共查询到20条相似文献,搜索用时 0 毫秒
1.
Two major obstacles to conducting studies with Toxoplasma gondii oocysts are the difficulty in reliably producing large numbers of this life stage and safety concerns because the oocyst is the most environmentally resistant stage of this zoonotic organism. Oocyst production requires oral infection of the definitive feline host with adequate numbers of T. gondii organisms to obtain unsporulated oocysts that are shed in the feces for 3-10 days after infection. Since the most successful and common mode of experimental infection of kittens with T. gondii is by ingestion of bradyzoite tissue cysts, the first step in successful oocyst production is to ensure a high bradyzoite tissue cyst burden in the brains of mice that can be used for the oral inoculum. We compared two methods for producing bradyzoite brain cysts in mice, by infecting them either orally or subcutaneously with oocysts. In both cases, oocysts derived from a low passage T. gondii Type II strain (M4) were used to infect eight-ten week-old Swiss Webster mice. First the number of bradyzoite cysts that were purified from infected mouse brains was compared. Then to evaluate the effect of the route of oocyst inoculation on tissue cyst distribution in mice, a second group of mice was infected with oocysts by one of each route and tissues were examined by histology. In separate experiments, brains from infected mice were used to infect kittens for oocyst production. Greater than 1.3 billion oocysts were isolated from the feces of two infected kittens in the first production and greater than 1.8 billion oocysts from three kittens in the second production. Our results demonstrate that oral delivery of oocysts to mice results in both higher cyst loads in the brain and greater cyst burdens in other tissues examined as compared to those of mice that received the same number of oocysts subcutaneously. The ultimate goal in producing large numbers of oocysts in kittens is to generate adequate amounts of starting material for oocyst studies. Given the potential risks of working with live oocysts in the laboratory, we also tested a method of oocyst inactivation by freeze-thaw treatment. This procedure proved to completely inactivate oocysts without evidence of significant alteration of the oocyst molecular integrity. 相似文献
2.
Toxoplasmic encephalitis (TE) is caused by reactivation of dormant bradyzoites into rapidly dividing tachyzoites of the apicomplexan parasite Toxoplasma gondii in immune-compromised hosts. Diagnosis of this life-threatening disease is complicated, since it is difficult to distinguish between these two stages. It is, therefore, mainly based on a test positive for T. gondii antibodies, and specific clinical symptoms. We developed a duplex RT-PCR to detect the expression of bradyzoite (BAG1) and tachyzoite (SAG1) specific genes simultaneously during tachyzoite/bradyzoite stage conversion. The conversion reaction was observed in many organs of experimental mice, indicated by tachyzoites in the cerebrum, cerebellum, heart and lung, beginning in week 1 after the suppression period, and continuing until the end. Bradyzoites were also detected in nearly all organs throughout the study, suggesting that during the reactivation period, bradyzoites not only escape from cysts and reinvade neighboring cells as tachyzoites, but are also driven into developing new bradyzoites. The results of our study show that duplex RT-PCR is an easy, rapid, sensitive, and reproducible method, which is particularly valuable when numerous samples must be analyzed. This technique may usefully serve as an alternate tool for diagnosing TE in severely immunocompromised patients. 相似文献
3.
4.
Toxoplasma gondii and mucosal immunity 总被引:34,自引:0,他引:34
Kasper L Courret N Darche S Luangsay S Mennechet F Minns L Rachinel N Ronet C Buzoni-Gatel D 《International journal for parasitology》2004,34(3):401-409
Toxoplasma gondii, an intracellular parasite infects the host through the oral route. Infection induces a cascade of immunological events that involve both the components of the innate and adaptative immune responses. Alteration of the homeostatic balance of infected intestine results in an acute inflammatory ileitis in certain strains of inbred mice. Both the infected enterocytes as well as the CD4 T cells from the lamina propria produce chemokines and cytokines that are necessary to clear the parasite whereas CD8 intraepithelial lymphocytes secrete transforming growth factor beta that reduces the inflammation. In this review, we describe the salient features of this complex network of interactions among the different components of the gut-associated lymphoid tissue cell population that are induced after oral infection with T. gondii. 相似文献
5.
