCOS--A and 34 obese without additional diseases--B). The serum concentration of glucose and insulin were measured and the study group was divided on the basis of HOMA index into two subgroups: A I-PCO without insulin resistance (n=18, mean age 27.2+/-5.9 yr; BMI 33.2+/-3.5 kg/m2); AII-PCO with insulin resistance (n=21, mean age 27.5+/-7.1 yr; BMI 37.6+/-6.5 kg/m2); B I-obese without insulin resistance (n=8, age 33.5+/-7.5 yr; BMI 35.2+/-4.8 kg/m2); B II-obese with insulin resistance (n=24, age 30.3+/-5.2 yr; BMI 36.4+/-5.8 kg/m2). Body mass and height were measured and body mass index was calculated with formula. Body composition was measured using bioimpedance method. The serum concentrations of FSH, LH, total and free testosterone, androstendione, DHEAS, SHBG and insulin were determined by RIA method and glucose was determined by enzymatic procedure. RESULTS: We observed significantly higher body mass, fat mass and BMI in AII subgroup when compared to AI, BI and BII subgroups. Only serum concentration of free testosterone was significantly higher in AII subgroup when compared to AI subgroup. We observed a positive correlation between serum concentrations of insulin and free testosterone in both groups A and B, moreover we observed positive correlations between serum concentrations of insulin and both DHEAS and LH in group B. CONCLUSIONS: It seems that insulin resistance plays a key role in the development of hyperandrogenism in obese women. However mechanisms leading to hyperandrogenism in PCOS are still unrevealed and seem to be more complex.  相似文献   

17.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are both incretin hormones regulating postprandial insulin secretion. Their relative importance in this respect under normal physiological conditions is unclear, however, and the aim of the present investigation was to evaluate this. Eight healthy male volunteers (mean age: 23 (range 20-25) years; mean body mass index: 22.2 (range 19.3-25.4) kg/m2) participated in studies involving stepwise glucose clamping at fasting plasma glucose levels and at 6 and 7 mmol/l. Physiological amounts of either GIP (1.5 pmol/kg/min), GLP-1(7-36)amide (0.33 pmol/kg/min) or saline were infused for three periods of 30 min at each glucose level, with 1 h "washout" between the infusions. On a separate day, a standard meal test (566 kcal) was performed. During the meal test, peak insulin concentrations were observed after 30 min and amounted to 223+/-27 pmol/l. Glucose+saline infusions induced only minor increases in insulin concentrations. GLP-1 and GIP infusions induced significant and similar increases at fasting glucose levels and at 6 mmol/l. At 7 mmol/l, further increases were seen, with GLP-1 effects exceeding those of GIP. Insulin concentrations at the end of the three infusion periods (60, 150 and 240 min) during the GIP clamp amounted to 53+/-5, 79+/-8 and 113+/-15 pmol/l, respectively. Corresponding results were 47+/-7, 95+/-10 and 171+/-21 pmol/l, respectively, during the GLP-1 clamp. C-peptide responses were similar. Total and intact incretin hormone concentrations during the clamp studies were higher compared to the meal test, but within physiological limits. Glucose infusion alone significantly inhibited glucagon secretion, which was further inhibited by GLP-1 but not by GIP infusion. We conclude that during normal physiological plasma glucose levels, glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide contribute nearly equally to the incretin effect in humans, because their differences in concentration and potency outweigh each other.  相似文献   

18.
Physical training has been shown to improve glucose tolerance and insulin sensitivity. In the present study, insulin action was determined using the euglycemic clamp technique in six untrained nonobese subjects before, during, and after long-term mild regular jogging. After 1 yr of jogging, steady-state plasma insulin levels (I) decreased significantly, and the metabolic clearance rate of insulin was increased by 87%, although insulin infusion rate during the clamp was constant for each individual. The amount of glucose infused (glucose metabolism, M) tended to increase from 6.16 +/- 0.94 to 8.15 +/- 1.94 mg.kg-1.min-1 after regular jogging for 1 yr, although that was not statistically significant. However, M/I increases significantly from 0.060 +/- 0.012 to 0.184 +/- 0.056 (P less than 0.05) after 1 yr. The concentrations of plasma free fatty acids during the hyperinsulinemic clamp decreased more significantly after 1 yr of jogging (P less than 0.05). The concentrations of plasma glycerol decreased gradually before and after long-term regular jogging, showing only a 50-60% reduction in 120 min. Therefore, long-term mild regular jogging, which did not influence either body mass index or maximal O2 uptake, appears to improve insulin action in both carbohydrate and lipid metabolism and to increase the metabolic clearance rate of insulin.  相似文献   

19.
Seven cyclists exercised at 70% of maximal O2 uptake (VO2max) until fatigue (170 +/- 9 min) on three occasions, 1 wk apart. During these trials, plasma glucose declined from 5.0 +/- 0.1 to 3.1 +/- 0.1 mM (P less than 0.001) and respiratory exchange ratio (R) fell from 0.87 +/- 0.01 to 0.81 +/- 0.01 (P less than 0.001). After resting 20 min the subjects attempted to continue exercise either 1) after ingesting a placebo, 2) after ingesting glucose polymers (3 g/kg), or 3) when glucose was infused intravenously ("euglycemic clamp"). Placebo ingestion did not restore euglycemia or R. Plasma glucose increased (P less than 0.001) initially to approximately 5 mM and R rose (P less than 0.001) to approximately 0.83 with glucose infusion or carbohydrate ingestion. Plasma glucose and R then fell gradually to 3.9 +/- 0.3 mM and 0.81 +/- 0.01, respectively, after carbohydrate ingestion but were maintained at 5.1 +/- 0.1 mM and 0.83 +/- 0.01, respectively, by glucose infusion. Time to fatigue during this second exercise bout was significantly longer during the carbohydrate ingestion (26 +/- 4 min; P less than 0.05) or glucose infusion (43 +/- 5 min; P less than 0.01) trials compared with the placebo trial (10 +/- 1 min). Plasma insulin (approximately 10 microU/ml) and vastus lateralis muscle glycogen (approximately 40 mmol glucosyl U/kg) did not change during glucose infusion, with three-fourths of total carbohydrate oxidation during the second exercise bout accounted for by the euglycemic glucose infusion rate (1.13 +/- 0.08 g/min).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The aim of the present study was to determine the effects of feeding various dietary proteins on insulin sensitivity and glucose tolerance in rats. Male Wistar rats were fed for 28 days with isoenergetic diets containing either casein, soy protein, or cod protein. Cod protein-fed and soy protein-fed rats had lower fasting plasma glucose and insulin concentrations compared with casein-fed animals. After intravenous glucose bolus, cod protein- and soy protein-fed rats induced lower incremental areas under glucose curves compared with casein-fed animals. Improved peripheral insulin sensitivity was confirmed by higher glucose disposal rates in cod protein- and soy protein-fed rats (15.2 +/- 0.3 and 13.9 +/- 0.6 mg. kg(-1). min(-1), respectively) compared with casein-fed animals (6.5 +/- 0.7 mg. kg(-1). min(-1), P < 0.05). Moreover, test meal experiments revealed that, in the postprandial state, the lower plasma insulin concentrations in cod protein- and soy protein-fed animals could be also due to decreased pancreatic insulin release and increased hepatic insulin removal. In conclusion, the metabolic responses to three common dietary proteins indicate that cod and soy proteins, when compared with casein, improve fasting glucose tolerance and peripheral insulin sensitivity in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号