共查询到20条相似文献,搜索用时 11 毫秒
1.
Comparison of solution structures of mutant bovine pancreatic trypsin inhibitor proteins using two-dimensional nuclear magnetic resonance. 下载免费PDF全文
M. R. Hurle C. D. Eads D. A. Pearlman G. L. Seibel J. Thomason P. A. Kosen P. Kollman S. Anderson I. D. Kuntz 《Protein science : a publication of the Protein Society》1992,1(1):91-106
Structural perturbations due to a series of mutations at the 30-51 disulfide bond of bovine pancreatic trypsin inhibitor have been explored using NMR. The mutants replaced cysteines at positions 30 and 51 by alanine at position 51 and alanine, threonine, or valine at position 30. Chemical shift changes occur in residues proximate to the site of mutation. NOE assignments were made using an automated procedure, NASIGN, which used information from the wild-type crystal structure. Intensity information was utilized by a distance geometry algorithm, VEMBED, to generate a series of structures for each protein. Statistical analyses of these structures indicated larger averaged structural perturbations than would be expected from crystallographic and other information. Constrained molecular dynamics refinement using AMBER at 900 K was useful in eliminating structural movements that were not a necessary consequence of the NMR data. In most cases, statistically significant movements are shown to be those greater than approximately 1 A. Such movements do not appear to occur between wild type and A30A51, a result confirmed by crystallography (Eigenbrot, C., Randal, M., & Kossiakoff, A.A., 1990, Protein Eng. 3, 591-598). Structural alterations in the T30A51 or V30A51 mutant proteins near the limits of detection occur in the beta-loop (residues 25-28) or C-terminal alpha-helix, respectively. 相似文献
2.
3.
Amide protein exchange and surface conformation of the basic pancreatic trypsin inhibitor in solution. Studies with two-dimensional nuclear magnetic resonance 总被引:23,自引:0,他引:23
Dickerson and his colleagues have described the structure of the DNA dodecamer C-G-C-G-A-A-T-T-C-G-C-G in the B form at a level that shows clearly several aspects of some base sequence-dependent departures from the ideal, regular helical structure of B-DNA. I argue that the detailed conformation is a consequence of simple steric repulsive forces between purine bases in consecutive base-pairs but on opposite backbones. These repulsions are a consequence of the “propeller twist” of the base-pairs, together with the larger size of the purine bases, and they may occur in either the major or the minor groove. The argument is conducted in terms of the structural mechanics of a deformable elastic system. These repulsive forces between the base-pairs are resisted by stresses in the helical backbones, which may be studied quantitatively via the variation in torsion angles δ along the backbones, at the points where the sugar rings are connected. There is also a correlation between the cross-chain purine repulsions and the perturbations in helical twist angle between successive base-pairs. The work suggests some comments on the proposed “alternating B” form, the Z form and the A form of DNA. 相似文献
4.
The solution structure of bovine pancreatic trypsin inhibitor at high pressure 总被引:2,自引:0,他引:2 下载免费PDF全文
Williamson MP Akasaka K Refaee M 《Protein science : a publication of the Protein Society》2003,12(9):1971-1979
The solution structure of bovine pancreatic trypsin inhibitor (BPTI) at a pressure of 2 kbar is presented. The structure was calculated as a change from an energy-minimized low-pressure structure, using (1)H chemical shifts as restraints. The structure has changed by 0.24 A RMS, and has almost unchanged volume. The largest changes as a result of pressure are in the loop 10-16, which contains the active site of BPTI, and residues 38-42, which are adjacent to buried water molecules. Hydrogen bonds are compressed by 0.029 +/- 0.117 A, with the longer hydrogen bonds, including those to internal buried water molecules, being compressed more. The hydrophobic core is also compressed, largely from reduction of packing defects. The parts of the structure that have the greatest change are close to buried water molecules, thus highlighting the importance of water molecules as the nucleation sites for volume fluctuation of proteins in native conditions. 相似文献
5.
