首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nephrotoxicity is a limiting factor in the use of ifosfamide in children. Despite the co-administration of uroprotective agents such as sodium 2-mercaptoethanesulfonate (mesna), ifosfamide chemotherapy is associated with nephropathy characterized by glomerular toxicity and Fanconi syndrome in many children treated with this drug. This is in distinction to cyclophosphamide, an analogue which differs solely by the position of a chloroethyl group, and which is not associated with nephrotoxicity. We hypothesized that ifosfamide is metabolized by cytochrome P450 (CYP) enzymes located in the renal tubular cell to the toxic metabolite chloroacetaldehyde; and, that the higher production of chloroacetaldehyde from ifosfamide than from cyclophosphamide explains the clinical differences in nephrotoxicity. We found that in both pig renal cortical microsomes and whole human kidney microsomes incubated with 1 mM ifosfamide for 3 hr, 2 and 3 dechloroethylifosfamide (DCEI) were produced. Our study provides evidence that porcine and human kidney microsomes are capable of biotransforming ifosfamide to DCEI metabolites that are produced in equimolar amounts with chloroacetaldehyde, indicating that chloroacetaldehyde is locally produced by renal cells as a possible mechanism for nephrotoxicity.  相似文献   

2.
Aleksa K  Nava-Ocampo A  Koren G 《Chirality》2009,21(7):674-680
Ifosfamide (IF), a potent chemotherapeutic agent for solid tumors, is known to cause high rates of nephrotoxicity in children with cancer, which is most likely due to the renal production of the metabolite chloroacetaldehyde. Using plasma samples obtained from pediatric oncology patients, we developed a simple nonderivatizing enantioselective liquid chromatography mass spectrometry method to detect the (R) and (S)-2- and 3-dechloroethylifosfamide metabolites. The (R) and (S)-enantiomers of the 2- and 3-DCEIF (N-3-dechlroethylifosfamide) were detectable in all 22 patients' samples with levels ranging from 9.9 to 238.7 ng/ml for (R)-2-DCEIF, 15.8 to 663.0 ng/ml for (S)-2-DCEIF, 20.8 to 852.8 ng/l for (R)-3-DCEIF and 28.0 to 862.0 ng/ml for (S)-3-DCEIF. In addition, the lower limit of quantification for this method is 1 ng/ml. Future studies should concentrate on (R) or (S) production of the 2-DCEIF and 3-DCEIF and subsequently chloroacetaldehyde formation with the aim of considering the administration of only the (R)-IF as its metabolism results in a lower production of chloroacetaldehyde.  相似文献   

3.
Aleksa K  Ito S  Koren G 《Chirality》2006,18(6):398-405
Ifosfamide (IF), a potent chemotherapeutic agent for solid tumors, is known to cause high rates of nephrotoxicity, which is most likely due to the renal production of the metabolite chloroacetaldehyde. Enantioselective oxidation of IF has been shown in the liver but has never been reported in the kidney. Using porcine and human kidney samples, as well as the renal porcine cell line LLCPK-1, we document enantioselective metabolism of IF with prevalent production of the N-dechloroethylifosfamide (DCEIF) metabolites from the (S)-IF enantiomer compared to the amount of N-DCEIF metabolites produced from the (R)-IF enantiomers. Since IF enantiomers appear to be equally effective in chemotherapy, these results suggest that replacing the clinically standard racemic mixture of IF with (R)-IF may decrease renal metabolism of the drug and hence may decrease nephrotoxicity.  相似文献   

4.
Summary Renal injury is a common side effect of the chemotherapeutic agent ifosamide. Current evidence suggests that the ifosfamide metabolite chloroacetaldehyde may contribute to this nephrotoxicity. The present study examined the effects of ifosfamide and chloroacetaldehyde on rabbit proximal renal tubule cells in primary culture. The ability of the uroprotectant medication sodium 2-mercaptoethanesulfonate (mesna) to prevent chloroacetaldehyde-induced renal cell injury was also assessed. Chloroacetaldehyde (12.5–150 μM) produced dose-dependent declines in neutral red dye uptake, ATP levels, glutathione content, and cell growth. Coadministration of mesna prevented chloroacetaldehyde toxicity while pretreatment of cells with the glutathione-depleting agent buthionine sulfoximine enhanced the toxicity of chloroacetaldehyde. Ifosfamide (1000–10 000 μM) toxicity was detected only at concentrations of 4000 μM or greater. Analysis of media collected from ifosfamide-treated cell cultures revealed the presence of several ifosfamide metabolites, demonstrating that renal proximal tubule cells are capable of biotransforming this chemotherapeutic agent. This primary renal cell culture system should prove useful in studying the cause and prevention of ifosfamide nephrotoxicity.  相似文献   

