首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In short and intermediate germ insects, only the anterior segments are specified during the blastoderm stage, leaving the posterior segments to be specified later, during embryogenesis, which differs from the segmentation process in Drosophila, a long germ insect. To elucidate the segmentation mechanisms of short and intermediate germ insects, we have investigated the orthologs of the Drosophila segmentation genes in a phylogenetically basal, intermediate germ insect, Gryllus bimaculatus (Gb). Here, we have focused on its hunchback ortholog (Gb'hb), because Drosophila hb functions as a gap gene during anterior segmentation, referred as a canonical function. Gb'hb is expressed in a gap pattern during the early stages of embryogenesis, and later in the posterior growth zone. By means of embryonic and parental RNA interference for Gb'hb, we found the following: (1) Gb'hb regulates Hox gene expression to specify regional identity in the anterior region, as observed in Drosophila and Oncopeltus; (2) Gb'hb controls germband morphogenesis and segmentation of the anterior region, probably through the pair-rule gene, even-skipped at least; (3) Gb'hb may act as a gap gene in a limited region between the posterior of the prothoracic segment and the anterior of the mesothoracic segment; and (4) Gb'hb is involved in the formation of at least seven abdominal segments, probably through its expression in the posterior growth zone, which is not conserved in Drosophila. These findings suggest that Gb'hb functions in a non-canonical manner in segment patterning. A comparison of our results with the results for other derived species revealed that the canonical hb function may have evolved from the non-canonical hb functions during evolution.  相似文献   

2.
The domesticated silkworm, Bombyx mori, belongs to the intermediate germband insects, in which the anterior segments are specified in the blastoderm, while the remaining posterior segments are sequentially generated from the cellularized growth zone. The pattern formation is distinct from Drosophila but somewhat resembles a vertebrate. Notch signaling is involved in the segmentation of vertebrates and spiders.Here, we studied the function of Notch signaling in silkworm embryogenesis via RNA interference (RNAi). Depletion of Bmdelta, the homolog of the Notch signaling ligand, led to severe defects in segment patterning, including a loss of posterior segments and irregular segment boundaries. The paired appendages on each segment were symmetrically fused along the ventral midline in Bmdelta RNAi embryos. An individual segment seemed to possess only one segmental appendage. Segmentation in prolegs could be observed.Our results show that Notch signaling is employed in not only appendage development but also body segmentation. Thus, conservation of Notch-mediated segmentation could also be extended to holometabolous insects. The involvement of Notch signaling seems to be the ancestral segmentation mechanism of arthropods.  相似文献   

3.
Arthropods and vertebrates display a segmental body organisation along all or part of the anterior-posterior axis. Whether this reflects a shared, ancestral developmental genetic mechanism for segmentation is uncertain. In vertebrates, segments are formed sequentially by a segmentation 'clock' of oscillating gene expression involving Notch pathway components. Recent studies in spiders and basal insects have suggested that segmentation in these arthropods also involves Notch-based signalling. These observations have been interpreted as evidence for a shared, ancestral gene network for insect, arthropod and bilaterian segmentation. However, because this pathway can play multiple roles in development, elucidating the specific requirements for Notch signalling is important for understanding the ancestry of segmentation. Here we show that Delta, a ligand of the Notch pathway, is not required for segment formation in the cricket Gryllus bimaculatus, which retains ancestral characteristics of arthropod embryogenesis. Segment patterning genes are expressed before Delta in abdominal segments, and Delta expression does not oscillate in the pre-segmental region or in formed segments. Instead, Delta is required for neuroectoderm and mesectoderm formation; embryos missing these tissues are developmentally delayed and show defects in segment morphology but normal segment number. Thus, what initially appear to be 'segmentation phenotypes' can in fact be due to developmental delays and cell specification errors. Our data do not support an essential or ancestral role of Notch signalling in segment generation across the arthropods, and show that the pleiotropy of the Notch pathway can confound speculation on possible segmentation mechanisms in the last common bilaterian ancestor.  相似文献   