The low-field portions of the 250-MHz 1H nuclear magnetic resonance (NMR) specra of native and chemically modified bovine basic pancreatic trypsin inhibitor (BPTI) have been studied as a function of pH over the range pH 5-13. Resonances associated with the 16 protons of the aromatic rings of the four BPTI tyrosines have been located and assigned to specific tyrosyl residues. Titrations of pH yielded pK's for tyrosines-10, -21, -23, and -35 of 10.4, 11.0, 11.7, and 11.1, respectively. The resonances associated with the nitrotyrosine-10 protons of mononitrated BPTI and the nitrotyrosine-10 and -21 protons of dinitrated BPTI have been similarly located, assigned and titrated yielding pK's for nitrotyrosine-10 and -21 of 6.6 and 6.4, respectively. The high-field NMR spectrum indicates that the aromatic ring of tyrosine-35 rotates less than 160 times per second at 25 degrees for pH's in the range 5-9. 相似文献
6.
The interactions of Pr(III) and Eu(III) with specifically nitrated derivatives of the basic bovine pancreatic trypsin inhibitor have been studied using optical spectroscopy and nuclear magnetic resonance (NMR) at 250 and 270 MHz. Stability constants for proton and metal binding to nitrotyrosines 10 and 21 determined optically are in good agreement with those from NMR. Observations of the Eu(III)-induced NMR shifts of the ring protons of nitrotyrosine 21 allowed calibration of the magnetic interactions for this binding site. The Pr(III)-induced shifts for several resolved nonexchangeable backbone proton resonances were compared with calculated shifts using the known x-ray structure. With several simplifying assumptions, the Pr(III)-induced shifts were used to assign one alpha-CH and five NH protons to compatible sets of backbone positions which are consistent with the known pH dependence and resistance to exchange with solvent D2O. Some of the more general aspects of lanthanide-induced shifts are discussed with reference to their use in proteins. Due to the complexities of the analysis of the shift data, the most straightforward use of this technique is in conjunction with the relaxation probe Gd(III) for measurement of intramolecular distances. 相似文献
7.
Sequential resonance assignments in protein 1H nuclear magnetic resonance spectra. Basic pancreatic trypsin inhibitor 总被引:24,自引:0,他引:24
The assignment of the 1H nuclear magnetic resonance spectrum of the basic pancreatic trypsin inhibitor with the use of two-dimensional 1H nuclear magnetic resonance techniques at 500 MHz is described. The assignments are based entirely on the known amino acid sequence and the nuclear magnetic resonance data. Individual resonance assignments were obtained for all backbone and Cβ protons, with the exception of those of Arg1, Pro2, Pro13 and the amide proton of Gly37. The side-chain resonance assignments are complete, with the exception of Pro2 and Pro13, the Nδ protons of Asn44 and the peripheral protons of the lysine residues and all but two of the arginine residues. 相似文献
8.
The conformation of reduced bovine pancreatic trypsin inhibitor (R-BPTI) under reducing conditions was monitored by measurements of nonradiative excitation energy-transfer efficiencies (E) between a donor probe attached to the N-terminal Arg1 residue and an acceptor attached to one of the lysine residues (15, 26, 41, or 46) [Amir, D., & Haas, E. (1987) Biochemistry 26, 2162-2175]. High-excitation energy-transfer efficiencies that approach those found in the native state were obtained for the reduced labeled BPTI derivatives in 0.5 M guanidine hydrochloride (Gdn.HCl) and 4 mM DTT. Unlike the dependence expected for a random coil chain, E does not decrease as a function of the number of residues between the labeled sites. The efficiency of energy transfer between probes attached to residues 1 and 15 in the reduced state is higher than that found for the same pair of sites in the native state or reduced unfolded (in 6 M Gdn.HCl) state. This segment also shows high dynamic flexibility. These results indicate that the overall structure of reduced BPTI under folding (but still reducing) conditions shows a high population of conformers with interprobe distances similar to those of the native state. Reduced BPTI seems to be in a molten globule state characterized by a flexible, compact structure, which probably reorganizes into the native structure when the folding is allowed to proceed under oxidizing conditions. 相似文献
9.