5.
The origin of urinary trehalase in mercuric chloride-induced nephrotoxic rabbits was demonstrated with biochemical and immunochemical techniques. Urinary trehalase was dramatically increased with HgCl2-induced nephrotoxicity. The nephrotoxic kidney showed an extreme decrease in specific fluorescence with fluorescein isothiocyanate (FITC)-conjugated antibody technique. Moreover, trehalase activity in the membrane fraction was remarkably decreased in the nephrotic kidney compared with the control. Judging from the results of immunodiffusion, urinary trehalase and renal trehalase exhibit the same antigenicity. From the data of a time course analysis of nephrotoxicity, the excretion of urinary trehalase was earlier than that of urinary sugar. Previous results show that renal trehalase is localized in the renal tubular brush borders. From these results, it is suggested that urinary trehalase is originated in the renal brush borders. In consideration of the results described in previous papers and in this paper, it is proposed that urinary trehalase is a good indicator of renal brush border damage.  相似文献   

6.
Bis (2,3-dibromopropyl) phosphate (BIS-BP) is one of two identified metabolites of Tris (2,3-dibromopropyl) phosphate (TRIS-BP). We have previously shown that BIS-BP is more acutely nephrotoxic than TRIS-BP. We now report the effect of sex and inhibition of drug metabolism on BIS-BP toxicity. Compared to male rats, age-matched female rats developed less severe and extensive structural damage after BIS-BP. Renal dysfunction, as indexed by serum creatinine and in vitro renal cortical uptake of para-aminohippurate and N-(14C) methylnicotinamide was similar in males and females. Pretreatment of males with the drug metabolism inhibitor, cobaltous chloride, reduced both functional and structural evidence of BIS-BP toxicity. In separate studies, there was no difference in the distribution of radiolabel in male and female rats three days after administration of 14C-TRIS-BP. These studies showing that female rats are resistant to acute BIS-BP structural damage may explain the previously reported lack of carcinogenicity of TRIS-BP in female rats. The reduction of BIS-BP toxicity by CoCl2 suggests that unidentified, nephrotoxic metabolites exist and are responsible for part of the nephrotoxicity of BIS-BP.  相似文献   

7.
The capacity of parathyroid hormone (PTH) to increase serum 1,25(OH)(2)D levels declines with age in both rats and humans. In young rats, PTH stimulates renal 1,25(OH)(2)D production and increases mRNA levels for the terminal mitochondrial P450 of the 1alpha-hydroxylase complex (CYP27B1 or CYP1alpha). However, in older rats PTH increases mRNA levels but not 1,25(OH)(2)D production. This suggests that in old animals there is either decreased CYP1alpha protein levels in response to PTH or that the protein produced lacks functionality. The CYP1alpha protein is located on the inner mitochondrial membrane, the site of increased free radical production with age. To study these possibilities, we examined the effect of PTH and free radicals on CYP1alpha expression in a model system-AOK-B50 renal tubular cells. PTH increased CYP1alpha mRNA and protein in a similar time-dependent manner, suggesting that CYP1alpha protein levels were largely regulated by mRNA levels. The effect of free radicals was determined by preincubation with hydrogen peroxide (H(2)O(2)), a standard model for studying free radical damage. H(2)O(2) inhibited PTH-stimulated CYP1alpha protein levels and 1,25(OH)(2)D production in a dose dependent manner. However, 1,25(OH)(2)D production was more sensitive to H(2)O(2) than was CYP1alpha protein levels. This suggests that the catalytic activity of the CYP1alpha protein may be reduced by free radical damage in these cells. Future studies will focus on detecting oxidative damage in this model system and in vivo.  相似文献   