6.
Saito T Maeda T Nakazawa M Takeuchi T Nozaki T Asai T 《International journal for parasitology》2002,32(8):961-967
We have cloned the hexokinase [E.C. 2.7.1.1] gene of Toxoplasma gondii tachyzoite and obtained an active recombinant enzyme with a calculated molecular mass of 51,465Da and an isoelectric point of 5.82. Southern blot analysis indicated that the hexokinase gene existed as a single copy in the tachyzoites of T. gondii. The sequence of T. gondii hexokinase exhibited the highest identity (44%) to that of Plasmodium falciparum hexokinase and lower identity of less than 35% to those of hexokinases from other organisms. The specific activity of the homogeneously purified recombinant enzyme was 4.04 micromol/mg protein/min at 37 degrees C under optimal conditions. The enzyme could use glucose, fructose, and mannose as substrates, though it preferred glucose. Adenosine triphosphate was exclusively the most effective phosphorus donor, and pyrophosphate did not serve as a substrate. K(m) values for glucose and adenosine triphosphate were 8.0+/-0.8 microM and 1.05+/-0.25mM, respectively. No allosteric effect of substrates was observed, and the products, glucose 6-phosphate and adenosine diphosphate, had no inhibitory effect on T. gondii hexokinase activity. Other phosphorylated hexoses, fructose 6-phosphate, trehalose 6-phosphate which is an inhibitor of yeast hexokinase, and pyrophosphate, also did not affect T. gondii hexokinase activity. Native hexokinase activity was recovered in both the cytosol and membrane fractions of the whole lysate of T. gondii tachyzoites. This result suggests that T. gondii hexokinase weakly associates with the membrane or particulate fraction of the tachyzoite cell. 相似文献
7.
Jean François Dubremetz David J.P. Ferguson 《International journal for parasitology》2009,39(8):883-893
In many ways the history of the discovery of the life cycle of Toxoplasma gondii and the development of biological electron microscopy progressed in parallel through the 1950s and 1960s. Although Toxoplasma was discovered in 1908, it was only in the 1950s that the extent of the infection in humans and domestic animals was realised and work was undertaken to elucidate its life cycle (reviewed elsewhere in this edition). The development of ultrastructural techniques and their application to biological systems including Toxoplasma developed over the same period. This resulted in a synergistic effect with the re-classification of previously unrelated parasites within a single phylum, the Apicomplexa, which was based on the ultrastructural appearances of the infectious stages. This review will describe the central role played by electron microscopy and Toxoplasma in the developments associated with this progress. 相似文献
8.
Using murine chronic toxoplasmosis as an experimental model, we examined the utility of immunoenzymatic methods in recognizing reinfection in chronically infected individuals. Primary infection with avirulent Toxoplasma gondii DX strain (genotype II) induced strong immunity protecting the mice from mortality after inoculation with LD(100) of virulent BK strain (genotype I) and triggered highly expressed antibody production, within one new isotype detected by comparative immunoblots. The parasites multiplying at the site of reinfection were of BK origin as found by RAPD-PCR. The results revealed that the immunoblot assay seems to be a useful and reliable method for the monitoring of specific antibody profile in chronically infected individuals. In our opinion ELISA combined with immunoblot could enable the recognition of reinfection cases in humans, but earlier our experimental data should be verified in clinical laboratory. 相似文献
9.