The structure of the complex between anhydro-trypsin and pancreatic trypsin inhibitor has been determined by difference Fourier techniques using phases obtained from the native complex (Huber et al., 1974). It was refined independently by constrained crystallographic refinement at 1.9 å resolution. The anhydro-complex has Ser 195 converted to dehydro-alanine. There were no other significant structural changes. In particular, the high degree of pyramidalization of the C atom of Lys 15 (I) of the inhibitor component observed in the native complex is maintained in the anhydro-species. 相似文献
10.
Hemmi H Yoshida T Kumazaki T Nemoto N Hasegawa J Nishioka F Kyogoku Y Yokosawa H Kobayashi Y 《Biochemistry》2002,41(34):10657-10664
The three-dimensional solution structure of ascidian trypsin inhibitor (ATI), a 55 amino acid residue protein with four disulfide bridges, was determined by means of two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy. The resulting structure of ATI was characterized by an alpha-helical conformation in residues 35-42 and a three-stranded antiparallel beta-sheet in residues 22-26, 29-32, and 48-50. The presence of an alpha-helical conformation was predicted from the consensus sequences of the cystine-stabilized alpha-helical (CSH) motif, which is characterized by an alpha-helix structure in the Cys-X(1)-X(2)-X(3)-Cys portion (corresponding to residues 37-41), linking to the Cys-X-Cys portion (corresponding to residues 12-14) folded in an extended structure. The secondary structure and the overall folding of the main chain of ATI were very similar to those of the Kazal-type inhibitors, such as Japanese quail ovomucoid third domain (OMJPQ3) and leech-derived tryptase inhibitor form C (LDTI-C), although ATI does not show extensive sequence homology to these inhibitors except for a few amino acid residues and six of eight half-cystines. On the basis of these findings, we realign the amino acid sequences of representative Kazal-type inhibitors including ATI and discuss the unique structure of ATI with four disulfide bridges. 相似文献
11.
12.
Low-energy conformations of a set of tetrapeptides derived from the small protein bovine pancreatic trypsin inhibitor (BPTI) were generated by a build-up procedure from the low-energy conformations of single amino acid residues. At each stage, various-size fragments were built up from all combinations of smaller ones, the total energies were then minimized, and the low-energy conformations were retained for the next stage. The energies of the tetrapeptides were re-ordered by including the effects of hydration. No information other than the amino acid sequence was used to obtain the low-energy conformations of the hydrated tetrapeptides. The latter were then supplemented with a limited set of simulated NMR distance information, derived from the X-ray structure of BPTI, to provide a basis for building the rest of the whole protein molecule by the same procedure. A total of 189 upper bounds, plus 12 pairs of upper and lower bounds pertaining to the location of the three disulfide bonds in this molecule, were used. Four sets of conformations of the entire molecule were generated by utilizing different combinations of smaller fragments. It was possible to obtain low-energy conformations with small rms deviations, 1.1 to 1.4 A for the alpha-carbons, from the structure derived by X-ray diffraction. The average deviations of the backbone dihedral angles were also low, viz. 23 degrees to 26 degrees. 相似文献
13.
T Skarzyński 《Journal of molecular biology》1992,224(3):671-683
The three-dimensional structure of alpha-dendrotoxin (alpha-DTX) from the green mamba (Dendroaspis angusticeps) venom has been determined crystallographically using the method of isomorphous replacement and refined at 2.2 A resolution using a restrained least-squares method. The crystallographic R-factor is 0.169 for all 3451 measured reflections between 7.0 and 2.2 A. Although the main-chain fold of alpha-DTX is similar to that of homologous bovine pancreatic trypsin inhibitor (BPTI), there are significant differences involving segments of the polypeptide chain close to the "antiprotease site" of BPTI. Comparison of the structure of alpha-DTX with the existing models of BPTI and its complexes with trypsin and kallikrein reveals structural differences that explain the inability of alpha-DTX to inhibit trypsin and chymotrypsin. 相似文献
14.
15.
