首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Membrane transport of sugar donors to the glycosylation sites   总被引:1,自引:0,他引:1  
The assembly of N-linked glycoproteins in eukaryotic cells begins with the segregation of these molecules within the lumen of intracellular vesicles. Since the sugar nucleotides are cytoplasmic molecules, translocation of the sugar moiety across the membrane appears as a crucial event in the glycoprotein synthesis. This N-glycosylation process occurs in two different cytological sites: in the rough endoplasmic reticulum, the stepwise synthesis of a large lipid-linked oligosaccharide takes place, as well as its transfer to protein; then after trimming the immature glycoprotein is further elongated in the Golgi apparatus. In this paper, a brief review will be given of the present knowledge on the sugar donor transport across the membrane barrier to the glycosylation site. Based upon the transmembrane orientation of oligosaccharide lipid intermediates and on the localization of the glycosyltransferase active sites, the different processes required to translocate the sugar moieties during the preassembly of the dolichyl-pyrophosphate-oligosaccharides will be examined. Combining the different results, obtained in several laboratories, it is suggested that the Man5-GlcNAc2-lipid is synthesized on the cytoplasmic side directly from the sugar-nucleotides and then translocated to the lumenal face where the Glc3-Man9-GlcNAc2-lipid is completed using Man-P-Dol and Glc-P-Dol as transmembrane carriers of these sugars. Concerning the elongation process leading to assembly of the antennae of N-acetyllactosamine type oligosaccharides, specific carriers for sugar nucleotides have been described as Golgi markers. Several authors have characterized such carriers for UDP-Gal, GDP-Fuc, CMP-NeuAc, UDP-GlcNAc and UDP-Glc using microsomal vesicles and similar results have been obtained in our laboratory using plasma membrane permeabilized cells. This carrier-mediated process leads to the formation of an intralumenal pool whose biological significance will be discussed. The translocation process of sugar donors occurring in the rough endoplasmic reticulum via lipid intermediates as well as in the Golgi apparatus via specific carriers would represent a regulation step based on the availability of the substrates for the glycosylation.  相似文献   

2.
We have developed a simple and highly sensitive HPLC method for determination of cellular levels of sugar nucleotides and related nucleotides in cultured cells. Separation of 9 sugar nucleotides (CMP-Neu5Ac, CMP-Neu5Gc, CMP-KDN, UDP-Gal, UDP-Glc, UDP-GalNAc, UDP-GlcNAc, GDP-Fuc, GDP-Man) and 12 nucleotides (AMP, ADP, ATP, CMP, CDP, CTP, GMP, GDP, GTP, UMP, UDP, and UTP) was examined by reversed-phase HPLC and high-performance anion-exchange chromatography (HPAEC). Although the reversed-phase HPLC, using an ion-pairing reagent, gave a good separation of the 12 nucleotides, it did not separate sufficiently the sugar nucleotides for quantification. On the other hand, the HPAEC method gave an excellent and reproducible separation of all nucleotides and sugar nucleotides with high sensitivity and reproducibility. We applied the HPAEC method to determine the intracellular sugar nucleotide levels of cultured Spodoptera frugiperda (Sf9) and Trichoplusia ni (High Five, BTN-TN-5B1-4) insect cells, and compared them with those in Chinese hamster ovary (CHO-K1) cells. Sf9 and High Five cells showed concentrations of UDP-GlcNAc, UDP-Gal, UDP-Glc, GDP-Fuc, and GDP-Man equal to or higher than those in CHO cells. CMP-Neu5Ac was detected in CHO cells, but it was not detected in Sf9 and High Five cells. In conclusion, the newly developed HPAEC method could provide valuable information necessary for generating sialylated complex-type N-glycans in insect or other cells, either native or genetically manipulated.  相似文献   

3.
R Cecchelli  R Cacan  A Verbert 《FEBS letters》1986,208(2):407-412
The mechanism of translocation of UDP-GlcNAc, UDP-Gal and UDP-Glc into intracellular vesicles has been studied using thymocytes whose plasma membranes have been permeabilized with isotonic ammonium chloride. It has been previously shown that the intracellular vesicles have specific carriers for UDP-GlcNAc and UDP-Gal. We now report that the translocation of these two sugar nucleotides occurs via UDP-GlcNAc/UDP and UDP-Gal/UDP antiports. The entry of UDP-GlcNAc or UDP-Gal into vesicles was specifically dependent on the exit of UDP from these vesicles. In contrast, no antiport mechanism has been recovered with UDP-Glc for which no transport and accumulation into intracellular vesicles were observed.  相似文献   