8.
Gentamicin is an antibiotic used worldwide for treating Gram-negative bacterial infections. Gentamicin causes nephrotoxicity in up to 25% of therapeutic cases owing to increased production of free radicals. Kiwifruit are nutrient-dense fruits that have proven effective for ameliorating many pathological conditions caused by oxidative stress. We investigated the possible prophylactic and therapeutic effects of kiwifruit on the changes in renal histology and histochemistry caused by gentamicin. Intramuscular injection of mice with gentamicin for 10 consecutive days was nephrotoxic as indicated by epithelial vacuolization, glomerular atrophy and tubular necrosis. Necrotic tubule cells lost most of their polysaccharides and structural proteins. Co-administration of kiwifruit with gentamicin prevented nephrotoxic changes to a modest degree. When administered subsequent to gentamicin intoxication, kiwifruit ameliorated significantly the histological and histochemical alterations caused by gentamicin. Our findings support the use of kiwifruit in cases of acute renal injury due to gentamicin.  相似文献   

9.
Diclofenac (DCLF) is a nonsteroidal anti-inflammatory drug that is widely used for the treatment of osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, and acute muscle pain conditions. Toxic doses of DCLF can cause nephrotoxicity in humans and experimental animals. However, whether this DCLF-induced nephrotoxicity involves apoptotic cell death in addition to necrosis is unknown. The goals of this investigation were to determine whether DCLF-induced nephrotoxicity involves oxidative stress and apoptotic type genomic DNA fragmentation, and if so, whether DCLF-induced oxidative stress and DNA fragmentation cause apoptotic cell death in mouse kidneys. Male ICR mice (CD-1; 25-45 g), fed ad libitum, were administered nephrotoxic doses of DCLF (100, 200, 300 mg/Kg, po) and sacrificed 24 h later. Blood was collected to evaluate renal injury (BUN), lipid peroxidation (MDA: malondialdehyde levels), and superoxide dismutase (SOD) activity (a marker of oxidative stress). Kidney tissues were analyzed both quantitatively and qualitatively to determine the degree and type of DNA damage, and evaluated histopathologically for the presence of apoptotic characteristics in the nucleus of diverse types of kidney cells. Results show that diclofenac is a powerful nephrotoxicant (at 100, 200, and 300 mg/kg: 4.7-, 4.9-, and 5.0-fold increases in BUN compared to the control, respectively) and a strong inducer of oxidative stress (significant increase in MDA levels). Oxidative stress induced by DCLF was also coupled with massive kidney DNA fragmentation (100, 200, and 300 mg/kg: 3-, 8-, and 10-fold increases compared to control, respectively). A dose-dependent increase in MDA levels and SOD activity was also observed, which indicated a link between oxidative stress and nephrotoxicity. Qualitative analysis of DNA fragmentation by gel electrophoresis showed a DNA ladder indicative of Ca2+-Mg2+-endonuclease activation. Histopathological examination of kidney sections revealed numerous apoptotic nuclei across proximal and distal tubular cell linings. Collectively, these data for the first time suggest that DCLF-induced nephrotoxicity may involve production of reactive oxygen species leading to oxidative stress and massive genomic DNA fragmentation, and these two free radical mediated events may ultimately translate into apoptotic cell death of kidney cells in vivo, and reveal a DNA-active role for DCLF.  相似文献   

10.
The capacity of parathyroid hormone (PTH) to increase serum 1,25(OH)2D levels declines with age in both rats and humans. In young rats, PTH stimulates renal 1,25(OH)2D production and increases mRNA levels for the terminal mitochondrial P450 of the 1α-hydroxylase complex (CYP27B1 or CYP1α). However, in older rats PTH increases mRNA levels but not 1,25(OH)2D production. This suggests that in old animals there is either decreased CYP1α protein levels in response to PTH or that the protein produced lacks functionality. The CYP1α protein is located on the inner mitochondrial membrane, the site of increased free radical production with age. To study these possibilities, we examined the effect of PTH and free radicals on CYP1α expression in a model system—AOK-B50 renal tubular cells. PTH increased CYP1α mRNA and protein in a similar time-dependent manner, suggesting that CYP1α protein levels were largely regulated by mRNA levels. The effect of free radicals was determined by preincubation with hydrogen peroxide (H2O2), a standard model for studying free radical damage. H2O2 inhibited PTH-stimulated CYP1α protein levels and 1,25(OH)2D production in a dose dependent manner. However, 1,25(OH)2D production was more sensitive to H2O2 than was CYP1α protein levels. This suggests that the catalytic activity of the CYP1α protein may be reduced by free radical damage in these cells. Future studies will focus on detecting oxidative damage in this model system and in vivo.  相似文献   