Genotyping of Toxoplasma gondii by multilocus PCR-RFLP markers: a high resolution and simple method for identification of parasites 总被引:2,自引:0,他引:2
It was generally believed that Toxoplasma gondii had a clonal population structure with three predominant lineages, namely types I, II and III. This was largely based on genotyping of more than 100 T. gondii isolates originating from a variety of human and animal sources in North America and Europe. Recent genotyping studies on T. gondii strains from wild animals or human patients from different geographical regions revealed the high frequency of non-archetypal genotypes, suggesting the overall diversity of the T. gondii population might be much higher than we thought. However, as most genotyping studies had relied on a few biallelic markers, the resolution and discriminative power of identifying parasite isolates were quite low. To date, there is no commonly used set of markers to genotype T. gondii strains and it is not feasible to compare results from different laboratories. Here, we developed nine PCR-restriction fragment length polymorphism markers with each of them capable of distinguishing the three archetypal T. gondii alleles in one restriction-enzyme reaction by agarose gel electrophoresis. Genotyping 46 T. gondii isolates from different sources using these markers showed that they could readily distinguish the archetypal from atypical types and reveal the genetic diversity of the parasites. In addition, mixed strains in samples could be easily detected by these markers. Use of these markers will facilitate the identification of T. gondii isolates in epidemiological and population genetic studies. 相似文献
10.
Toxoplasma gondii is a unique intracellular parasite. It can infect a variety of cells in virtually all warm-blooded animals. It has a worldwide distribution and, overall, around one-third of people are seropositive for the parasite, with essentially the entire human population being at risk of infection. For most people, T. gondii causes asymptomatic infection but the parasite can cause serious disease in the immunocompromised and, if contracted for the first time during pregnancy, can cause spontaneous abortion or congenital defects, which have a substantial emotional, social and economic impact. Toxoplasma gondii provokes one of the most potent innate, pro-inflammatory responses of all infectious disease agents. It is also a supreme manipulator of the immune response so that innate immunity to T. gondii is a delicate balance between the parasite and its host involving a coordinated series of cellular interactions involving enterocytes, neutrophils, dendritic cells, macrophages and natural killer cells. Underpinning these interactions is the regulation of complex molecular reactions involving Toll-like receptors, activation of signalling pathways, cytokine production and activation of anti-microbial effector mechanisms including generation of reactive nitrogen and oxygen intermediates. 相似文献
11.
Host defense to the apicomplexan parasite Toxoplasma gondii is critically dependent on CD8+ T cells, whose effector functions include the induction of apoptosis in target cells following the secretion of granzyme proteases. Here we demonstrate that T. gondii induces resistance of host cells to apoptosis induced by recombinant granzyme B. Granzyme B induction of caspase-independent cytochrome c release was blocked in T. gondii-infected cells. Prevention of apoptosis could not be attributed to altered expression of the Bcl-2 family of apoptotic regulatory proteins, but was instead associated with reduced granzyme B-mediated, caspase-independent cleavage of procaspase 3 to the p20 form in T. gondii-infected cells, as well as reduced granzyme B-mediated cleavage of the artificial granzyme B substrate, GranToxiLux. The reduction in granzyme B proteolytic function in T. gondii-infected cells could not be attributed to altered granzyme B uptake or reduced trafficking of granzyme B to the cytosol, implying a T. gondii-mediated inhibition of granzyme B activity. Apoptosis and GranToxiLux cleavage were similarly inhibited in T. gondii-infected cells exposed to the natural killer-like cell line YT-1. The endogenous granzyme B inhibitor PI-9 was not up-regulated in infected cells. We believe these findings represent the first demonstration of granzyme B inhibition by a cellular pathogen and indicate a new modality for host cell protection by T. gondii that may contribute to parasite immune evasion. 相似文献
12.
