首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
小麦赤霉病严重威胁我国粮食和食品安全,培育抗赤霉病小麦品种是解决该病害最经济有效的途径。20世纪90年代后,以扬麦158为代表的扬麦、宁麦系列中抗赤霉病品种的育成和大面积推广有效抵御了长江中下游麦区的赤霉病危害,使我国抗赤霉病育种处于国际领先水平。尽管全球明确了7个抗赤霉病基因,为开展抗赤霉病育种提供了重要支撑,但由于赤霉病抗性机制复杂,实现高抗与高产的协调仍极其困难,抗赤霉病仍是当前及未来我国小麦育种的主要目标。对“十三五”期间我国小麦新品系和审定品种的抗性情况以及我国抗赤霉病育种方面取得的进展进行了综述,并提出了重视挖掘和利用扬麦等推广品种中优异抗性基因、将Fhb1导入扬麦等主栽品种的育种技术路线和重视表型精准鉴定等建议,以期为实现我国抗赤霉病育种突破提供借鉴。  相似文献   

2.
小麦赤霉病是危害小麦安全生产的重要病害之一,种植抗病品种是防治赤霉病最经济有效的手段。目前在生产上应用的抗源很少,越来越多的研究者将目光转移到小麦的近缘属种,寻找新的抗源以及寻求新的育种突破。携带抗性基因的外源染色体可以通过染色体工程手段以附加系、代换系和易位系等形式导入小麦。综述了将大赖草等多个小麦近缘种的抗赤霉病基因导入普通小麦、创制抗病外源种质和育种利用的最新研究进展,以期为小麦抗赤霉病育种提供参考信息。  相似文献   

3.
Anther Extrusion and Fusarium Head Blight Resistance in European Wheat   总被引:2,自引:0,他引:2  
Anther extrusion has been widely discussed as a factor influencing fusarium head blight (FHB) resistance in wheat. This is despite a paucity of quantitative information on its importance, between cultivars, in contrast to that for heading date and plant height. We describe a method applicable to a plant breeding situation at 10 days postanthesis, for assessing the distinct characteristics of anther retention (anthers held within the spikelet) and trapped anthers (partially extruded and trapped between the lemma and palea of the wheat spikelet). FHB resistance was tested in field experiments in 2004 and 2005. In these experiments designed to resemble applications to a plant breeding selection scheme anther retention was significantly correlated with FHB in 2004 ( r  =   0.26; P   <   0.05) and 2005 ( r  =   0.26; P   <   0.05). A higher proportion of anthers retained relating, albeit weakly, with increased FHB susceptibility in European wheat.  相似文献   

4.
Genetic diversity in relation to Fusarium head blight (FHB) resistance was investigated among 295 European winter wheat cultivars and advanced breeding lines using 47 wheat SSR markers. Twelve additional wheat lines with known FHB resistance were included as reference material. At least one SSR marker per chromosome arm, including SSR markers reported in the literature with putative associations with QTLs for FHB resistance, were assayed to give an even distribution of SSR markers across the wheat genome. A total of 404 SSR alleles were detected. The number of alleles per locus ranged from 2 to 21, with an average of 8.6 alleles. The polymorphism information content of the SSR markers ranged from 0.13 (Xwmc483) to 0.87 (Xwmc607), with an average of 0.54. Cluster analysis was performed by both genetic distance-based and model-based methods. In general, the dendrogram based on unweighted pair-group method with arithmetic averages showed similar groupings to the model-based analysis. Seven clusters were identified by the model-based method, which did not strictly correspond to geographical origin. The FHB resistance level of the wheat lines was evaluated in field trials conducted over multiple years or locations by assessing the following traits: % FHB severity, % FHB incidence, % diseased kernels, in spray inoculation trials, and % FHB spread and % wilted tips, in point inoculation trials. Association analysis between SSR markers and the FHB disease traits detected markers significantly associated with FHB resistance, including some that have not been previously reported. The percentage of variance explained by each individual marker was, however, rather low. Haplotype analysis revealed that the FHB-resistant European wheat lines do not contain the 3BS locus derived from Sumai 3. The information generated in this study will assist in the selection of parental lines in order to increase the efficiency of breeding efforts for FHB resistance.  相似文献   