4.
In insects, there are two different modes of segmentation. In the higher dipteran insects (like Drosophila), their segmentation takes place almost simultaneously in the syncytial blastoderm. By contrast, in the orthopteran insects (like Schistocerca (grasshopper)), the anterior segments form almost simultaneously in the cellular blastoderm and then the remaining posterior part elongates to form segments sequentially from the posterior proliferative zone. Although most of their orthologues of the Drosophila segmentation genes may be involved in their segmentation, little is known about their roles. We have investigated segmentation processes of Gryllus bimaculatus, focusing on its orthologues of the Drosophila segment-polarity genes, G. bimaculatus wingless (Gbwg), armadillo (Gbarm) and hedgehog (Gbhh). Gbhh and Gbwg were observed to be expressed in the each anterior segment and the posterior proliferative zone. In order to know their roles, we used RNA interference (RNAi). We could not observed any significant effects of RNAi for Gbwg and Gbhh on segmentation, probably due to functional replacement by another member of the corresponding gene families. Embryos obtained by RNAi for Gbarm exhibited abnormal anterior segments and lack of the abdomen. Our results suggest that GbWg/GbArm signaling is involved in the posterior sequential segmentation in the G. bimaculatus embryos, while Gbwg, Gbarm and Gbhh are likely to act as the segment-polarity genes in the anterior segmentation similarly as in Drosophila.  相似文献   

5.
6.
ABSTRACT: BACKGROUND: A hallmark of Drosophila segmentation is the stepwise subdivision of the body into smaller and smaller units, and finally into the segments. This is achieved by the function of the well-understood segmentation gene cascade. The first molecular sign of a segmented body appears with the action of the pair rule genes, which are expressed as transversal stripes in alternating segments. Drosophila development, however, is derived, and in most other arthropods only the anterior body is patterned (almost) simultaneously from a pre-existing field of cells; posterior segments are added sequentially from a posterior segment addition zone. A long-standing question is to what extent segmentation mechanisms known from Drosophila may be conserved in short-germ arthropods. Despite the derived developmental modes, it appears more likely that conserved mechanisms can be found in anterior patterning. RESULTS: Expression analysis of pair rule gene orthologs in the blastoderm of the pill millipede Glomeris marginata (Myriapoda: Diplopoda) suggests that these genes are generally involved in segmenting the anterior embryo. We find that the Glomeris pairberry-1 (pby-1) gene is expressed in a pair rule pattern that is also found in insects and a chelicerate, the mite Tetraynchus urticae. Other Glomeris pair rule gene orthologs are expressed in double segment wide domains in the blastoderm, which at subsequent stages split into two stripes in adjacent segments. CONCLUSIONS: The expression patterns of the millipede pair rule gene orthologs resemble pair rule patterning in Drosophila and other insects, and thus represent evidence for the presence of an ancestral pair rule-like mechanism in myriapods. We discuss the possibilities that blastoderm patterning may be conserved in long-germ and short-germ arthropods, and that a posterior double segmental mechanism may be present in short-germ arthropods.  相似文献   

7.
Using sequence homology to Drosophila homeobox-containing genes, we have cloned a homologue of abdominal-A from the locust Schistocerca gregaria. The Schistocerca clone encodes a stretch of 78 amino acids including the homeodomain and its flanking regions identical to the corresponding region of abdominal-A. We have shown by in situ hybridization that this gene is transcribed and have used an antibody raised against its protein product to examine the expression of abdominal-A during early Schistocerca embryogenesis. Schistocerca is a short germ insect. Although the segmented body plan is very similar to that of Drosophila, the segments are generated sequentially by a process of growth, not simultaneously by subdivision of a syncytial blastoderm. In both organisms, abdominal-A is expressed throughout the abdomen from a sharp anterior boundary located within the first abdominal segment (A1). The initial activation of the genes in the two species differs. Schistocerca initiates expression in a small group of cells in the anterior of A2, shortly after this segment is defined by the appearance of engrailed protein. This contrasts with the appearance of abdominal-A expression in Drosophila, which appears simultaneously throughout the entire abdomen.  相似文献   

