共查询到20条相似文献,搜索用时 0 毫秒
1.
J Brosius 《Biochemistry》1978,17(3):501-508
Protein L31 from the 50S ribosomal subunit of Escherichia coli was manually sequenced by the dansyl-Edman method. Owing to the availability of only small quantities of purified L31, sequencing methods were scaled down such that the entire primary structure could be determined with 700 microgram of protein. The techniques employed are described in detail. The protein consists of a single chain of 62 amino acids, with a calculated molecular weight of 6967. Four half-cystine residues were identified at positions 16, 18, 37, and 40. Evidence is presented that suggests that these residues form two disulfide bridges in the protein, as isolated. 相似文献
2.
3.
4.
Antibodies raised against Drosophila melanogaster ribosomal proteins (r-proteins) were used to examine possible structural relationships between eukaryotic and prokaryotic r-proteins. The antisera were raised against either groups of r-proteins or individually purified r-proteins. Two antisera showed a cross-reaction with total Escherichia coli r-proteins in Ouchterlony double immunodiffusion assays: an antiserum against the D. melanogaster small subunit protein S14 (anti-S14) and an antiserum against a group of D. melanogaster r-proteins (anti-TP80). The specificity of the antisera and the identity of the homologous E. coli r-proteins were characterized by using immunooverlay and immunoblot assays. These assays indicated that anti-S14 was highly specific for protein S14 and anti-TP80 was a multispecific serum that recognized several of the D. melanogaster ribosomal proteins. The E. coli protein homologous to D. melanogaster protein S14 was identified as E. coli protein S6. By adsorption of the anti-TP80 serum, we determined that D. melanogaster protein 7/8 is homologous to the acidic E. coli protein L7/L12. D. melanogaster acidic protein 13 was also shown to be immunologically related to D. melanogaster protein 7/8.This research was supported by National Institutes of Health Grant GM23410 awarded to WYC. LMS was the recipient of a predoctoral fellowship from Molecular, Cellular, and Developmental Biology Training Grant PHS T32 CM07227. We are very grateful to Dr. Anthony Mahowald for providing us with embryos. 相似文献
5.
6.
The acidic ribosomal phosphoprotein of eukaryotes and its relationship to ribosomal proteins L7 and L12 of Escherichia coli.
下载免费PDF全文

The acidic ribosomal phosphoprotein, Lgamma, of Krebs II ascites cells was further characterized and compared with proteins L7 and L12 of Escherichia coli. Ribosomal protein Lgamma was selectively removed from 60S sibosomal subunits by 50% ethanol and 1M-NH4Cl, and antibodies raised against protein Lgamma cross-reacted with E. coli protein L12 in immunodiffusion experiments. These and other, previously reported, data support the proposal that the uekaryotic counterpart of E. coli proteins L7 and L12 is phosphorylated. 相似文献
7.
Eukaryotic ribosomes contain an acidic ribosomal protein of about 38 kDa which shows immunological cross-reactivity with the 13 kDa-type acidic ribosomal proteins that are related to L7/L12 of bacterial ribosomes. By using a cDNA clone for 38 kDa-type acidic ribosomal protein A0 from the yeast Saccharomyces cerevisiae, we have cloned a genomic DNA encoding A0 and determined the sequence of 1,614 nucleotides including about 500 nucleotides in the 5'-flanking region. The gene lacks introns and possesses two boxes homologous to upstream activation sequences (UASrpg) in the 5'-flanking region. The amino acid sequence of A0 deduced from the nucleotide sequence shows that A0 shares a highly similar carboxyl-terminal region of about 40 amino acids in length with 13 kDa-type acidic ribosomal proteins, including an identical carboxyl-terminal, DDDMGFGLFD. In the amino-terminal region A0 contains an arginine-rich segment which shows a low but distinct similarity to that of bacterial ribosomal protein L10 through which L10 is thought to bind to 23S rRNA. On the other hand, the carboxyl-terminal half of A0 is enriched with hydrophobic amino acid residues including four pairs of phenylalanine residues which are all conserved in a human homologue. 相似文献
8.
Incubation of 50 S subunits with 4.2 M LiCl leads to 4.2c cores and the complementary split protein fraction SP4.2, the latter containing quantitatively L24. L24 was removed from the split fraction by means of CM-cellulose chromatography. Partial and total reconstitution experiments performed with this protein preparation in the absence and presence of L24 demonstrate the crucial role of L24 in the early stage of assembly. However, this protein is dispensable for the subsequent steps of the in vitro assembly. 50 S subunits lacking L24 are fully active in the translation of artificial (poly(U)) and natural (R17 RNA) mRNA, indicating that L24 is not involved in any function of protein synthesis of the mature ribosome. It is therefore a mere assembly protein. 相似文献
9.
10.
11.
12.
13.
Mutants of Escherichia coli lacking ribosomal protein L11 总被引:9,自引:0,他引:9
G St?ffler E Cundliffe M St?ffler-Meilicke E R Dabbs 《The Journal of biological chemistry》1980,255(21):10517-10522
Three mutants with ribosomes apparently lacking Protein L11, AM68, AM76, and AM77, were investigated using a variety of immunological techniques to determine whether L11 was indeed lacking. Ouchterlony double diffusion, modified immunoelectrophoresis, and dimer formation on sucrose gradients all gave results indicating Protein L11 was missing from the ribosome in these mutants. Electron micrographs of ribosomes of the mutants were indistinguishable from those of wild type. Ribosomes of AM68, AM76, and AM77, did not bind the antibiotic thiostrepton, but binding was recovered upon reconstitution with wild type Protein L11. 相似文献
14.
Mutants of Escherichia coli lacking ribosomal protein L1 总被引:8,自引:0,他引:8
Eric R. Dabbs Renate Ehrlich Renate Hasenbank Barbara-Heide Schroeter Marina Stöffler-Meilicke Georg Stöffler 《Journal of molecular biology》1981,149(4):553-578
Two independently isolated mutants of Escherichia coli, RD19 and MV17-10, that appeared to lack protein L1 on their ribosomes, as determined by two-dimensional gels, were subjected to a battery of immunological tests to find if L1 was indeed lacking. The tests involved Ouchterlony double diffusion, modified immunoelectrophoresis, dimer formation on sucrose gradients, and affinity chromatography. By all these criteria, protein L1 was missing from the ribosome in these mutants. Nor was any L1 cross-reacting material detectable in the supernatant. There was, however, a specific two- to fivefold increase in concentrations of protein L11 in the supernatants of the mutants, which was evidence that protein L1 acts as a feedback inhibitor of expression of the operon coding for the genes for proteins L11 and L1.Electron micrographs of ribosomes obtained from these mutants were indistinguishable from those of wild-type strains. 50 S ribosomal subunits from mutants RD19 and MV17-10 were reconstituted with purified L1 from wild-type and investigated by immunoelectron microscopy. The three-dimensional location of ribosomal protein L1 on the surface of the large subunit was determined. L1 is located on the wider lateral protuberance of the 50 S subunit. The position of protein L1 in 50 S subunits reconstituted from mutants RD19 and MV17-10 was indistinguishable from the position in subunits from wild-type. 相似文献
15.
Regulation of ribosomal protein synthesis in an Escherichia coli mutant missing ribosomal protein L1. 总被引:4,自引:3,他引:4
下载免费PDF全文