5.
During the past decade Fusarium head blight (FHB) caused by Fusarium graminearum Schwabe has resulted in severe grain yield and quality losses of wheat (Triticum aestivum L.) in the Northern Great Plains of the U.S. Given the complexity of breeding for FHB resistance, molecular markers associated with this trait will be valuable in accelerating efforts to breed resistant cultivars. The objective of this study was to identify molecular markers linked to quantitative trait loci (QTL) for FHB resistance in wheat using a set of lines obtained by several cycles of crossing to North Dakota adapted genotypes, which derived their resistance from cv. Sumai 3. Microsatellite markers spanning the wheat genome were used to screen parents and derived lines. Polymorphisms for parental alleles were compared to disease scores for Type II resistance. The probability of linkage between markers and introgressed resistance genes was calculated using a binomial probability formula based on the assumption that a molecular marker at a specific distance from the introgressed gene, in a near-isogenic line (NIL), will carry the donor-parent allele as a function of the distance between marker and gene and the number of backcrosses/selfs performed in deriving the NIL. Microsatellite loci Xgwm533 and Xgwm274 were significantly associated with QTL for FHB resistance.  相似文献   

6.
Fusarium head blight (FHB) resistance is of particular importance in wheat breeding programmes due to the detrimental effects of this fungal disease on human and animal health, yield and grain quality. Segregation for FHB resistance in three European winter wheat populations enabled the identification of resistance loci in well-adapted germplasm. Populations obtained from crosses of resistant cultivars Apache, History and Romanus with susceptible semi-dwarfs Biscay, Rubens and Pirat, respectively, were mapped and analysed to identify quantitative trait loci (QTL) for FHB severity, ear emergence time and plant height. The results of the present study together with previous studies in UK winter wheat indicated that the semi-dwarfing allele Rht-D1b seems to be the major source for FHB susceptibility in European winter wheat. The high resistance level of the cultivars Romanus and History was conditioned by several minor resistance QTL interacting with the environment and the absence of Rht-D1b. In contrast, the semi-dwarf parents contributed resistance alleles of major effects apparently compensating the negative effects of Rht-D1b on FHB reaction. The moderately resistant cultivar Apache contributed a major QTL on chromosome 6A in a genome region previously shown to carry resistance loci to FHB. A total of 18 genomic regions were repeatedly associated with FHB resistance. The results indicate that common resistance-associated genes or genomic regions are present in European winter wheats.  相似文献   

7.
Fusarium head blight (FHB) is a destructive disease of wheat and barley. In wheat it is mainly caused by the fungal pathogens Fusarium graminearum and Fusarium culmorum. We report the identification and evaluation of candidate genes for quantitative FHB resistance. These genes showed altered expression levels in the moderately resistant winter wheat genotypes Capo and SVP72017 after inoculation with F. graminearum. Amongst others, a NPR1-like gene was identified. Sequence analysis of this gene fragment revealed a high level of variation between the parents of a doubled haploid population. Single nucleotide polymorphism and polymerase chain reaction markers were developed and two homoeologous genes were mapped on the long arms of chromosomes 2A and 2D, respectively. Markers for both genes had significant effects on FHB resistance in a diverse collection of 178 European winter wheat cultivars evaluated in multi-environmental field trials after spray inoculation with F. culmorum. These results revealed that allelic variation in two homoeologous NPR1-like genes is associated with FHB resistance in European winter wheat. Markers for these genes might therefore be used for marker-assisted breeding programs.  相似文献   

8.
Fusarium head blight of wheat is a major deterrent to wheat production world-wide. The genetics of FHB resistance in wheat are becoming clear and there is a good understanding of the genome location of FHB resistance QTL from different sources such as Sumai3, Wuhan, Nyubai and Frontana. All the components needed for assembling complex genotypes through large-scale molecular breeding experiments are now available. This experiment used high throughput microsatellite genotyping and half-seed analysis to process four independent crosses through a molecular breeding strategy to introduce multiple pest resistance genes into Canadian wheat. This included two backcrosses and selection for a total of six FHB resistance QTL, orange blossom wheat midge resistance (Sm1) and leaf rust resistance (Lr21). In addition, the fixation of the elite genetic background was monitored with 45–76 markers to accelerate restoration of the genetic background at each backcross. The strategy resulted in 87% fixation of the elite genetic background on average at the BC2F1 generation and successfully introduced all of the chromosome segments containing FHB, Sm1 and Lr21 resistance genes. The molecular breeding strategy was completed in 25 months, at an equal pace to conventional crossing and selection of spring wheat.  相似文献   