The structure of BPTI and reduced BPTI in concentrated guanidinium HCl (GUHCl) in the presence of glycerol has been probed by measurements of dynamic nonradiative excitation energy transfer between probes attached to its amino groups. Interprobe distance distributions were obtained from analysis of donor fluorescence decay curves and used to characterize local structures in unordered states of the protein. Site specifically fluorescently labeled BPTI derivatives (1-n)BPTI (n = 15, 20, 41, 46) were used, each carrying a 2-methoxy-naphthyl-1-methylenyl group (MNA) at the N-terminal amino group of arg1 and 7-(dimethylamino)-coumarin-4-yl-acetyl residue (DA-coum) at one of its epsilon-NH2 groups of the lysine side chains. Analysis of donor fluorescence decay kinetics gave the interprobe distance distributions in the native and denatured states. The N-terminal-segment, residues 1-15, is in an extended conformation (with an average interprobe distance of 34 +/- 2 A) in the native state. Upon unfolding by reduction with DTT or beta-mercapto ethanol in 6 M GUHCl/glycerol mixture, the conformation of this segment relaxed to a state characterized by a reduced average interprobe distance and a larger width of the distances distribution. The average distance between residues 1 and 26, i.e., between the N-terminus and the turn of the twisted beta sheet element (residues 18-35), increased upon unfolding. At -30 degrees C in the above solvent, the distribution between these two sites was probably composed of two conformational subpopulations. About 45 +/- 20% of the molecules were characterized by a short interprobe distance (like the native state) representing a compact conformation, and 55 +/- 20% of the molecules showed large interprobe distances representing an expanded (unfolded) conformation. Thus local structures seem to exist in reduced denatured BPTI even under denaturing conditions in 6 M GUHCl/glycerol mixtures. Some of those structures are unstable in guanidinium isothiocyanate (GUSCN). The method introduced here is suitable for probing local structures and very long range interactions in unfolded proteins and for search for folding initiation sites (FISs) and early folding intermediates. 相似文献
16.
An implementation of the variable-target-function procedure, first introduced by Braun and Go [W. Braun and N. Go, J. Mol. Biol. 186, 611-626 (1985)], has been used to generate conformations of the small protein bovine pancreatic trypsin inhibitor (BPTI), given a limited set of simulated data that could be obtained by nuclear magnetic resonance (NMR) techniques. A hybrid strategy was also used to calculate conformations of BPTI, given the same information. In the hybrid strategy, low-energy structures of medium-size fragments (decapeptides) of BPTI were generated using the variable-target-function method, followed by restrained energy optimization. The low-energy conformations were used as a basis to build up the complete fifty-eight-residue BPTI molecule. By using the variable-target-function approach, in which energy considerations were not introduced until full conformations of the entire BPTI molecule had been generated, it was not possible to obtain calculated structures with rms deviations from the X-ray conformation of less than 1.6 A for the alpha-carbons. On the other hand, with the hybrid strategy, which involved the consideration of realistic energy terms in the early stages of the calculations, it was possible to calculate low-energy conformations of BPTI with rms deviations from the X-ray structure of 1.06 to 1.50 A for the alpha-carbons. When the rms deviations were computed along the amino acid sequence, it was found that there was a good correlation between deviations among the calculated structures and deviations from the X-ray structure. 相似文献
17.
We have used magnetic relaxation dispersion to study bovine pancreatic trypsin inhibitor (BPTI) self-association as a function of pH, salt type and concentration, and temperature. The magnetic relaxation dispersion method sensitively detects stable oligomers without being affected by other interactions. We find that BPTI decamers form cooperatively under a wide range of solution conditions with no sign of dimers or other small oligomers. Decamer formation is opposed by electrostatic repulsion among numerous cationic residues confined within a narrow channel. Accordingly, the decamer population increases with increasing pH, as cationic residues are deprotonated, and with increasing salt concentration. The salt effect cannot be described in terms of Debye screening, but involves the ion-specific sequestering of anions within the narrow channel. The lifetime of the BPTI decamer is 101 +/- 4 min at 27 degrees C. We propose that the BPTI decamer, with a heparin chain threading the decamer channel, plays a functional role in the mast cell. We also detect a higher oligomer that appears to be a subcritical nucleation cluster of 3-5 decamers. We argue that monomeric crystals form at high pH despite a high decamer population in solution, because the ion pairs that provide the critical decamer-decamer contacts are disrupted at high pH. 相似文献
18.
