首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The new adduct N6-(2-carboxyethyl)adenine (N6-CEA) was prepared from 1-(2-carboxyethyl)adenine (1-CEA) by base catalyzed (Dimroth) rearrangement of 1-CEA. The structure of N6-CEA was assigned on the basis of UV spectra and electron impact and isobutane chemical ionization mass spectra. When the carcinogen beta-propiolactone was reacted in vitro with calf thymus DNA, 1-CEA but not N6-CEA was detected on paper chromatograms following acid hydrolysis of the DNA. When BPL-reacted single-stranded DNA was incubated at pH 11.7 (37 degrees C, 18 h) prior to acid hydrolysis, it was found that 1-CEA was completely converted to N6-CEA in DNA by Dimroth rearrangement, whereas no conversion occurred at pH 7.5. The extent of Dimroth rearrangement at various pHs and temperatures was determined for 1-CEA, 1-methyladenine (1-MeA), 1-(2-carboxyethyl)-deoxyadenosine-5'-monophosphoric acid (1-CEdAdo5'P) and the phosphodiester 5'-O-(2-carboxyethyl)phosphono-1-(2-carboxyethyl)deoxyadenosine (1-CE-Ado-5'-P-CE).  相似文献   

2.
In a recent communication (Thompson, J., Curtis, M. A., and Miller, S.P.F. (1986) J. Bacteriol. 167, 522-529) we described the purification and characterization of N5-(1-carboxyethyl)ornithine from cells of Streptococcus lactis 133. This unusual amino acid has not previously been found in nature. Radiotracer experiments presented here reveal that exogenous [14C]ornithine serves as the precursor for biosynthesis of [14C]arginine, [14C]N5-(1-carboxyethyl)ornithine, and [14C]N5-acetylornithine by cells of S. lactis K1 during growth in a defined medium lacking arginine. In the absence of both arginine and ornithine, cells of S. lactis K1 can also generate intracellular [14C]N5-(1-carboxyethyl)ornithine from exogenous [14C]glutamic acid. Previously we showed that the properties of N5-(1-carboxyethyl)ornithine prepared from S. lactis were identical to one of the two diastereomers [2S, 7S) or (2S, 7R] present in a synthetic preparation of (2S, 7RS)-N5-(1-carboxyethyl)ornithine. The two diastereomers have now been unambiguously synthesized by an Abderhalden-Haase condensation between (2S)-N2-t-butoxycarbonyl-ornithine and the chiral (2S)-, and (2R)-bromopropionates. By 13C-NMR spectroscopy it has been established that the preparation from S. lactis is exclusively (2S, 7S)-N5-(1-carboxyethyl)ornithine. has been demonstrated in a cell-free extract of S. lactis 133. The requirements for ornithine, pyruvic acid, and NAD(P)H suggest that biosynthesis of N5-(1-carboxyethyl)ornithine occurs via a reductive condensation mechanism. A general survey revealed that N5-(1-carboxyethyl)ornithine was produced only by certain strains of Group N streptococci. These findings may indicate a plasmid locus for the gene(s) encoding the enzyme(s) for N5-(1-carboxyethyl)ornithine biosynthesis.  相似文献   

3.
Details are reported for the synthesis of S-(1-carboxyethyl)-L-cysteine (1-CEC) and S-(1-carboxypropyl)-L-cysteine (1-CPC) from cysteine and 2-bromopropionic acid or 2-bromobutyric acid, respectively. Some analytical data and the behaviour of these two compounds on paper and ion-exchange chromatography are also reported, which allow their identification.  相似文献   

4.
The O-specific polysaccharide of Providencia rustigianii O14 was obtained by mild acid degradation of the LPS and studied by chemical methods and NMR spectroscopy, including 2D 1H,(1)H COSY, TOCSY, NOESY, and 1H,(13)C HSQC experiments. The polysaccharide was found to contain N (epsilon)-[(S)-1-carboxyethyl]-N(alpha)-(D-galacturonoyl)-L-lysine ('alaninolysine', 2S,8S-AlaLys). The amino acid component was isolated by acid hydrolysis and identified by 13C NMR spectroscopy and specific optical rotation, using synthetic diastereomers for comparison. The following structure of the trisaccharide repeating unit of the polysaccharide was established:Anti-P. rustigianii O14 serum was found to cross-react with O-specific polysaccharides of Providencia and Proteus strains that contains amides of uronic acid with N(epsilon)-[(R)-1-carboxyethyl]-L-lysine and L-lysine.  相似文献   