9.
Fusarium head blight (FHB) is a destructive wheat disease of global importance. Resistance breeding depends heavily on the Fhb1 gene. The CIMMYT line Shanghai-3/Catbird (SHA3/CBRD) is a promising source without this gene. A recombinant inbred line (RIL) population from the cross of SHA3/CBRD with the German spring wheat cv. Naxos was evaluated for FHB resistance and related traits in field trials using spray and spawn inoculation in Norway and point inoculation in China. After spray and spawn inoculation, FHB severities were negatively correlated with both anther extrusion (AE) and plant height (PH). The QTL analysis showed that the Rht-B1b dwarfing allele co-localized with a QTL for low AE and increased susceptibility after spawn and spray inoculation. In general, SHA3/CBRD contributed most of the favorable alleles for resistance to severity after spray and spawn inoculation, while Naxos contributed more favorable alleles for reduction in FDK and DON content and resistance to severity after point inoculation. SHA3/CBRD contributed a major resistance QTL close to the centromere on 2DLc affecting FHB severity and DON after all inoculation methods. This QTL was also associated with AE and PH, with high AE and tall alleles contributed by SHA3/CBRD. Several QTL for AE and PH were detected, and low AE or reduced PH was always associated with increased susceptibility after spawn and spray inoculation. Most of the other minor FHB resistance QTL from SHA3/CBRD were associated with AE or PH, while the QTL from Naxos were mostly not. After point inoculation, no other QTL for FHB traits was associated with AE or PH, except the 2DLc QTL which was common across all inoculation methods. Marker-assisted selection based on the 2DLc QTL from SHA3/CBRD combined with phenotypic selection for AE is recommended for resistance breeding based on this valuable source of resistance.  相似文献   

10.
小麦赤霉病是一种小麦穗部病害,严重影响小麦的产量和品质。挖掘小麦赤霉病抗性基因,揭示其抗病机制,对于提高小麦赤霉病抗性,推动小麦赤霉病抗性育种进程具有重要的意义。系统阐述了抗赤霉病相关QTL、多组学研究、细胞壁防卫、信号转导、次生代谢物合成、识别应答等小麦赤霉病抗性机制的研究进展,并对未来小麦赤霉病抗性机制的研究方向进行了探讨。希望以此加深研究者对小麦赤霉病抗性机制的了解,为未来小麦抗赤霉病分子机制研究提供理论基础,为小麦抗赤霉病遗传改良提供丰富的基因资源。  相似文献   

11.
Hongxiang  Ma  Hejing  Ge  Xu  Zhang  Weizhong  Lu  Dazhao  Yu  He  Chen  Jianming  Chen 《Journal of Phytopathology》2009,157(3):166-171
Fusarium head blight (FHB) caused by Fusarium graminearum Schwabe is a devastating barley disease world-wide, causing significant yield losses and contaminating cereal products with mycotoxins. Barley grain contaminated with deoxynivalenol (DON) is associated with gushing and may be rejected by the malting and brewing industry. Genetically inherited resistance is the most effective option for the control of the disease. A total of 266 barley cultivars and breeding lines originating from China were evaluated for FHB resistance and concentration of DON in grain. Plants were inoculated with isolates of F. graminearum under field conditions by injecting conidia into a single spikelet of each spike. FHB symptoms were evaluated by visual inspection, and DON content was analysed by HPLC. Significant differences in FHB ratings and DON levels were observed among cultivars. Visual symptoms of FHB varied from 4.88 to 71.75% of infected spikelets 21 days after inoculation and from 7.86 to 113.33 area under the disease progress curve units (AUDPC). Twenty-seven lines were more resistant to FHB than the control resistant cultivar Zhedar 2 and with fewer than 12% infected spikelets. Twenty-one of the above lines originated from the area in the mid to low valley of Yangtze River, where FHB epidemics are frequent. DON levels ranged from 0.05 to 24.39 mg/kg among the tested barley lines. Correlation coefficients were significant between FHB symptom ratings and DON levels. However, there was no significant correlation between symptom rating and plant height and no significant correlation between symptom rating and heading date.  相似文献   