4.
When thymocytes are treated with iso-osmotic NH4Cl, the sugar incorporation into endogenous acceptors from labelled sugar nucleotides is largely increased compared with that in control thymocytes. This effect was obtained with labelled GDP-mannose, UDP-galactose and CMP-N-acetylneuraminic acid. The stimulation observed with NH4Cl-treated thymocytes does not involve the glycosylation of exogenous acceptors, and it was proved that the NH4Cl treatment (1) does not stimulate glycosyltransferase activities themselves, (2) does not lead to the release of soluble glycosyltransferases as the result of an extensive lysis of the thymocytes and (3) does not cause the emergence of glycosyltransferases at the cell surface. In fact, electron-microscopy observations showed that, although marked changes had occurred in the cytoplasm, the plasma membrane is sufficiently maintained to allow the cell to keep roughly its original shape and to retain the intracellular vesicles. We thus demonstrate that this stimulation is due to an enhancement of the entry of sugar nucleotides into the cell. As demonstrated by the inclusion of Trypan Blue within the cells, and the non-stimulation of glycosylation of exogenous large-molecular-mass acceptors, the effect of NH4Cl seems to be limited to the penetration of small-molecular-sized compounds through the plasma membrane. Thus NH4Cl treatment allows the labelled sugar nucleotides to penetrate the cell and to behave as the cellular pool to be utilized for glycosylation by intracellular vesicles.  相似文献   

5.
The molecular mechanisms regulating hemicelluloses and pectin biosynthesis are poorly understood. An important question in this regard is how glycosyltransferases are oriented in the Golgi cisternae, and how nucleotide sugars are made available for the synthesis of the polymers. Here we show that the branching enzyme xyloglucan alpha,1-2 fucosyltransferase (XG-FucTase) from growing pea (Pisum sativum) epicotyls was latent and protected against proteolytic inactivation on intact, right-side-in pea stem Golgi vesicles. Moreover, much of the XG-FucTase activity was membrane associated. These data indicate that XG-FucTase is a membrane-bound luminal enzyme. GDP-Fuc uptake studies demonstrated that GDP-Fuc was taken up into Golgi vesicles in a protein-mediated process, and that this uptake was not competed by UDP-Glc, suggesting that a specific GDP-Fuc transporter is involved in xyloglucan biosynthesis. Once in the lumen, Fuc was transferred onto endogenous acceptors, including xyloglucan. GDPase activity was detected in the lumen of the vesicles, suggesting than the GDP produced upon transfer of Fuc was hydrolyzed to GMP and inorganic phosphate. We suggest than the GDP-Fuc transporter and GDPase may be regulators of xyloglucan fucosylation in the Golgi apparatus from pea epicotyls.  相似文献   

6.
A putative Drosophila nucleotide sugar transporter was characterized and shown to be the Drosophila homologue of the human UDP-Gal transporter (hUGT). When the Drosophila melanogaster UDP-Gal transporter (DmUGT) was expressed in mammalian cells, the transporter protein was localized in the Golgi membranes and complemented the UDP-Gal transport deficiency of Lec8 cells but not the CMP-Sia transport deficiency of Lec2 cells. DmUGT and hUGT were expressed in Saccharomyces cerevisiae cells in functionally active forms. Using microsomal vesicles isolated from Saccharomyces cerevisiae expressing these transporters, we unexpectedly found that both hUGT and DmUGT could transport UDP-GalNAc as well as UDP-Gal. When amino-acid residues that are conserved among human, murine, fission yeast and Drosophila UGTs, but are distinct from corresponding ones conserved among CMP-Sia transporters (CSTs), were substituted by those found in CST, the mutant transporters were still active in transporting UDP-Gal. One of these mutants in which Asn47 was substituted by Ala showed aberrant intracellular distribution with concomitant destabilization of the protein product. However, this mutation was suppressed by an Ile51 to Thr second-site mutation. Both residues were localized within the first transmembrane helix, suggesting that the structure of the helix contributes to the stabilization and substrate recognition of the UGT molecule.  相似文献   