5.
S-(1-carboxyethyl)-L-cysteine (1-CEC) and S-(1-carboxypropyl)-L-cysteine (1-CPC) are oxidatively deaminated by L-aminoacid oxidase with consumption of half a mole of oxygen per mole of substrate in the presence of catalase. This reaction gives rise to the corresponding alpha-ketoacids, identified by some chemical and chromatographic tests and by comparison with synthetic compounds. It has been possible, therefore, to demonstrate that S-(1-carboxyethyl)-thiopvruvic acid (1-CETP) and S-(1-carboxypropyl)-thiopvruvic acid (1-CPTP) are the main products of oxidative deamination of 1-CEC and 1-CPC.  相似文献   

6.
A novel methionine-containing plasmid-determined compound, N2-(1-carboxyethyl)methionine (NCEM) has been identified in crown-gall tumours induced by octopine-type strains of Agrobacterium tumefaciens. NCEM is probably synthesized by octopine synthase. Cell-free preparations from octopine-type strains of A. tumefaciens can degrade NCEM; however, the bacterium cannot transport the compound into the cell, although these strains can take up and degrade the octopine family of opines.  相似文献   

7.
During growth in an arginine-deficient (chemically defined) medium, cells of Streptococcus lactis K1 formed significant amounts of a previously undetected ninhydrin-positive compound. This intracellular compound did not cochromatograph with any of a wide range of amino acids or amino acid analogs tested. However, by two-dimensional thin layer chromatography, the unknown compound migrated close to the recently discovered N5-(1-carboxyethyl)ornithine (Thompson, J., Curtis, M. A., and Miller, S. P. F. (1986) J. Bacteriol. 167, 522-529; Miller, S. P. F., and Thompson, J. (1987) J. Biol. Chem. 262, 16109-16115). The purified compound behaved as a neutral amino acid and eluted between valine and methionine in the amino acid analyzer. The results of 1H NMR spectroscopy suggested the presence of a lysine backbone and a coupled methyl-methine unit in the molecule, and 13C NMR showed that there were nine carbon atoms, of which two (C-1 and C-7) were carboxyl carbons. The simplest structure compatible with the physicochemical data was that of an alkylated derivative of lysine. The identity of this new amino acid, N6-(1-carboxyethyl)lysine, was confirmed by chemical synthesis. In vivo labeling experiments conducted using L[U-14C]lysine and [epsilon-15N]lysine showed that exogenous lysine served as the precursor of intracellular N6-(1-carboxyethyl)lysine and that the epsilon-amino N atom was conserved during biosynthesis of the lysine derivative. Of the two possible diastereomers (2S,8S or 2S,8R) of N6-(1-carboxyethyl)lysine, comparative 13C NMR spectroscopy established that the amino acid produced by S. lactis K1 was exclusively of the 2S,8S configuration.  相似文献   

8.
Determination of the absolute configuration of the 1-carboxyethyl substituent on a monosaccharide by circular dichroism measurements was found to be a sensitive and simple method. It relies on comparison of the spectrum of a 1-carboxyethyl substituted sugar or sugar derivative with the spectra of (R)- and (S)-lactic acid in the region 200-260 nm in which the (R)- and (S)-configuration give negative and positive deltaepsilon, respectively. The oligo- or poly-saccharide containing a 1-carboxyethyl substituted sugar is hydrolyzed to monomers and the 1-carboxyethyl substituted sugar isolated by chromatography. The CD spectrum obtained for the 1-carboxyethyl substituted sugar in water solution at pH 2 is then compared with spectra of (R)- and (S)-lactic acid. The sign for the absorption and a maximum of comparable intensity and appearance around 210 nm, identify the stereochemistry.  相似文献   