12.
小麦赤霉病是由禾谷镰刀菌引起的世界性重要病害,发掘优异的抗性种质资源、培育抗病品种是持续防治赤霉病最经济且环境友好的措施。为发掘新的赤霉病抗源,本研究于2017—2021年在弥雾保湿大棚中,采用单花滴注法对642份小麦种质资源的赤霉病抗扩展性进行鉴定,同时利用已知抗赤霉病基因/位点Fhb1~Fhb7的分子标记对筛选出的抗性种质基因型进行分析。结果表明,不同年份间赤霉病病小穗率的相关性均达到极显著水平。筛选到3年及以上赤霉病抗性优于扬麦158的种质81份,主要来自长江中下游麦区,其中33份种质连续4年抗性优于扬麦158;筛选到3年及以上抗性与苏麦3号相当的种质9份,分别为望水白、Grandin、浩麦1号、剑子麦、魁小麦、农林26、软秆洋麦、苏麦2号和武农6号,其中剑子麦、软秆洋麦、苏麦2号和Grandin连续4年抗性与苏麦3号相当。对抗性种质携带的抗赤霉病基因/位点进行分析发现,浩麦1号、冀师7225-28、南农13Y110、石优17和武农6号不携带任何已知抗赤霉病基因/QTL,为小麦抗赤霉病研究和品种培育提供了新的种质资源和理论依据。  相似文献   

13.
Fusarium head blight (FHB; scab), primarily caused by Fusarium graminearum, is a devastating disease of wheat worldwide. FHB causes yield reductions and contamination of grains with trichothecene mycotoxins such as deoxynivalenol (DON). The genetic variation in existing wheat germplasm pools for FHB resistance is low and may not provide sufficient resistance to develop cultivars through traditional breeding approaches. Thus, genetic engineering provides an additional approach to enhance FHB resistance. The objectives of this study were to develop transgenic wheat expressing a barley class II chitinase and to test the transgenic lines against F. graminearum infection under greenhouse and field conditions. A barley class II chitinase gene was introduced into the spring wheat cultivar, Bobwhite, by biolistic bombardment. Seven transgenic lines were identified that expressed the chitinase transgene and exhibited enhanced Type II resistance in the greenhouse evaluations. These seven transgenic lines were tested under field conditions for percentage FHB severity, percentage visually scabby kernels (VSK), and DON accumulation. Two lines (C8 and C17) that exhibited high chitinase protein levels also showed reduced FHB severity and VSK compared to Bobwhite. One of the lines (C8) also exhibited reduced DON concentration compared with Bobwhite. These results showed that transgenic wheat expressing a barley class II chitinase exhibited enhanced resistance against F. graminearum in greenhouse and field conditions.  相似文献   

14.
A population of 218 recombinant inbred lines (RILs) was developed from the cross of two wheat (Triticum aestivum L.) cultivars, 'Ning 894037' and 'Alondra'. Ning 894037 has resistance to Fusarium head blight (FHB) and Alondra is moderately susceptible. Response of the RILs and their parental lines to FHB infection was evaluated with point inoculation in four experiments both in greenhouse and in field conditions. Distribution of disease severity in the population is continuous, indicating quantitative inheritance of resistance to FHB. Bulked segregant analysis and QTL mapping based on simple sequence repeat (SSR) markers revealed three chromosome regions that are responsible for FHB resistance. A chromosome region on 3BS accounted for 42.5% of the phenotypic variation for FHB resistance. Additional QTLs were located on chromosomes 2D and 6B. These three QTLs jointly accounted for 51.6% of the phenotypic variation. SSR markers linked to the QTLs influencing resistance to FHB have potential for use in breeding programs.  相似文献   

15.
16.
Shi JR  Xu DH  Yang HY  Lu QX  Ban T 《Genetica》2008,133(1):77-84
A pyramided FHB resistance line of wheat (WSY) was previously developed from three FHB resistant cultivars (Sumai 3, Wangshuibai, and Nobeokabouzu) in the Jiangsu Academy of Agricultural Sciences, China. In the present study, we analyzed the genetic relationship between WSY and the three parental cultivars using DNA markers in order to clarify how many and which resistance genes had accumulated in WSY. We analyzed 282 DNA markers from the 21 wheat chromosomes. WSY was found to include different chromosome regions that harbored putative FHB QTLs of the three parental germplasm. Haplotypes of DNA markers on these QTL regions revealed that the 1BL, 2BL, 5AS, and 7AL QTL regions were from Sumai 3, the 2AS, 2DS, 3AS, and 6BS QTL regions were from Wangshuibai, and the 3BS QTL region was from Nobeokabouzu. This study showed that different resistance genes from the different resistant germplasm had indeed accumulated in WSY. WSY is a potential resistant resource for FHB resistance in wheat breeding programs.  相似文献   