7.
An enzyme having both UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal) pyrophosphorylase activities was purified to homogeneity from Bifidobacterium bifidum. The molecular weight of the enzyme was about 200,000 and it appeared to be composed of four identical subunits. The purified enzyme showed almost the same reactivity towards UDP-Glc and UDP-Gal, and showed about 10% of this activity towards UDP-xylose at 8 mM. The enzyme required magnesium ions for maximum activity. The apparent equilibrium constants were about 2.5 for UDP-Glc pyrophosphorolysis and 1.1 for UDP-Gal pyrophosphorolysis. The enzyme activities were inhibited by various nucleotides (product or substrate analogs). Some sugar phosphates, such as fructose 6-P, erythrose 4-P, and 3-phosphoglycerate, stimulated the activities. These properties are discussed in relation to the significance of the enzyme in galactose metabolism of B. bifidum.  相似文献   

8.
The relationship among lactosylceramide-(LacCer), GD3- and GM2-synthases and between the two last transferases and their common GM3 acceptor was investigated in intact Golgi membrane from chick embryo neural retina cells at early (8-days) and late (14 days) stages of the embryonic development. [3H]Gal was incorporated into endogenous glucosylceramide by incubation of Golgi membranes with UDP-[3H]Gal. Conversion of the synthesized [3H]Gal-LacCer into GM3, and of the latter into GD3, GM2 and GD2 was examined after a second incubation step with unlabeled CMP-NeuAc and/or UDP-GalNAc. With CMP-NeuAc, most [3H]Gal-LacCer was converted into GM3 in either 8- or 14- day membranes. However, while about 90% of GM3 was converted into GD3 in 8-day membranes, only about 25% followed this route in 14-day membranes. With CMP-NeuAc and UDP-GalNAc, about 90% of GM3 was used for synthesis of GM2 in 14-day membranes, while in 8-day membranes about 80% followed the route to GD3, and a part to GD2. Performing the second incubation step in the presence of increasing detergent concentrations showed that conversion of GM3 to GM2 was inhibited at concentrations lower than those required for inhibition of LacCer to GM3 conversion. Taken together, results indicate that transfer steps leading to synthesis of GM3, GD3, GM2 and GD2 from LacCer are functionally coupled in the Golgi membranes, and that GD3- and GM2-synthases compete in a common compartment for using a fraction of GM3 as substrate. In this competition, the relative activities of the transferases and their relative saturation with the respective donor sugar nucleotides, are important factors influencing conversion of GM3 toward either GD3 or GM2.  相似文献   

9.
Metabolic labelling of mouse thymocytes with radioactive mannose or glucosamine leads to the formation of labelled GDP-Man and UDP-GlcNAc. Using isotonic ammonium chloride treatment which renders the plasma membrane of thymocytes permeable to sugar nucleotides, we demonstrate that, in contrast to GDP-Man, a pool of UDP-GlcNAc remains associated with the cells after plasma membrane permeabilization. These observations are confirmed in experiments in which permeabilized thymocytes are incubated with exogenous labelled GDP-Man and UDP-GlcNAc, and we show that only UDP-GlcNAc is accumulated into sealed intracellular vesicles. This accumulation is a saturable process which can be inhibited by UDP, demonstrating the occurrence of a specific carrier. This transport mechanism can be blocked by covalent attachment of a non-permeant inhibitor UDP-dialdehyde without affecting the N-acetylglucosaminyltransferase itself. The fact that this carrier-mediated transport is not inhibited by tunicamycin indicates that this translocation process of UDP-GlcNAc does not involve lipid intermediates.  相似文献   