In an Escherichia coli B strain missing ribosomal protein L1, the synthesis rate of L11 is 50% greater than that of other ribosomal proteins. This finding is in agreement with the previous conclusion that L1 regulates synthesis of itself and L11 and indicates that this regulation is important for maintaining the balanced synthesis of ribosomal proteins under physiological conditions. 相似文献
16.
J W Fox D P Owens K P Wong 《International journal of peptide and protein research》1988,31(3):255-264
Ribosomal protein L25 from the large subunit of E. coli ribosomes has been purified using a new procedure involving a 2M LiCl extraction followed by phosphocellulose chromatography in 6 M urea elution buffer. The conformation of purified L25 was studied employing circular dichroism and ultraviolet absorption spectroscopy in reconstitution buffer. The analysis of the far u.v. circular dichroism spectrum of L25 indicates L25 contains approximately 16% alpha-helix and approximately 19% beta-structure. The conformation of L25 was also studied using the predictive methods of Chou & Fasman and Maxfield & Scheraga. Both of these methods predict approximately three times the percent alpha-helix present in L25 as compared with that determined from the analysis of the circular dichroism spectrum. A structure for L25 is predicted which contains two positively charged binding domains and is consistent with published binding data on the interaction of 5S RNA and L25. The large difference in the % alpha-helix as determined from the analysis of the circular dichroism spectrum and the predictive techniques is suggested to result from the denaturing effects of 6 M urea used in the preparation of ribosomal proteins. 相似文献
17.
18.
19.
J M Carazo T Wagenknecht M Radermacher V Mandiyan M Boublik J Frank 《Journal of molecular biology》1988,201(2):393-404
A structural study of Escherichia coli 50 S ribosomal subunits depleted selectively of proteins L7/L12 and visualized by low-dose electron microscopy has been carried out by multivariate statistical analysis, classification schemes and the new reconstruction technique from single-exposure, random-conical tilt series. This approach has allowed us to solve the three-dimensional structure of the depleted 50 S subunits at a resolution of 3 nm-1. In addition, two distinct morphological populations of subunits (cores) have been identified in the electron micrographs analyzed and have been separately studied in three dimensions. Depleted subunits in the two morphological states present as main features common to these two structures but different from those of the non-depleted subunit (1) the absence of the stalk, (2) a rearrangement of the stalk-base that changes the overall structure of this region. This morphological change is quite noticeable and important, since this region is mapped as a part of the GTPase center. The two conformations differ mainly in the orientation of the area between the L1 region and the head (the probable localization of the peptidyl transferase center) and in the accessibility of the region located below the head. A possible relationship of these structural changes to the functional dynamics of the ribosome is suggested. 相似文献
20.
The binding site for ribosomal protein L2 within 23S ribosomal RNA of Escherichia coli. 总被引:5,自引:1,他引:5
下载免费PDF全文

Ribosomal protein L2 from Escherichia coli binds to and protects from nuclease digestion a substantial portion of 'domain IV' of 23S rRNA. In particular, oligonucleotides derived from the sequence 1757-1935 were isolated and shown to rebind specifically to protein L2 in vitro. Other L2-protected oligonucleotides, also derived from domain IV (i.e. from residues 1955-2010) did not rebind to protein L2 in vitro nor did others derived from domain I. Given that protein L2 is widely believed to be located in the peptidyl transferase centre of the 50S ribosomal subunit, these data suggest that domain IV of 23S rRNA is also present in that active site of the ribosomal enzyme. 相似文献