11.
Cisplatin has multiple cellular targets and modes of action that lead to nephrotoxicity. This suggests novel therapies that act at multiple cisplatin target sites may be effective. We tested whether human adipose tissue-derived mesenchymal stem cells (Ad-MSCs) can affect multiple target sites and protect against cisplatin-induced kidney damage. Rats were divided into four groups: control, infused with Ad-MSCs, injected with cisplatin, and cisplatin followed by infusion of Ad-MSCs. Animal survival and renal function were decreased and histological damage was increased in cisplatin-treated rats at day 3. Infusion of Ad-MSCs ameliorated renal dysfunction and tissue injury caused by cisplatin, leading to increased survival. Apoptotic cell death in the kidney was significantly reduced by infusion of Ad-MSCs. Activation of p53, JNK, and ERK and the expression of inflammation-related molecules were also decreased in the kidney that received Ad-MSCs. Very few Ad-MSCs were detected in the kidney. Conditioned medium from cultured Ad-MSCs had renal-protective functions in vivo and in vitro. Renal dysfunction and tissue damage caused by cisplatin were significantly reduced in rats treated with Ad-MSCs-conditioned medium. The viability of cultured renal proximal tubular cells exposed to cisplatin was also improved by coculture with Ad-MSCs or with conditioned medium. Release of proinflammatory mediators induced by cisplatin was inhibited in coculture with Ad-MSCs. Our results show that human Ad-MSCs exert a paracrine-protective effect on cisplatin nephrotoxicity at multiple target sites and suggest that human Ad-MSCs might be a new therapeutic approach for patients with acute kidney injury.  相似文献   

12.
There is increasing evidence that proteins in tubular fluid are "nephrotoxic." In vivo it is difficult to study protein loading of tubular epithelial cells in isolation, i.e., without concomitant glomerular damage or changes of renal hemodynamics, etc. Recently, a unique amphibian model has been described which takes advantage of the special anatomy of the amphibian kidney in which a subset of nephrons drains the peritoneal cavity (open nephrons) so that intraperitoneal injection of protein selectively causes protein storage in and peritubular fibrosis around open but not around closed tubules. There is an ongoing debate as to what degree albumin per se is nephrotoxic and whether modification of albumin alters its nephrotoxicity. We tested the hypothesis that carbamylation and glycation render albumin more nephrotoxic compared with native albumin and alternative albumin modifications, e.g., lipid oxidation and lipid depletion. Preparations of native and modified albumin were injected into the axolotl peritoneum. The kidneys were retrieved after 10 days and studied by light microscopy as well as by immunohistochemistry [transforming growth factor (TGF)-β, PDGF, NF-κB, collagen I and IV, RAGE], nonradioactive in situ hybridization, and Western blotting. Two investigators unaware of the animal groups evaluated and scored renal histology. Compared with unmodified albumin, glycated and carbamylated albumin caused more pronounced protein storage. After no more than 10 days, selective peritubular fibrosis was seen around nephrons draining the peritoneal cavity (open nephrons), but not around closed nephrons. Additionally, more intense expression of RAGE, NF-κB, as well as PDGF, TGF-β, EGF, ET-1, and others was noted by histochemistry and confirmed by RT-PCR for fibronectin and TGF-β as well as nonradioactive in situ hybridization for TGF-β and fibronectin. The data indicate that carbamylation and glycation increase the capacity of albumin to cause tubular cell damage and peritubular fibrosis.  相似文献   