17.
Four hundred and twenty-two spring wheat germplasm (Triticum aestivum L.) lines belonging to Indian, CIMMYT and Chinese wheat programme were evaluated for their tolerance against natural epiphytotic conditions of spot blotch caused by Bipolaris sorokiniana at the hot spot location, Pusa, Bihar, India. Of the 422 entries screened, none of the genotype showed immunity to the disease, whereas 52 were resistant, 180 moderately susceptible, 171 susceptible and 19 highly susceptible. Indian germplasm lines tended to be more susceptible than lines originated from CIMMYT and China. Chirya 3, Chirya 7 and Mayoor from CIMMYT showed high degree of resistance to the disease both under field and polyhouse conditions. On the basis of the disease severity under field conditions, 20 promising resistant genotypes and 10 highly susceptible lines were isolated for further testing under artificial epiphytotic conditions in polyhouse for genetic analysis and their potential for spot blotch resistance breeding.  相似文献   

18.
Two cultivars of wheat (Triticum aestivum L. cvs Kadett and WW 20299) were grown for 9 days with 20% relative increase in nutrient supply per day at pH 4.1. Aluminium at 50 μ M retarded the growth of roots more than that of shoots in both cultivars, thus decreasing the root/shoot ratio. The inhibition was largest in WW 20299. With long term Al treatment (9 days), Km for K+(86Rb) influx increased five times in both cultivars and Vmax decreased in WW 20299. Efflux of K+(86Rb) was little affected. When the roots were treated with aluminium for two days, only relative growth rate of roots was retarded, while growth of shoots was unaffected and influx of K+(86Rb) adjusted to the actual K+ demand of the plants. It is concluded that the effects of aluminium on K+ uptake in these wheat cultivars are not primary factors contributing to aluminium sensitivity. However, in soil with Al the demand for a comparatively high concentration of K+ to maintain an adequate K+ uptake rate, in combination with a slow growth rate of the roots, may secondarily lead to K+ deficiency in the plants.  相似文献   

19.
Progress in Wheat Resistance to Spot Blotch in Bangladesh   总被引:1,自引:0,他引:1  
Spot blotch, caused by Cochliobolus sativus, is considered one of the most destructive diseases of wheat (Triticum aestivum) in the warm areas of South Asia. Over the past 20 years, wheat breeding efforts in the region have improved spot blotch resistance in susceptible commercial cultivars. This study assessed resistance and spot blotch‐induced yield losses in newly released wheat cultivars developed in Bangladesh since the release of the landmark wheat variety ‘Kanchan’. Replicated field studies were conducted during the 2003 and 2004 wheat seasons at two sites: a farmer's field and a research station in a warm region of Bangladesh where spot blotch has been a serious problem. Spot blotch affected 60% of the crop and caused yield losses of from 2% to 22%. Disease severity and disease‐induced grain yield reductions were less in wheat genotypes developed since 1983, with a corresponding trend towards higher yield in newly developed varieties. The level of resistance to spot blotch in the new cultivars and advanced breeding lines represents considerable progress in breeding for resistance over the past two decades.  相似文献   

20.
We report on the verification of a resistance quantitative trait locus (QTL) on chromosome 1BL (now designated Qfhs.lfl-1BL) which had been previously identified in the winter wheat cultivar Cansas. For a more precise estimation of the QTL effect and its influence on plant height and heading date lines with a more homogeneous genetic background were created and evaluated in four environments after spray inoculation with Fusarium culmorum. Qfhs.lfl-1BL reduced FHB severity by 42% relative to lines without the resistance allele. This QTL did not influence plant height, but significantly delayed heading date by one day. All of the most resistant genotypes of the verification population carried this major QTL displaying its importance for disease resistance. This resistance QTL has not only been found in the cultivar Cansas, but also in the three European winter wheat cultivars Biscay, History and Pirat. A subsequent meta-analysis confirmed the presence of a single QTL on the long arm of chromosome 1B originating from the four mentioned cultivars. Altogether, the results of the present study indicate that Qfhs.lfl-1BL is an important component of FHB resistance in European winter wheat and support the view that this QTL would be effective and valuable in backcross breeding programmes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号