The DNA-binding domain of the phage 434 repressor consisting of N-terminal residues 1 to 69 (434 repressor(1-69)), was expressed in Escherichia coli with natural isotope abundance, uniform 15N-labeling and biosynthetically directed fractional 13C-labeling in extent of about 10%. With these protein preparations the three-dimensional structure was determined in solution. The techniques used were nuclear magnetic resonance (n.m.r.) spectroscopy for the collection of conformational constraints, calculation of the protein structure from the n.m.r. data with the program DIANA and structure refinements by restrained energy minimization with a modified version of the program AMBER. A group of 20 conformers characterizes a well-defined structure for residues 1 to 63, with an average of 0-6 A for the root-mean-square deviations (RMSD) calculated for the backbone atoms of the individual conformers relative to the mean co-ordinates. The spatial structure of C-terminal residues 64 to 69 is not defined by the n.m.r. data. The molecular architecture of the 434 repressor(1-69) in solution includes five alpha-helices extending from residues 2 to 13, 17 to 24, 28 to 35, 45 to 52 and 56 to 60, which enclose a well-defined hydrophobic core. The n.m.r. structure is closely similar to the reported crystal structure of the 434 repressor(1-69), with an RMSD value of 1.1 A for the backbone atoms of residues 1 to 63. Small differences between the two structures in regions of the first helix and the loop between helices 3 and 4 were analyzed relative to possible correlations with protein-protein contacts in the crystal lattice and the different milieus of pH and ionic strength in the crystals and n.m.r. samples. Further systematic comparisons of local conformational features indicated that there are correlations between amino acid types, local precision of the structure determination by both techniques and local differences between the structures in the crystals and in solution. Overall, hydrophobic residues are most precisely characterized and agree most closely in the two environments. 相似文献
19.
A total of 54 of the 58 alpha-carbon resonances and numerous side-chain carbon signals were individually assigned in the basic pancreatic trypsin inhibitor by using two-dimensional heteronuclear correlated and relayed coherence transfer spectroscopy with proton detection. No isotope enrichment was used, and the spectra were recorded in 5-mm sample tubes. The pulse sequences were optimized to eliminate, prior to phase cycling, the signals of protons attached to 12C. We have concentrated on assignments of carbons bearing a single hydrogen in view of a relatively easy interpretation of carbon relaxation times, and most of these carbon resonances could be assigned. Furthermore, we demonstrate that two-dimensional heteronuclear correlated and relayed coherence transfer spectra can be used to elucidate connectivities between degenerate resonances within proton spin systems that often occur in threonines and aromatic side chains. 相似文献
20.
The structure of a Y35G mutant of bovine pancreatic trypsin inhibitor (BPTI) was solved by molecular replacement and was refined by both simulated annealing and restrained least-squares at 1.8 A resolution. The crystals belong to the space group P42212, with unit cell dimensions a = b = 46.75 A, c = 50.61 A. The final R-factor is 0.159 and the deviation from ideality for bond distances is 0.02 A. The structure of the mutant differs from that of the native protein, showing an overall root-mean-square (r.m.s.) difference of 1.86 A for main-chain atoms. However, the change is mostly localized in the two loops (respective r.m.s. values of 2.04 A and 3.93 A) and the C terminus (r.m.s. 6.79 A), while the core of the protein is well conserved (r.m.s. 0.45 A). The change in the loop regions can be clearly attributed to the mutation while the difference in the C terminus might be only due to a different crystal packing. Seventy water molecules were included in the model but only seven of them are shared with the native structure. Thermal parameters are showing a good correlation with those for the wild-type of BPTI. 相似文献