9.
Intracellular concentrations of amino acids were determined in cells of Streptococcus lactis 133 during growth in complex, spent, and chemically defined media. Glutamic and aspartic acids represented the major constituents of the amino acid pool. However, organisms grown in spent medium or in defined medium supplemented with ornithine also contained unusually high levels of two additional amino acids. One of these amino acids was ornithine. The second compound exhibited properties of a neutral amino acid by coelution with valine from the amino acid analyzer. The compound did not, however, comigrate with valine or any other standard amino acid by two-dimensional thin-layer chromatography. The unknown amino acid was purified by paper and thin-layer chromatography, and its molecular structure was determined by 1H and 13C nuclear magnetic resonance spectroscopy. This new amino acid was shown to be N5-(1-carboxyethyl)-ornithine. The 14C-labeled compound was formed by cells of S. lactis 133 during growth in spent medium or defined medium containing [14C]ornithine. Formation of the derivative by resting cells required ornithine and the presence of a metabolizable sugar. N5-(1-Carboxyethyl)-ornithine was synthesized chemically from both poly-S-ornithine and (2S)-N2-carbobenzyloxy-ornithine as a 1:1 mixture of two diastereomers. The physical and chemical properties of the amino acid purified from S. lactis 133 were identical to those of one of the synthetic diastereomers. The bis-N-trifluoroacetyl-di-n-butyl esters of the natural and synthetic compounds generated identical gas chromatography-mass spectrometry spectra. A mechanism is suggested for the in vivo synthesis of N5-(1-carboxyethyl)-ornithine, and the possible functions of this new amino acid are discussed.  相似文献   

10.
The O-specific polysaccharide was isolated by mild acid degradation of the lipopolysaccharide of the marine bacterium Shewanella fidelis type strain KMM 3582T and studied by sugar analysis along with 1H and 13C NMR spectroscopy including one-dimensional NOE in difference mode and two-dimensional experiments. The polysaccharide was found to consist of linear tetrasaccharide repeating units containing Nepsilon-[(S)-1-carboxyethyl]-Nalpha-(D-galacturonoyl)-L-lysine and having the following structure: [See text.] The amide of D-galacturonic acid with Nepsilon-[(S)-1-carboxyethyl]-L-lysine ('alaninolysine', 2S,8S-AlaLys) was found for the first time in nature as a component of the O-specific polysaccharide of Providencia rustigianii O14 (Carbohydr. Res. 2003, 338, 1009-1016).  相似文献   

11.
A series of new boron-containing benzoxaborole compounds was designed and synthesized for a continuing structure-activity relationship (SAR) investigation to assess the antimalarial activity changes derived from side-chain structural variation, substituent modification on the benzene ring and removal of boron from five-membered oxaborole ring. This SAR study demonstrated that boron is required for the antimalarial activity, and discovered that three fluoro-substituted 7-(2-carboxyethyl)-1,3-dihydro-1-hydroxy-2,1-benzoxaboroles (9, 14 and 20) have excellent potencies (IC(50) 0.026-0.209 μM) against Plasmodium falciparum.  相似文献   

12.
The initial step in the biosynthesis of the clinically important beta-lactamase inhibitor clavulanic acid involves condensation of two primary metabolites, D-glyceraldehyde 3-phosphate and L-arginine, to give N2-(2-carboxyethyl)arginine, a beta-amino acid. This unusual N-C bond forming reaction is catalyzed by the thiamin diphosphate (ThP2)-dependent enzyme N2-(2-carboxyethyl)arginine synthase. Here we report the crystal structure of N2-(2-carboxyethyl)arginine synthase, complexed with ThP2 and Mg2+, to 2.35-A resolution. The structure was solved in two space groups, P2(1)2(1)2(1) and P2(1)2(1)2. In both, the enzyme is observed in a tetrameric form, composed of a dimer of two more tightly associated dimers, consistent with both mass spectrometric and gel filtration chromatography studies. Both ThP2 and Mg2+ cofactors are present at the active site, with ThP2 in a "V" conformation as in related enzymes. A sulfate anion is observed in the active site of the enzyme in a location proposed as a binding site for the phosphate group of the d-glyceraldehyde 3-phosphate substrate. The mechanistic implications of the active site arrangement are discussed, including the potential role of the aminopyrimidine ring of the ThP2. The structure will form a basis for future mechanistic and structural studies, as well as engineering aimed at production of alternative beta-amino acids.  相似文献   