8.
Expression of engrailed during segmentation in grasshopper and crayfish   总被引:15,自引:0,他引:15  
We have used a monoclonal antibody that recognizes engrailed proteins to compare the process of segmentation in grasshopper, crayfish, and Drosophila. Drosophila embryos rapidly generate metameres during an embryonic stage characterized by the absence of cell division. In contrast, many other arthropod embryos, such as those of more primitive insects and crustaceans, generate metameres gradually and sequentially, as cell proliferation causes caudal elongation. In all three organisms, the pattern of engrailed expression at the segmented germ band stage is similar, and the parasegments are the first metameres to form. Nevertheless, the way in which the engrailed pattern is generated differs and reflects the differences in how these organisms generate their metameres. These differences call into question what role homologues of the Drosophila pair-rule segmentation genes might play in other arthropods that generate metameres sequentially.  相似文献   

9.

Background

Most segmented animals add segments sequentially as the animal grows. In vertebrates, segment patterning depends on oscillations of gene expression coordinated as travelling waves in the posterior, unsegmented mesoderm. Recently, waves of segmentation gene expression have been clearly documented in insects. However, it remains unclear whether cyclic gene activity is widespread across arthropods, and possibly ancestral among segmented animals. Previous studies have suggested that a segmentation oscillator may exist in Strigamia, an arthropod only distantly related to insects, but further evidence is needed to document this.

Results

Using the genes even skipped and Delta as representative of genes involved in segment patterning in insects and in vertebrates, respectively, we have carried out a detailed analysis of the spatio-temporal dynamics of gene expression throughout the process of segment patterning in Strigamia. We show that a segmentation clock is involved in segment formation: most segments are generated by cycles of dynamic gene activity that generate a pattern of double segment periodicity, which is only later resolved to the definitive single segment pattern. However, not all segments are generated by this process. The most posterior segments are added individually from a localized sub-terminal area of the embryo, without prior pair-rule patterning.

Conclusions

Our data suggest that dynamic patterning of gene expression may be widespread among the arthropods, but that a single network of segmentation genes can generate either oscillatory behavior at pair-rule periodicity or direct single segment patterning, at different stages of embryogenesis.
  相似文献   

10.
SUMMARY Insect wing is a key evolutionary innovation for insect radiation, but its origins and intermediate forms are absent from the fossil record. To understand the ancestral state of the wing, expression of three key regulatory genes in insect wing development, wingless (wg), vestigial (vg), and apterous (ap) was studied in two basal insects, mayfly and bristletail. These basal insects develop dorsal limb branches, tracheal gill and stylus, respectively, that have been considered candidates for wing origin. Here we show that wg and vg are expressed in primordia for tracheal gill and stylus. Those primordia are all located in the lateral body region marked by down‐regulation of early segmental wg stripes, but differ in their dorsal–ventral position, indicating their positions drifted within the lateral body region. On the other hand, ap expression was detected in terga of mayfly and bristletail. Notably, the extensive outgrowth of the paranotal lobe of apterygote bristletail developed from the border of ap‐expressing tergal margin, and also expressed wg and vg. The data suggest that two regulatory modules involving wgvg are present in apterygote insects: one associated with lateral body region and induces stick‐like dorsal limb branches, the other associated with the boundary of dorsal and lateral body regions and the flat outgrowth of their interface. A combinatorial model is proposed in which dorsal limb branch was incorporated into dorsal–lateral boundary and acquired flat limb morphology through integration of the two wgvg modules, allowing rapid evolution of the wing.  相似文献   