10.
The mechanisms of transport and distribution of nucleotide sugars in the cell remain unclear. In an attempt to further characterize nucleotide sugar transporters (NSTs), we determined the subcellular localization of overexpressed epitope-tagged canine UDP-GlcNAc transporter, human UDP-Gal transporter splice variants (UGT1 and UGT2), and human SLC35B4 transporter splice variants (longer and shorter version) by indirect immunofluorescence using an experimental model of MDCK wild-type and MDCK-RCA(r) mutant cells. Our studies confirmed that the UDP-GlcNAc transporter was localized to the Golgi apparatus only and its localization was independent of the presence of endogenous UDP-Gal transporter. After overexpression of UGT1, the protein colocalized with the Golgi marker only. When UGT2 was overexpressed, the protein colocalized with the endoplasmic reticulum (ER) marker only. When UGT1 and UGT2 were overexpressed in parallel, UGT1 colocalized with the ER and Golgi markers and UGT2 with the ER marker only. This suggests that localization of the UDP-Gal transporter may depend on the presence of the partner splice variant. Our data suggest that proteins involved in nucleotide sugar transport may form heterodimeric complexes in the membrane, exhibiting different localization which depends on interacting protein partners. In contrast to previously published data, both splice variants of the SLC35B4 transporter were localized to the ER, independently of the presence of endogenous UDP-Gal transporter.  相似文献   

11.
Glycosylation of recombinant therapeutics like monoclonal antibodies (mAbs) is a critical quality attribute. N-glycans in mAbs are known to affect various effector functions, and thereby therapeutic use of such glycoproteins can depend on a particular glycoform profile to achieve desired efficacy. However, there are currently limited options for modulating the glycoform profile, which depend mainly on over-expression or knock-out of glycosyltransferase enzymes that can introduce or eliminate specific glycans but do not allow predictable glycoform modulation over a range of values. In this study, we demonstrate the ability to predictably modulate the glycoform profile of recombinant IgG. Using CRISPR/Cas9, we have engineered nucleotide sugar synthesis pathways in CHO cells expressing recombinant IgG for combinatorial modulation of galactosylation and fucosylation. Knocking out the enzymes UDP-galactose 4′-epimerase (Gale) and GDP-L-fucose synthase (Fx) resulted in ablation of de novo synthesis of UDP-Gal and GDP-Fuc. With Gale knock-out, the array of N-glycans on recombinantly expressed IgG is narrowed to agalactosylated glycans, mainly A2F glycan (89%). In the Gale and Fx double knock-out cell line, agalactosylated and afucosylated A2 glycan is predominant (88%). In the double knock-out cell line, galactosylation and fucosylation was entirely dependent on the salvage pathway, which allowed for modulation of UDP-Gal and GDP-Fuc synthesis and intracellular nucleotide sugar availability by controlling the availability of extracellular galactose and fucose. We demonstrate that the glycoform profile of recombinant IgG can be modulated from containing predominantly agalactosylated and afucosylated glycans to up to 42% and 96% galactosylation and fucosylation, respectively, by extracellular feeding of sugars in a dose-dependent manner. By simply varying the availability of extracellular galactose and/or fucose, galactosylation and fucosylation levels can be simultaneously and independently modulated. In addition to achieving the production of tailored glycoforms, this engineered CHO host platform can cater to the rapid synthesis of variably glycoengineered proteins for evaluation of biological activity.  相似文献   

12.
Human platelets have been shown to contain the enzyme glycoprotein:galactosyltransferase that catalyzes the transfer of galactose to an endogenous protein acceptor present in the platelet. Galactosylation of added ovalbumin also occurs. The activity was extracted with 30 mM Tris buffer (pH 7.5). The endogenous activity was enriched 1.4-fold (compared with the crude homogenate) in the fraction, 105,000 g pellet, and the exogenous enzyme was retained in the respective supernatant. The two galactosyltransferase activities showed proportionality to time, protein, and substrate concentration, and were identical in pH dependence and Mn+2 requirement. The effect of Triton X-100 (range 0-1.5%) in the assay system appeared to be different for both activities: with the optimum concentration of detergent (0.15%) the endogenous activity increased by 50% whereas the exogenous activity was augmented 5-fold. From a number of sugar nucleotides tested as glycosyl donor into the endogenous proteins, the optimum substrate was UDP-Glc (100%), followed by UDP-Gal (80%), GDP-Man (24%), UDP-Glc-NAc (21%), UDP-Xyl (19%), and ADP-Glc (5%). An appropriate exogenous acceptor for UDP-Glc as donor was not found. The different solubilization of galactosyl- and glucosyltransferase activities by Triton X-100 suggests that they are distinct enzymes. In addition, the exogenous galactosyltransferase activity achieved after the treatment was much higher (940%) than the endogenous (26%). It is suggested that these differences on both galactosyltransferases could reflect changes in the accessibility of the exogenous substrate to the enzyme.  相似文献   