While reactive oxygen species (ROS) can kill Toxoplasma gondii in vitro the role these molecules play in vivo is not known. We used a flow cytometry-based assay to investigate the relationship between intracellular infection and ROS production during acute peritoneal toxoplasmosis in mice. A distinct population of ROS(+) inflammatory macrophages, detected by the oxidation of hydroethidine, was observed to increase progressively in frequency during the course of infection, and to be inversely correlated with the degree of cell parasitization. These data imply that either intracellular parasites inhibit ROS synthesis or, alternatively, ROS-producing cells contain anti-Toxoplasma activity. The latter interpretation was supported by the finding that uninfected ROS-producing inflammatory macrophages were resistant to infection in vivo. However, in the same animals, ROS-producing macrophages that had previously been parasitized could readily be infected with additional parasites, suggesting that the difference in ROS production between highly infected and less infected cells was not due to ROS-associated killing of parasites within these cells. In addition, macrophages infected with T. gondii in vitro and then briefly transferred to acutely infected mice upregulated ROS production in a manner that was again inversely correlated with the degree of intracellular parasitization. Taken together, these findings suggest that both ROS-associated anti-Toxoplasma activity and parasite-driven inhibition of ROS production underlie the observed pattern of ROS production. ROS function and parasite evasion of this function may contribute significantly to the balance between host defense and disease progression during acute infection. 相似文献
13.
Two separate carbamoyl phosphate synthetase activities are required for the de novo synthesis of pyrimidines and arginine in most eukaryotes. Toxoplasma gondii is novel in possessing a single carbamoyl phosphate synthetase II gene that corresponds to a glutamine-dependent form required for pyrimidine biosynthesis. We therefore examined arginine acquisition in T. gondii to determine whether the single carbamoyl phosphate synthetase II activity could provide both pyrimidine and arginine biosynthesis. We found that arginine deprivation efficiently blocks the replication of intracellular T. gondii, yet has little effect on long-term parasite viability. Addition of citrulline, but not ornithine, rescues the growth defect observed in the absence of exogenous arginine. This rescue with citrulline is ablated when parasites are cultured in a human citrullinemia fibroblast cell line that is deficient in argininosuccinate synthetase activity. These results reveal the absence of genes and activities of the arginine biosynthetic pathway and demonstrate that T. gondii is an arginine auxotroph. Arginine starvation was also found to efficiently trigger differentiation of replicative tachyzoites into bradyzoites contained within stable cyst-like structures. These same parasites expressing bradyzoite antigens can be efficiently switched back to rapidly proliferating tachyzoites several weeks after arginine starvation. We hypothesise that the absence of gene activities that are essential for the biosynthesis of arginine from carbamoyl phosphate confers a selective advantage by increasing bradyzoite switching during the host response to T. gondii infection. These findings are consistent with a model of host-parasite evolution that allowed host control of bradyzoite induction by trading off virulence for increased transmission. 相似文献
14.
This paper reviews clinical and asymptomatic Toxoplasma gondii infection in humans and other animals in the USA. Seroprevalence of T. gondii in humans and pigs is declining. Modes of transmission, epidemiology and environmental contamination with oocysts on land and sea are discussed. 相似文献
15.
Azzouz N Rauscher B Gerold P Cesbron-Delauw MF Dubremetz JF Schwarz RT 《International journal for parasitology》2002,32(6):677-684
Glycolipids are important components of cellular membranes involved in various biological functions. In this report, we describe the identification of the de novo synthesis of glycosphingolipids by Toxoplasma gondii tachyzoites. Parasite-specific glycolipids were identified by metabolic labelling of parasites with tritiated serine and galactose. These glycolipids were characterised as sphingolipids based on the labelling protocol and their insensitivity towards alkaline treatment. Synthesis of parasite glycosphingolipids were inhibited by threo-phenyl-2-palmitoylamino-3-morpholino-1-propanol and L-cycloserine, two well-established inhibitors of de novo sphingolipid biosynthesis. The identified glycolipids were insensitive towards treatment with endoglycoceramidase II indicating that they might belong to globo-type glycosphingolipids. Taken together, we provide evidence for the first time that T. gondii is capable of synthesising glycosphingolipids de novo. 相似文献
16.