11.
We have cloned and sequenced the single Tribolium homolog of the Drosophila engrailed gene. The predicted protein contains a homeobox and several domains conserved among all engrailed genes identified to date. In addition it contains several features specific to the invected homologs of Bombyx and Drosophila, indicating that these features most likely were present in the ancestral gene in the common ancestor of holometabolous insects. We used the cross-reacting monoclonal antibody, 4D9, to follow the expression of the Engrailed protein during segmentation in Tribolium embryos. As in other insects, Engrailed accumulates in the nuclei of cells along the posterior margin of each segment. The first Engrailed stripe appears as the embryonic rudiment condenses. Then as the rudiment elongates into a germ band, Engrailed stripes appear in an anterior to posterior progression, just prior to morphological evidence of the formation of each segment. As in Drosophila (a long germ insect), expression of engrailed in Tribolium (classified as a short germ insect) is preceeded by the expression of several homologous segmentation genes, suggesting that similar genetic regulatory mechanisms are shared by diverse developmental types. © 1994 Wiley-Liss, Inc.  相似文献   

12.
The insect body plan is very well conserved, yet the developmental mechanisms of segmentation are surprisingly varied. Less evolutionarily derived insects undergo short germ segmentation where only the anterior segments are specified before gastrulation whereas the remaining posterior segments are formed during a later secondary growth phase. In contrast, derived long germ insects such as Drosophila specify their entire bodies essentially simultaneously. These fundamental embryological differences imply potentially divergent molecular patterning events. Numerous studies have focused on comparing the expression and function of the homologs of Drosophila segmentation genes between Drosophila and different short and long germ insects. Here we review these comparative data with special emphasis on understanding how short germ insects generate segments and how this ancestral mechanism may have been modified in derived long germ insects such as Drosophila. We break down the larger issue of short versus long germ segmentation into its component developmental problems and structure our discussion in order to highlight the unanswered questions in the evolution of insect segmentation.  相似文献   

13.
Spiders belong to the chelicerates, which is a basal arthropod group. To shed more light on the evolution of the segmentation process, orthologs of the Drosophila segment polarity genes engrailed, wingless/Wnt and cubitus interruptus have been recovered from the spider Cupiennius salei. The spider has two engrailed genes. The expression of Cs-engrailed-1 is reminiscent of engrailed expression in insects and crustaceans, suggesting that this gene is regulated in a similar way. This is different for the second spider engrailed gene, Cs-engrailed-2, which is expressed at the posterior cap of the embryo from which stripes split off, suggesting a different mode of regulation. Nevertheless, the Cs-engrailed-2 stripes eventually define the same border as the Cs-engrailed-1 stripes. The spider wingless/Wnt genes are expressed in different patterns from their orthologs in insects and crustaceans. The Cs-wingless gene is expressed in iterated stripes just anterior to the engrailed stripes, but is not expressed in the most ventral region of the germ band. However, Cs-Wnt5-1 appears to act in this ventral region. Cs-wingless and Cs-Wnt5-1 together seem to perform the role of insect wingless. Although there are differences, the wingless/Wnt-expressing cells and en-expressing cells seem to define an important boundary that is conserved among arthropods. This boundary may match the parasegmental compartment boundary and is even visible morphologically in the spider embryo. An additional piece of evidence for a parasegmental organization comes from the expression domains of the Hox genes that are confined to the boundaries, as molecularly defined by the engrailed and wingless/Wnt genes. Parasegments, therefore, are presumably important functional units and conserved entities in arthropod development and form an ancestral character of arthropods. The lack of by engrailed and wingless/Wnt-defined boundaries in other segmented phyla does not support a common origin of segmentation.  相似文献   