13.
In this article, we present a liver–kidney co‐culture model in a micro fluidic biochip. The liver was modeled using HepG2/C3a and HepaRG cell lines and the kidney using MDCK cell lines. To demonstrate the synergic interaction between both organs, we investigated the effect of ifosfamide, an anticancerous drug. Ifosfamide is a prodrug which is metabolized by the liver to isophosforamide mustard, an active metabolite. This metabolism process also leads to the formation of chloroacetaldehyde, a nephrotoxic metabolite and acrolein a urotoxic one. In the biochips of MDCK cultures, we did not detect any nephrotoxic effects after 72 h of 50 µM ifosfamide exposure. However, in the liver–kidney biochips, the same 72 h exposure leads to a nephrotoxicity illustrated by a reduction of the number of MDCK cells (up to 30% in the HepaRG‐MDCK) when compared to untreated co‐cultures or treated MDCK monocultures. The reduction of the MDCK cell number was not related to a modification of the cell cycle repartition in ifosfamide treated cases when compared to controls. The ifosfamide biotransformation into 3‐dechloroethylifosfamide, an equimolar byproduct of the chloroacetaldehyde production, was detected by mass spectrometry at a rate of apparition of 0.3 ± 0.1 and 1.1 ± 0.3 pg/h/biochips in HepaRG monocultures and HepaRG‐MDCK co‐cultures respectively. Any metabolite was detected in HepG2/C3a cultures. Furthermore, the ifosfamide treatment in HepaRG‐MDCK co‐culture system triggered an increase in the intracellular calcium release in MDCK cells on contrary to the treatment on MDCK monocultures. As 3‐dechloroethylifosfamide is not toxic, we have tested the effect of equimolar choloroacetaldehyde concentration onto the MDCK cells. At this concentration, we found a quite similar calcium perturbation and MDCK nephrotoxicity via a reduction of 30% of final cell numbers such as in the ifosfamide HepaRG‐MDCK co‐culture experiments. Our results suggest that ifosfamide nephrotoxicity in a liver–kidney micro fluidic co‐culture model using HepaRG‐MDCK cells is induced by the metabolism of ifosfamide into chloroacetaldehyde whereas this pathway is not functional in HepG2/C3a‐MDCK model. This study demonstrates the interest in the development of systemic organ–organ interactions using micro fluidic biochips. It also illustrated their potential in future predictive toxicity model using in vitro models as alternative methods. Biotechnol. Bioeng. 2013; 110: 597–608. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
15.
The metabolic oxidation of one of the chloroethyl groups of the antitumour drug ifosfamide leads to the formation of the inactive metabolites 2- and 3-dechloroethylifosfamide together with the neurotoxic metabolite chloroacetaldehyde. A very sensitive capillary gas chromatographic method, requiring only 50 μl of plasma or urine, has been developed to measure the amounts of the drug and the two inactive metabolites in a single run. Calibration curves were linear (r > 0.999) in the concentration ranges from 50 ng/ml to 100 μg/ml in plasma and from 100 ng/ml to 1 mg/ml in urine.  相似文献   

16.
Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid into epoxyeicosatrienoic acids (EETs), which play important and diverse roles in the cardiovascular system. The anti-inflammatory, anti-apoptotic, pro-angiogenic, and anti-hypertensive properties of EETs in the cardiovascular system suggest a beneficial role for EETs in diabetic nephropathy. This study investigated the effects of endothelial specific overexpression of CYP2J2 epoxygenase on diabetic nephropathy in streptozotocin-induced diabetic mice. Endothelial CYP2J2 overexpression attenuated renal damage as measured by urinary microalbumin and glomerulosclerosis. These effects were associated with inhibition of TGF-β/Smad signaling in the kidney. Indeed, overexpression of CYP2J2 prevented TGF-β1-induced renal tubular epithelial-mesenchymal transition in vitro. These findings highlight the beneficial roles of the CYP epoxygenase-EET system in the pathogenesis of diabetic nephropathy.  相似文献   

17.
Oxidative and nitrative stress is a well-known phenomenon in cisplatin-induced nephrotoxicity. The purpose of this work is to study the role of two metalloporphyrins (FeTMPyP and MnTBAP), water soluble complexes, in cisplatin-induced renal damage and their ability to scavenge peroxynitrite. In cisplatin-induced nephropathy study in mice, renal nitrative stress was evident by the increase in protein nitration. Cisplatin-induced nephrotoxicity was also evident by the histological damage from the loss of the proximal tubular brush border, blebbing of apical membranes, tubular epithelial cell detachment from the basement membrane, or intra-luminal aggregation of cells and proteins and by the increase in blood urea nitrogen and serum creatinine. Cisplatin-induced apoptosis and cell death as shown by Caspase 3 assessments, TUNEL staining and DNA fragmentation Cisplatin-induced nitrative stress, apoptosis and nephrotoxicity were attenuated by both metalloporphyrins. Heme oxygenase (HO-1) also plays a critical role in metalloporphyrin-mediated protection of cisplatin-induced nephrotoxicity. It is evident that nitrative stress plays a critical role in cisplatin-induced nephrotoxicity in mice. Our data suggest that peroxynitrite is involved, at least in part, in cisplatin-induced nephrotoxicity and protein nitration and cisplatin-induced nephrotoxicity can be prevented with the use of metalloporphyrins.  相似文献   