Pan Hao Intisar Q. M. Alaraj Juma’a R. Al Dulayymi Mark S. Baird Jing Liu Qun Liu 《The Korean journal of parasitology》2016,54(2):139-145
Toxoplasmosis is a serious disease caused by Toxoplasma gondii, one of the most widespread parasites in the world. Lipid metabolism is important in the intracellular stage of T. gondii. Stearoyl-CoA desaturase (SCD), a key enzyme for the synthesis of unsaturated fatty acid is predicted to exist in T. gondii. Sterculic acid has been shown to specifically inhibit SCD activity. Here, we examined whether sterculic acid and its methyl ester analogues exhibit anti-T. gondii effects in vitro. T. gondii-infected Vero cells were disintegrated at 36 hr because of the propagation and egress of intracellular tachyzoites. All test compounds inhibited tachyzoite propagation and egress, reducing the number of ruptured Vero cells by the parasites. Sterculic acid and the methyl esters also inhibited replication of intracellular tachyzoites in HFF cells. Among the test compounds, sterculic acid showed the most potent activity against T. gondii, with an EC50 value of 36.2 μM, compared with EC50 values of 248-428 μM for the methyl esters. Our study demonstrated that sterculic acid and its analogues are effective in inhibition of T. gondii growth in vitro, suggesting that these compounds or analogues targeting SCD could be effective agents for the treatment of toxoplasmosis. 相似文献
17.
Activated macrophages produce nitric oxide (NO) and as such are able to control the multiplication of Toxoplasma gondii. Until now, no reports have described a possible modulation of NO production of macrophages after T. gondii infection. To investigate this possibility, murine blood monocyte-derived and peritoneal macrophages were activated in vitro with interferon-gamma and lipopolysaccharide and infected with T. gondii and Trypanosoma cruzi, and NO production was evaluated. NO was produced by monocyte-derived macrophages only if cultured in the presence of macrophage-colony-stimulating factor. Monocyte-derived or peritoneal macrophages infected with T. gondii presented a significant reduction in NO production. NO production inhibition was not detected after T. cruzi infection. Macrophages infected with higher T. gondii/macrophage ratios presented lower NO production. Furthermore, only viable T. gondii could cause partial inhibition of NO production. In macrophages activated 24 h before the interaction, partial inhibition was detected after 3 h of infection and continued for 48 h. In macrophages activated immediately after the interaction, partial inhibition was not detected at 12 h, but was observed at 24 h. T. gondii-infected macrophages present lower inducible nitric oxide synthase expression as assayed by immunofluorescence. T. gondii did not develop in monocyte-derived macrophages producing NO, but were not totally eliminated. These results demonstrate that T. gondii infection partially inhibits NO production by murine macrophages, suggesting that a deactivating macrophage mechanism may be used for better survival into phagocytic cells. 相似文献
18.
Toxoplasma gondii is an obligate intracellular protozoan parasite, which invades a wide range of hosts including humans. The exact mechanisms involved in its invasion are not fully understood. This study focused on the roles of Ca2+ in host cell invasion and in T. gondii replication. We examined the invasion and replication of T. gondii pretreated with several calcium modulators, the conoid extrusion of tachyzoites. Calmodulin localization in T. gondii were observed using the immunogold method, and Ca2+ levels in tachyzoites by confocal microscopy. In light microscopic observation, tachyzoites co-treated with A23187 and EGTA showed that host cell invasion and intracellular replication were decreased. The invasion of tachyzoites was slightly inhibited by the Ca2+ channel blockers, bepridil and verapamil, and by the calmodulin antagonist, calmidazolium. We observed that calcium saline containing A23187 induced the extrusion of tachyzoite conoid. By immunoelectron microscopy, gold particles bound to anti-calmodulin or anti-actin mAb, were found to be localized on the anterior portion of tachyzoites. Remarkably reduced intracellular Ca2+ was observed in tachyzoites treated with BAPTA/AM by confocal microscopy. These results suggest that host cell invasion and the intracellular replication of T. gondii tachyzoites are inhibited by the calcium ionophore, A23187, and by the extracellular calcium chelator, EGTA. 相似文献
19.