13.
The new adduct 3-(2-carboxyethyl)cytosine (3-CEC) was isolated following in vitro reaction of the carcinogen β-propiolactone (BPL) with calf thymus DNA. The structure of 3-CEC was confirmed by synthesis from BPL and dCyd. Reaction of BPL with cCyd (pH 7.0–7.5, 37°C) gave 3-(2-carboxyethyl)deoxycytidine (3-CEdCyd) (9% yield) and 3,N4-bis(2-carboxyethyl)deoxycytidine (3,N4-BCEdCyd) (0.6% yield). 3-CEdCyd and 3,N4-BCEdCyd were hydrolyzed (1.5 N HC1, 100°C, 2 h) to 3-CEC and 3,N4-bis(2-carboxyethyl)cytosine (3,N4-BCEC), respectively. The structure of 3-CEC was assigned on the basis of UV and NMR spectra and the electron impact (EI) mass spectra of 3-CEC and a tri-trimethylsilyl (TMS) derivative of 3 CEC as well as deuterated (d27) tri-TMS derivative of 3-CEC. The structure of 3,N4-BCEC was assigned on the basis of UV spectra and the EI mass spectra of a tri-TMS derivative. EI and isobutane chemical ionization mass spectra of 3-methylcytosine (3-MeCyt) and a di-TMS derivative of 3-MeCyt were obtained and were helpful in deducing the structures of 3-CEC and 3,N4-BCEC. This is the first report of the alkylation by BPL of an exocyclic atom on a base in DNA. Compound 3,N4-BCEC was not detected in BPL-reacted calf thymus DNA. The relative amounts of 1-(2-carboxyethyl)adenine (1-CEA), 7-(2-carboxyethyl)guanine (7-CEG), 3-(2-carboxyethyl)thymine (3-CET) and 3-CEC isolated from BPL-reacted DNA following perchloric acid hydrolysis were 0.23, 1.00, 0.39 and 0.41 respectively, when the alkylation reaction was conducted in phosphate buffer at 0–5°C and pH 7.5 and 0.10, 1.00, 0.29 and 0.28 respectively when the reaction was conducted in H2O at 37°C and pH 7.0–7.5.  相似文献   

14.
N5-(L-1-Carboxyethyl)-L-ornithine:NADP+ oxidoreductase (EC 1.5.1.-) from Streptococcus lactis K1 has been purified 8,000-fold to homogeneity. The NADPH-dependent enzyme mediates the reductive condensation between pyruvic acid and the delta- or epsilon-amino groups of L-ornithine and L-lysine to form N5-(L-1-carboxyethyl)-L-ornithine and N6-(L-1-carboxyethyl)-L-lysine, respectively. The five-step purification procedure involves ion-exchange (DE52 and phosphocellulose P-11), gel filtration (Ultrogel AcA 44), and affinity chromatography (2',5'-ADP-Sepharose 4B). Approximately 100-200 micrograms of purified enzyme of specific activity 40 units/mg were obtained from 60 g of cells, wet weight. Anionic polyacrylamide gel electrophoresis revealed a single enzymatically active protein band, whereas three species (pI 4.8-5.1) were detected by analytical electrofocusing. The purified enzyme is active over a broad pH range of 6.5-9.0 and is stable to heating at 50 degrees C for 10 min. Substrate Km values were determined to be: NADPH, 6.6 microM; pyruvate, 150 microM; ornithine, 3.3 mM; and lysine, 18.2 mM. The oxidoreductase has a relative molecular mass (Mr = 150,000) as estimated by high pressure liquid chromatography exclusion chromatography and by polyacrylamide gradient gel electrophoresis. Conventional gel filtration indicated an Mr = 78,000, and a single protein band of Mr = 38,000 was revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme is composed of identical subunits of Mr = 38,000, which may associate to yield both dimeric and tetrameric forms. Polyclonal antibody to the purified protein inhibited enzyme activity. The amino acid composition of the enzyme is reported, and the sequence of the first 37 amino acids from the NH2 terminus has been determined by stepwise Edman degradation.  相似文献   

15.
Butyrivibrio fibrisolvens strain 49 excretes a polysaccharide that contains D-glucose, D-galactose, 4-O-(1-carboxyethyl)-D-galactose, and an acidic component of previously unknown structure. We report here the identity of the unknown as 4-O-(1-carboxyethyl)-L-rhamnose. The structure of this previously unknown compound was deduced from (1) comprehensive electron-impact and chemical-ionization mass-spectroscopic studies of differentially labelled derivatives prepared from the unknown, (2) 13C-n.m.r. and 1H-n.m.r. studies of purified neutral sugars derived from the unknown and (3) chemical degradation experiments.  相似文献   