14.
In long germ embryos, all body segments are specified simultaneously during the blastoderm stage. In contrast, in short germ embryos, only the anterior segments are specified during the blastoderm stage, leaving the rest of the body plan to be specified later. The striking embryological differences between short and long germ segmentation imply fundamental differences in patterning at the molecular level. To gain insights into the segmentation mechanisms of short germ insects, we have investigated the role of the homologue of the Drosophila gap gene hunchback (hb) in a short germ insect Locusta migratoria manilensi by paternal RNA interference (RNAi). Phenotypes resulting from hb knockdown were categorized into three classes based on severity. In the most extreme case, embryos developed the most anterior structures only, including the labrum, antennae and eyes. The following conclusions were drawn: (i) L. migratoria manilensis hb (Lmm'hb) controls germ band morphogenesis and segmentation in the anterior region; (ii) Lmm'hb may function as a gap gene in a wide domain including the entire gnathum and thorax; and (iii) Lmm'hb is required for proper growth of the posterior germ band. These findings suggest a more extensive role for L. migratoria manilensis hunchback in anterior patterning than those described in Drosophila.  相似文献   

15.
16.
The hormone retinoic acid (RA) has been implicated in the organization of the anteroposterior (AP) body axis. In this paper, we describe the effects of RA on the activity of the RA-inducible retinoic acid receptor-beta 2 (RAR beta 2) promoter. When transgenic embryos carrying a RAR beta 2-lacZ reporter gene were exposed to a single dose of RA between gestational days 8.5 to 10.5, lacZ expression was induced in the anterior central nervous system (CNS). Strikingly, the transgene was expressed in a segmented pattern reminiscent of that of Drosophila 'pair-rule' genes. RA treatment of midgastrulation embryos at day 7.5 disturbed the segmentation and produced severe craniofacial defects. We discuss the possibility that the entire anterior CNS is segmented and that this segmentation is reflected by the RAR beta 2-lacZ induction pattern.  相似文献   

17.
Developmental mechanisms of segmentation appear to be varied among insects in spite of their conserved body plan. Although the expression patterns of the segment polarity genes in all insects examined imply well conserved function of this class of genes, expression patterns and function of the pair-rule genes tend to exhibit diversity. To gain further insights into the evolution of the segmentation process and the role of pair-rule genes, we have examined expression and function of an ortholog of the Drosophila pair-rule gene even-skipped (eve) in a phylogenetically basal insect, Gryllus bimaculatus (Orthoptera, intermediate germ cricket). We find that Gryllus eve (Gb'eve) is expressed as stripes in each of the prospective gnathal, thoracic, and abdominal segments and as a broad domain in the posterior growth zone. Dynamics of stripe formation vary among Gb'eve stripes, representing one of the three modes, the segmental, incomplete pair-rule, and complete pair-rule mode. Furthermore, we find that RNAi suppression of Gb'eve results in segmentation defects in both anterior and posterior regions of the embryo. Mild depletion of Gb'eve shows a pair-rule-like defect in anterior segments, while stronger depletion causes a gap-like defect showing deletion of anterior and posterior segments. These results suggest that Gb'eve acts as a pair-rule gene at least during anterior segmentation and also has segmental and gap-like functions. Additionally, Gb'eve may be involved in the regulation of hunchback and Krüppel expression. Comparisons with eve functions in other species suggest that the Gb'eve function may represent an intermediate state of the evolution of pair-rule patterning by eve in insects.  相似文献   

18.
Segmentation in long germband insects such as Drosophila occurs essentially simultaneously across the entire body. A cascade of segmentation genes patterns the embryo along its anterior-posterior axis via subdivision of the blastoderm. This is in contrast to short and intermediate germband modes of segmentation where the anterior segments are formed during the blastoderm stage and the remaining posterior segments arise at later stages from a posterior growth zone. The biphasic character of segment generation in short and intermediate germ insects implies that different formative mechanisms may be operating in blastoderm-derived and germband-derived segments. In Drosophila, the gap gene Krüppel is required for proper formation of the central portion of the embryo. This domain of Krüppel activity in Drosophila corresponds to a region that in short and intermediate germband insects spans both blastoderm and germband-derived segments. We have cloned the Krüppel homolog from the milkweed bug, Oncopeltus fasciatus (Hemiptera, Lygaeidae), an intermediate germband insect. We find that Oncopeltus Krüppel is expressed in a gap-like domain in the thorax during the blastoderm and germband stages of embryogenesis. In order to investigate the function of Krüppel in Oncopeltus segmentation, we generated knockdown phenotypes using RNAi. Loss of Krüppel activity in Oncopeltus results in a large gap phenotype, with loss of the mesothoracic through fourth abdominal segments. Additionally, we find that Krüppel is required to suppress both anterior and posterior Hox gene expression in the central portion of the germband. Our results show that Krüppel is required for both blastoderm-derived and germband-derived segments and indicate that Krüppel function is largely conserved in Oncopeltus and Drosophila despite their divergent embryogenesis.  相似文献   