18.
Cisplatin is one of the most potent and active cytotoxic drug in the treatment of cancer. However, side-effects in normal tissues and organs, notably nephrotoxicity in the kidneys, limit the promising efficacy of cisplatin. The present study was designed to ascertain the possible in vivo protective potential of a synthetic organoselenium compound diphenylmethyl selenocyanate (3 mg/kg.b.w.) against the nephrotoxic damage induced by cisplatin (5 mg/kg.b.w. for 5 days) in Swiss albino mice. Treatment with diphenylmethyl selenocyanate markedly reduced cisplatin-induced lipid peroxidation, serum creatinine and blood urea nitrogen levels. Renal antioxidant defense systems, such as glutathione-S-transferase, glutathione peroxidase, superoxide dismutase, catalase, activities and reduced glutathione level, depleted by cisplatin therapy, were restored to normal by the selenium compound. The selenium compound also reduced renal tubular epithelial cell damage, nitric oxide levels and expression of COX-2, and iNOS in kidneys injured by cisplatin. These results demonstrate the protective effect of diphenylmethyl selenocyanate against cisplatin-induced nephrotoxicity in mice.  相似文献   

19.
Chemotherapy drug-induced nephrotoxicity limits clinical applications for treating cancers. Pyroptosis, a newly discovered programmed cell death, was recently reported to be associated with kidney diseases. However, the role of pyroptosis in chemotherapeutic drug-induced nephrotoxicity has not been fully clarified. Herein, we demonstrate that the chemotherapeutic drug cisplatin or doxorubicin, induces the cleavage of gasdermin E (GSDME) in cultured human renal tubular epithelial cells, in a time- and concentration-dependent manner. Morphologically, cisplatin- or doxorubicin-treated renal tubular epithelial cells exhibit large bubbles emerging from the cell membrane. Furthermore, activation of caspase 3, not caspase 9, is associated with GSDME cleavage in cisplatin- or doxorubicin-treated renal tubular epithelial cells. Meanwhile, silencing GSDME alleviates cisplatin- or doxorubicin-induced HK-2 cell pyroptosis by increasing cell viability and decreasing LDH release. In addition, treatment with Ac-DMLD-CMK, a polypeptide targeting mouse caspase 3-Gsdme signaling, inhibits caspase 3 and Gsdme activation, alleviates the deterioration of kidney function, attenuates renal tubular epithelial cell injury, and reduces inflammatory cytokine secretion in vivo. Specifically, GSDME cleavage depends on ERK and JNK signaling. NAC, a reactive oxygen species (ROS) inhibitor, reduces GSDME cleavage through JNK signaling in human renal tubular epithelial cells. Thus, we speculate that renal tubular epithelial cell pyroptosis induced by chemotherapy drugs is mediated by ROS-JNK-caspase 3-GSDME signaling, implying that therapies targeting GSDME may prove efficacious in overcoming chemotherapeutic drug-induced nephrotoxicity.Subject terms: Apoptosis, Acute kidney injury  相似文献   

20.
The main lesion of cisplatin nephrotoxicity is damage to proximal tubular cells due to increased apoptosis via the mitochondrial and death receptor pathways, which may be alleviated by appropriate promotion of autophagy. Fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPAR-α) activator, is recently reported to promote autophagy as well as protect against cisplatin nephrotoxicity, although the mechanisms were only partially analyzed. Here, the detailed mechanisms of these putative protective effects were investigated in a murine renal proximal tubular (mProx) cell line. Fenofibrate attenuated cisplatin-induced apoptosis of mProx cells based on flow cytometry. As for the mitochondrial apoptotic pathway, the reagent reduced cisplatin-stimulated caspase-3 activation by decreasing the phosphorylation of p53, JNK, and 14-3-3, cytosolic and mitochondrial Puma accumulation, cytochrome C release to the cytosol, and resulting cytosolic caspase-9 activation. Fenofibrate also decreased cisplatin-stimulated activation of caspases-8 by suppressing MAPK and NFkB pathways and reducing the gene expression of TNF-α, TL1A, and Fas, main mediators of the death receptor apoptotic pathway. Autophagy defined by p62 reduction and an increase in LC3 II/I was promoted by fenofibrate in mProx cells under starvation. Autophagy inhibition using 3-MA further increased basal and cisplatin-induced caspase-3 and -8 activation, but had no influence on the inhibitory effects of fenofibrate on caspase activation. In conclusion, our study suggests fenofibrate to be a candidate agent to mitigate cisplatin nephrotoxicity by inhibiting the mitochondrial and death apoptotic pathways rather than by promoting autophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号