13.
Using a sucrose density gradient fractionation of a highly purified Golgi apparatus from rat liver, we determined the sub-Golgi distribution of CMP-NeuAc:GM3 ganglioside alpha 2----8sialyltransferase (GM3-SAT) and CMP-NeuAc:GT1b ganglioside alpha 2----8sialyltransferase (GT1b-SAT), in comparison with that of the other glycosyltransferase activities involved in ganglioside biosynthesis. While GM3-SAT was recovered in several density fractions, GT1b-SAT was mainly found on less dense sub-Golgi membranes; this indicates that these two activities are physically separate. Moreover, with regard to the monosialo pathway, CMP-NeuAc:lactosylceramide alpha 2----3sialyltransferase, UDP-GalNAc:GM3 ganglioside beta 1----4N-acetylgalactosaminyltransferase, UDP-Gal:GM2 ganglioside beta 1----3galactosyltransferase, and CMP-NeuAc:GM1 ganglioside alpha 2----3sialyltransferase were resolved from more dense to less dense fractions, respectively. In the disialo pathway, UDP-GalNAc:GD3 ganglioside beta 1----4N-acetylgalactosaminyltransferase, UDP-Gal:GD2 ganglioside beta 1----3galactosyltransferase and CMP-NeuAc:GD1b ganglioside alpha 2----3sialyltransferase co-distributed with the corresponding activities of the monosialo pathway. These last results indicate that many Golgi glycosyltransferases involved in ganglioside biosynthesis are localized in the order in which they act.  相似文献   

14.
Conjugation of natural bilirubin (BR) depends on a hepatic microsomal UDP-glycosyltransferase using UDP-Glc, UDP-xylose, and predominantly UDP-GlcA. We found that esterification of BR occurred when washed intact microsomes derived from rat or guinea pig liver were incubated with BR in the absence of added UDP-sugar. This endogenous esterification was shown to lead predominantly to formation of the two positional isomers of BR monoglucoside and displayed the same regioselectivity as found for the BR monoglucosides formed by microsomes incubated with a saturating concentration of added UDP-Glc. This finding and absence of endogenous esterification in liver microsomes from mutant rats lacking BR UDP-glycosyltransferase activities demonstrated that endogenous esterification depended on UDP-glycosyltransferase and indicated, therefore, that UDP-Glc was present in the intact microsomal vesicles. With UDP-Glc added to the extramicrosomal incubation medium, BR glucosidation was markedly enhanced when the membrane permeability barrier was disrupted by pretreatment of the microsomes with detergent, sonication, or Staphylococcus aureus alpha-toxin. In contrast, such membrane disruption resulted in abolishment of endogenous esterification of BR, and a direct relationship was found between impairment of endogenous esterification and degree of vesicle disruption, suggesting that the UDP-Glc on which endogenous esterification depended was present in the lumenal space of the microsomes. Kinetic evidence and absence of an effect of increasing the microsomal concentration of dolichol-P-Glc (Dol-P-Glc) on endogenous esterification excluded direct or indirect involvement of Dol-P-Glc in the endogenous esterification reaction. Preincubation of intact microsomes with UDP-Glc or UDP-xylose at 37 degrees C, but not at 0 degrees C, led to expansion of the microsomal UDP-sugar pool on which endogenous esterification depended, suggesting that both UDP-sugars can enter the microsomal vesicles by a temperature-dependent mechanism. In contrast to these findings, no increase of BR esterification was detected when the microsomes had been preincubated at 37 degrees C with UDP-GlcA. We conclude that native, intact microsomes contain a lumenal pool of endogenous UDP-Glc and that BR UDP-glucosyltransferase and UDP-xylosyltransferase, by virtue of a lumenal orientation, have direct access to the postulated intramicrosomal pool of nucleotide sugar.  相似文献   