Peyron F Eudes N de Monbrison F Wallon M Picot S 《International journal for parasitology》2004,34(10):1169-1175
Factors that regulate the pathogenesis of Toxoplasma gondii in humans are poorly understood. When acquired during pregnancy, toxoplasmosis can be disastrous, leading to fetal loss or conversely to subclinical disease. In congenitally infected infants, evolution is highly unpredictable. Genotype based virulence patterns have been described in mice, but in humans this classification does not correlate with the gravity of the disease. Mutations on DHFR-TS loci have recently been reported to confer T. gondii fitness cost. In this study, we investigated the relationship between the virulence of the parasite, as measured by clinical outcome in the fetus or newborn, fitness, as measured by parasitic load in amniotic fluid, and allelic polymorphism in DHFR. Six cases of severe congenital toxoplasmosis and 23 cases of mild congenital infections were included in the study. Quantitative PCR was performed to evaluate total T. gondii DNA load in amniotic fluid and detection of mutations was carried out with a LightCycler using hybridisation probes. Parasitic load was significantly higher in severe infections than in mild diseases. Among isolates from severe or non-severe cases of congenital toxoplasmosis, no polymorphism could be detected at loci 36, 83 or 245 of the DHFR gene. The virulent RH strain presented the same melting temperature as the non-virulent PRU strain for codons 36, 83 and 245. Only mutated clones, M2M3 and M2M4 with allelic replacement at these positions, displayed different profiles allowing a clear distinction between wild and mutant types. We concluded that the DHFR gene mutations we investigated do not regulate T. gondii fitness in humans. 相似文献
20.
Shuai Wang Guang-Wei Zhao Wang Wang Zhen-Chao Zhang Bo Shen I. A. Hassan Qing Xie Ruo-Feng Yan Xiao-Kai Song Li-Xin Xu Xiang-Rui Li 《The Korean journal of parasitology》2015,53(2):155-162
Toxoplasma gondii is a protozoan parasite with a broad range of intermediate hosts. Chickens as important food-producing animals can also serve as intermediate hosts. To date, experimental studies on the pathogenicity of T. gondii in broiler chickens were rarely reported. The objective of the present study was to compare the pathogenicity of 5 different T. gondii strains (RH, CN, JS, CAT2, and CAT3) from various host species origin in 10-day-old chickens. Each group of chickens was infected intraperitoneally with 5×108, 1×108, 1×107, and 1×106 tachyzoites of the 5 strains, respectively. The negative control group was mockly inoculated with PBS alone. After infection, clinical symptoms and rectal temperatures of all the chickens were checked daily. Dead chickens during acute phage of the infection were checked for T. gondii tachyzoites by microscope, while living cases were checked for T. gondii infection at day 53 post-inoculation (PI) by PCR method. Histopathological sections were used to observe the pathological changes in the dead chickens and the living animals at day 53 PI. No significant differences were found in survival periods, histopathological findings, and clinical symptoms among the chickens infected with the RH, CN, CAT2, and CAT3 strains. Histopathological findings and clinical symptoms of the JS (chicken origin) group were similar to the others. However, average survival times of infected chickens of the JS group inoculated with 5×108 and 1×108 tachyzoites were 30.0 and 188.4 hr, respectively, significantly shorter than those of the other 4 mammalian isolates. Chickens exposed to 108 of T. gondii tachyzoites and higher showed acute signs of toxoplasmosis, and the lesions were relatively more severe than those exposed to lower doses. The results indicated that the pathogenicity of JS strain was comparatively stronger to the chicken, and the pathogenicity was dose-dependent. 相似文献