16.
A new acidic sugar, 3-O-[(R)-1-carboxyethyl]-L-rhamnose (1), has been identified as a constituent of the O-antigenic lipopolysaccharide of Sh. dysenteriae type 5. The structure of 1 has been established by physico-chemical methods and by synthesis. Alkylation of methyl 2,5-di-O-benzyl-alpha-L-rhamnofuranoside (6) with (S)- or (R)-2-chloropropionic acids, followed by removal of the protecting groups, afforded 3-O-[(R)-1-carboxyethyl]-L-rhamnose (9) and 3-O-[(S)-1-carboxyethyl]-L-rhamnose (10), respectively. The properties of 1 coincide with those of 9.  相似文献   

17.
An acidic O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Escherichia coli O150 and studied by sugar and methylation analyses, triflic acid solvolysis, Smith degradation, (1)H and (13)C NMR spectroscopy, including 2D ROESY, (1)H,(13)C HSQC, HMQC-TOCSY, and HMBC experiments. The polysaccharide was found to contain a regioisomer of N-acetylisomuramic acid, 2-acetamido-4-O-[(S)-1-carboxyethyl]-2-deoxy-d-glucose [d-GlcNAc4(Slac)]. The structure of its hexasaccharide repeating unit was established.  相似文献   

18.
N6-(2-carboxyethyl)-NAD was prepared by alkylation of NAD with 3-iodopropionic acid instead of propiolactone, which is not commercially available now because of its carcinogenicity. This new method had the advantage of forming fewer by-products during the reaction. New methods for purification of diaminopoly (ethylene glycol) and poly (ethylene glycol)-bound NAD(H) were also described. As a results, it was possible to prepare highly purified PEG-NADH and PEG-NAD.  相似文献   

19.
An amino acid was released from the O-specific polysaccharide of Proteus mirabilis O13 by acid hydrolysis and identified as N(epsilon)-[(R)-1-carboxyethyl]-L-lysine by comparison with the authentic sample. An amide of this amino acid with D-galacturonic acid was isolated from the polysaccharide by solvolysis with anhydrous trifluoromethanesulfonic (triflic) acid and characterised by 1H and 13C NMR spectroscopy. These and published data enabled determination of the full structure of the repeating unit of the polysaccharide.  相似文献   

20.
Lipophilic derivatives of chlorin p6, 13,15-N-(carboxymethyl)cycloimide methyl ester (CIC1) and 13,15-N-(2-carboxyethyl)cycloimide methyl ester (CIC2), were shown to absorb light in 710 nm region and to be efficient IR photosensitizers. They exhibit similar phototoxicities on the cells of A549 human lung adenocarcinoma, which are 40- and 100-fold higher than those of chlorin p6 and the clinically used Photogem, respectively, and are not toxic in the absence of light irradiation. The confocal spectral imaging technique allowed us to demonstrate that the high phototoxicity of CIC1 and CIC2 is due to their ability to readily penetrate to cells and to be bound to the cell membranes and lipid-containing structures in the monomeric photoactive form. Under the irradiation, the membrane-bound CIC1 and CIC2 are characterized by high quantum yields of singlet oxygen generation (0.6 and 0.65, respectively) and the inability to produce hydroxyl radicals. A 1.5-microM content of CIC1 and CIC2 in the incubation medium provides for their average cytoplasmic concentrations of 21 and 16.5 microM, respectively. The incubation times to achieve 50% level of maximum accumulation for CIC1 and CIC2 in A549 cells are 30 +/- 6 and 24 +/- 12 min, and the times for 50% release of the dyes from the cells are 17 +/- 4 and 50 +/- 10 min, respectively. A diffuse distribution with the predominant accumulation in the membranes of the Golgi apparatus and mitochondria is characteristic of both CIC2 and CIC1, whereas, in addition, CIC1 is considerably accumulated in lipid droplets (cellular organelles responsible for the storage and metabolism of neutral lipids and steryl esters). Our results demonstrate that changes in the structure of the imide substituent could affect the intracellular localization and the rate of release of chlorin p6 cycloimide derivatives from cells while preserving their high photodynamic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号