15.
To survey glycosyltransferase activities and specificities we have developed a TLC method to separate various nucleotide sugars from both high- and low-molecular-weight sugar acceptors. Here, we report details of the procedure and its application for galactosyltransferase and fucosyltransferase detected in mouse spermatogenic cells. The assay method involves sample separation using polyethyleneimine cellulose plastic-backed thin-layer plates, developed in sodium phosphate buffer for 30 min. Nucleotide sugars, including UDP-Gal, GDP-Fuc, CMP-NeuNAc, and GDP-Man, remain at the origin, while both high- and low-molecular-weight sugar acceptors migrate within 2 cm of the solvent front. Assays for galactosyltransferase and fucosyltransferase are linear with time and yield results comparable to other methods such as gel permeation chromatography and micropartitioning filtration. The TLC protocol should be useful for determinations of many different glycosyltransferases.  相似文献   

16.
Microsome preparations extracted from wheat roots or sycamore cell suspensions catalyzed the transfer of sugar from nucleotide-sugars to endogenous lipidic acceptors. The nature of the products biosynthesized from UDP-Glc, GDP-Glc, UDP-Gal, UDP-Xyl or UDP-Arab was examined. Sterylglycosides were obtained from UDP-Gglc, GDP-Glc or UDP-Xyl. Galactosyldiglycerides were synthesized from UDP-Gal. When UDP-Glc or UDP-Gal was used as a substrate, a membrane-bound 4-epimerase interconverted the epimeric nucleotide-sugars, thereby allowing the simultaneous biosynthesis of galactosyldiglycerides and sterylglucosides. The biosynthesis of free and acylated sterylglucosides from UDP-Glc, without interference of other glycosyl transfer reactions, was obtained by the omission of Mg++ ions from the incubation medium. The biosynthesis of galactosyldiglycerides from UDP-Gal without interference of other transfer reactions was obtained when digitonin was added to the incubation medium of sycamore microsomes.  相似文献   

17.
With radioactive precursors, the labelling kinetics of the soluble pyrimidine nucleotides and of RNA were measured in rat liver to determine the contribution of the metabolic flows through synthesis de novo and the salvage pathway. To separate and quantify all pyrimidine nucleotides, an h.p.l.c. technique was developed using anion-exchange chromatography and reversed-phase chromatography. The concentrations of cytidine nucleotides were in the range of 30-45 nmol/g wet weight, and the concentrations of the uridine phosphates and of the UDP-sugars were approx. 6 and 20 times higher respectively. After a single injection of [14C]orotic acid and of [3H]cytidine, the specific radioactivities were determined as a function of time. The 14C/3H ratio was calculated and gave a good indication of the involvement of the different flows. It could be concluded that UTP derived from synthesis de novo and from the salvage pathway is not completely mixed before being utilized. The flow of the salvage pathway is relatively more directed to RNA synthesis in the nucleus and that of synthesis de novo to cytoplasmic processes. For CTP it could also be concluded that the flow of the salvage pathway was relatively more directed to RNA synthesis in the nucleus. Because of the nuclear localization of the enzyme CMP-NeuAc (N-acetylneuraminate) synthase, special attention was paid to CMP-NeuAc. However, a conclusion about a location about the synthesis of CMP-NeuAc could not unequivocally be drawn, because of the small differences in 14C/3H ratio and the different values for the CDP-lipids.  相似文献   

18.
Six different glycosyltransferases that are active with glycosphingolipid substrates have been purified from Golgi-membranes after solubilization with detergents. It appears that GalT-4(UDP-Gal:GlcNAc-R1 beta 1-4GalT), GalNAcT-2(UDP-Gal:Gal alpha-R2 beta 1-3GalNAcT) and FucT-2(GDP-Fuc:Gal beta GlcNAc-R3 alpha 1-2FucT) are specific for oligosaccharides bound to ceramide or to a protein moiety. These are called CARS (carbohydrate recognition sites) glycosyltransferases (GLTs). On the other hand, GalT-3(UDP-Gal:GM2 beta 1-3GalT), GalNAcT-1(UDP-GalNAc:GM3 beta 1-4GalNAcT) and FucT-3 (GDP-Fuc:LM1 alpha 1-3FucT) recognize both hydrophobic moieties (fatty acid of ceramide) as well as the oligosaccharide chains of the substrates. These GLTs are called HY-CARS (hydrophobic and carbohydrate recognition sites). D-Erythro-sphingosine (100-500 microM) modulates the in vitro activities of these GLTs. Modulation depends on the binding of D-sphingosine to a protein backbone, perhaps on more than one site and beyond transmembrane hydrophobic domains. Control of GLTs by free D-sphingosine was suggested with the concomitant discovery of ceramide glycanase in rabbit mammary tissues. The role of free sphingosine as an in vivo homotropic modulator of glycosyltransferases is becoming apparent.  相似文献   