19.
Pax group III genes and the evolution of insect pair-rule patterning   总被引:4,自引:0,他引:4  
Pair-rule genes were identified and named for their role in segmentation in embryos of the long germ insect Drosophila. Among short germ insects these genes exhibit variable expression patterns during segmentation and thus are likely to play divergent roles in this process. Understanding the details of this variation should shed light on the evolution of the genetic hierarchy responsible for segmentation in Drosophila and other insects. We have investigated the expression of homologs of the Drosophila Pax group III genes paired, gooseberry and gooseberry-neuro in short germ flour beetles and grasshoppers. During Drosophila embryogenesis, paired acts as one of several pair-rule genes that define the boundaries of future parasegments and segments, via the regulation of segment polarity genes such as gooseberry, which in turn regulates gooseberry-neuro, a gene expressed later in the developing nervous system. Using a crossreactive antibody, we show that the embryonic expression of Pax group III genes in both the flour beetle Tribolium and the grasshopper Schistocerca is remarkably similar to the pattern in Drosophila. We also show that two Pax group III genes, pairberry1 and pairberry2, are responsible for the observed protein pattern in grasshopper embryos. Both pairberry1 and pairberry2 are expressed in coincident stripes of a one-segment periodicity, in a manner reminiscent of Drosophila gooseberry and gooseberry-neuro. pairberry1, however, is also expressed in stripes of a two-segment periodicity before maturing into its segmental pattern. This early expression of pairberry1 is reminiscent of Drosophila paired and represents the first evidence for pair-rule patterning in short germ grasshoppers or any hemimetabolous insect.  相似文献   

20.
Insects such as Drosophila melanogaster undergo a derived form of segmentation termed long germband segmentation. In long germband insects, all of the body regions are specified by the blastoderm stage. Thus, the entire body plan is proportionally represented on the blastoderm. This is in contrast to short and intermediate germband insects where only the most anterior body regions are specified by the blastoderm stage. Posterior segments are specified later in embryogenesis during a period of germband elongation. Although we know much about Drosophila segmentation, we still know very little about how the blastoderm of short and intermediate germband insects is allocated into only the anterior segments, and how the remaining posterior segments are produced. In order to gain insight into this type of embryogenesis, we have investigated the expression and function of the homolog of the Drosophila gap gene hunchback in an intermediate germ insect, the milkweed bug, Oncopeltus fasciatus. We find that Oncopeltus hunchback (Of'hb) is expressed in two phases, first in a gap-like domain in the blastoderm and later in the posterior growth zone during germband elongation. In order to determine the genetic function of Of'hb, we have developed a method of parental RNAi in the milkweed bug. Using this technique, we find that Oncopeltus hunchback has two roles in anterior-posterior axis specification. First, Of'hb is required to suppress abdominal identity in the gnathal and thoracic regions. Subsequently, it is then required for proper germband growth and segmentation. In milkweed bug embryos depleted for hunchback, these two effects result in animals in which a relatively normal head is followed by several segments with abdominal identity. This phenotype is reminiscent to that found in Drosophila hunchback mutants, but in Oncopeltus is generated through the combination of the two separate defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号