19.
The glycosyltransferases controlling the biosynthesis of cell-surface complex carbohydrates transfer glycosyl residues from sugar nucleotides to specific hydroxyl groups of acceptor oligosaccharides. These enzymes represent prime targets for the design of glycosylation inhibitors with the potential to specifically alter the structures of cell-surface glycoconjugates. With the aim of producing such inhibitors, synthetic oligosaccharide substrates were prepared for eight different glycosyltransferases. The enzymes investigated were: A, alpha(1----2, porcine submaxillary gland); B, alpha(1----3/4, Lewis); C, alpha(1----4, mung bean); D, alpha(1----3, Lex)-fucosyltransferases; E, beta(1----4)-galactosyltransferase; F, beta(1----6)-N-acetylglucosaminyltransferase V; G, beta(1----6)-mucin-N-acetylglucosaminyltransferase ("core-2" transferase); and H, alpha(2----3)-sialyltransferase from rat liver. These enzymes all transfer sugar residues from their respective sugar nucleotides (GDP-Fuc, UDP-Gal, UDP-GlcNAc, and CMP-sialic acid) with inversion of configuration at their anomeric centers. The Km values for their synthetic oligosaccharide acceptors were in the range of 0.036-1.3 mM. For each of these eight enzymes, acceptor analogs were next prepared where the hydroxyl group undergoing glycosylation was chemically removed and replaced by hydrogen. The resulting deoxygenated acceptor analogs can no longer be substrates for the corresponding glycosyltransferases and, if still bound by the enzymes, should act as competitive inhibitors. In only four of the eight cases examined (enzymes A, C, F, and G) did the deoxygenated acceptor analogs inhibit their target enzymes, and their Ki values (all competitive) remained in the general range of the corresponding acceptor Km values. No inhibition was observed for the remaining four enzymes even at high concentrations of deoxygenated acceptor analog. For these latter enzymes it is suggested that the reactive acceptor hydroxyl groups are involved in a critical hydrogen bond donor interaction with a basic group on the enzyme which removes the developing proton during the glycosyl transfer reaction. Such groups are proposed to represent logical targets for irreversible covalent inactivation of this class of enzyme.  相似文献   

20.
The membranes of Acanthamoeba palestinensis were studied by examination in fixed cells, and then by following the movements of glycerol-3H-labeled phospholipids by cell fractionation. Two previously undescribed structures were observed: collapsed cytoplasmic vesicles of cup shape, and plaques in food vacuole and plasma membrane similar in size to the collapsed vesicles. It appeared that the plaques formed by insertion of collapsed vesicles into membranes and/or that collapsed vesicles formed by pinching off of plaques. Fractions were isolated, enriched with nuclei, rough endoplasmic reticulum (RER), plasma membrane, Golgi-like membranes, and collapsed vesicles. The changes in specific activity of glycerol-3H-labeled phospholipids in these membranes during incorporation, turnover, and after pulse-labeling indicated an ordered sequence of appearances of newly synthesized phospholipids, first in nuclei and RER, then successively in Golgi membranes, collapsed vesicles, and finally, plasma membrane. In previous work we had found no large nonmembranous phospholipid pool in A. palestinensis. These observations are consistent with the hypothesis that membrane phospholipids are synthesized, perhaps as integral parts of membranes, in RER and nuclei. Subsequently, some of the newly synthesized phospholipids are transported to the Golgi complex to become integrated into the membranes of collapsed vesicles, which are precursors of the plasma membrane. Collapsed vesicles from the plasma membrane by inserting into it as plaques. When portions of the plasmalemma from food vacuoles, collapsed vesicles pinch off from their membranes and are recycled back to the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号